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Abstract 

The aim of this paper is to show that a parametric approach can be used to solve fractional continuous static 

games with interval-valued in the objective function and in the constraints. In this game, cooperation among all 

the players is possible, and each player helps the others up to the point of disadvantage to himself, so we use 

the Pareto-minimal solution concept to solve this type of game. The Dinkelbach method is used to transform 

fractional continuous static games into non- fractional continuous static games. Moreover, an algorithm with 

the corresponding flowchart to explain the suggested approach is introduced. Finally, a numerical example to 

illustrate the algorithm’s steps is given. 

Keywords: Continuous Static Games, Nonlinear Programming Problem, Fractional Programming Problem, 

Interval-Valued Optimization. 

1. Introduction 

The game appears when there exists the more case of multiple decision-makers, each their own cost criterion. 

This generalization introduces the possibility of competition among the system controllers, called “players and 

the optimization problem under consideration is therefore termed a ‘game.” Each player in the game controls a 

specified subset of the system parameters (called his control vector) and seeks to minimize his own scalar cost 

criterion subject to specified constraints.   

In [1] Thomas and Walter presented formulations and the solution of different types of continuous static games 

and differential games. The major classes of games are matrix games, continuous static games, and differential 

game.      

In continuous static games (CSG), the decisions and costs are related in continuous rather than a discrete 

manner. The game is static in the sense that no time history is involved in the relationship between costs and 

decisions. 

Applications of the game theory may be found in economics, engineering, and biology. There are several 

solution concepts are possible such as the Pareto-minimal concept, the Nash equilibrium concept, the min-max 

concept, and the Stackelberg leader-follower concept to solve CSG [1,2].  

The fractional programming (FP) problem is considered a special case of nonlinear programming, which is 

generally used for modeling real-life problems with one or more objectives such as profit/cost. The FP is applied 

to different disciplines such as engineering, business, finance, economics, health care, and hospital planning. In 

the recent years, we have seen many approaches to solve fractional programming problem [3,4,5,6,7,8,9,10]. 

Interval-valued optimization problems may provide an alternative choice for considering the uncertainty into 

the optimization problems [11,12]. That is to say that the coefficients in the interval-valued optimization 

problems are assumed as closed intervals.  

In this paper, we introduce a solution method to solve fractional continuous static games problem with interval-

valued parameters in both the objective function and in both the right hand said and left hand said of constrains.   
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Also, an algorithm and a numerical example to illustrate the algorithm’s steps are given. 

2. Interval Analysis [11,12]  

Let us denote by I the set of all closed and bounded interval in R. suppose, 𝐴 = [𝑎𝑙 , 𝑎𝑢]  and 𝐵 = [𝑏𝑙 , 𝑏𝑢], we 

have the following operation on 𝐼.   

1. 𝐴 + 𝐵 = {𝑎 + 𝑏|𝑎𝜖𝐴 𝑎𝑛𝑑 𝑏𝜖𝐵} = [𝑎𝑙 + 𝑏𝑙, 𝑎𝑢 + 𝑏𝑢] ∈ 𝐼. 

2. −𝐴 = {−𝑎: 𝑎𝜖𝐴} = [−𝑎𝑢, −𝑎𝑙]. 

3. 𝐴 − 𝐵 = [𝑎𝑙 − 𝑏𝑢, 𝑎𝑢 − 𝑏𝑙]𝜖𝐼. 

4. 𝑘𝐴 = {𝑘𝑎: 𝑎𝜖𝐴} = {
[𝑘𝑎𝑙 , 𝑘𝑎𝑢]; 𝑖𝑓 𝑘 ≥ 0,

[𝑘𝑎𝑢 , 𝑘𝑎𝑙]; 𝑖𝑓 𝑘 < 0,
where 𝑘 is a real number. 

5. 𝐴𝐵 = [min(𝑆) , max (𝑆)], where 𝑆 = {𝑎𝑙𝑏𝑙 , 𝑎𝑢𝑏𝑢, 𝑎𝑙𝑏𝑢, 𝑎𝑢𝑏𝑙}. 

 The function 𝐹: 𝑅𝑛 → 𝐼defined on the Euclidean space 𝑅𝑛 is called an interval-valued function, i.e., 𝐹(𝑥)

),...,()( 1 nxxFxF = is a closed interval in R for each 𝑥 ∈ 𝑅𝑛 the interval-valued function𝐹 can also be written 

as  )(),()( xFxFxF ul= , where )()( xFandxF ul  are real-valued functions defined on 𝑅𝑛 and satisfy 

)()( xFxF ul  for every𝑥 ∈ 𝑅𝑛. 

 Let  ul ccC ,=
 

and  ul ddD ,=  be two closed intervals in R. Let us recall that DC   if and only if 

.,,, uulluulluull dcdcordcdcordcdc   

(  is a partial ordering not a total ordering on I).  

3. Problem Formulation  

The interval-valued fractional continuous static games (IV-FCSG)1 problem can be written as: 

(IV-FCSG)1: 

 
 

,,...,2,1,
),(,),(

),(,),(
),( ri

uxGuxG

uxGuxG
uxGMin

iuil

iuil
i =


=                                                                                   (1) 

subject to  

,,...,2,1,]0,0[)],(,),([),( njuxguxguxg jujlj ===                                                                                  (2) 

  ,,...,2,1,]0,0[),(,),(),( qkuxhuxhuxh kuklk ==                                                                                      (3) 

In (IV-FCSG)1 problem each player i = 1,2,…,r selects his control vector isi Ru  , where 𝑥 ∈ 𝑅𝑛 is the state control 

and ( ) sr Ruuuu = ,...,, 21
, rssss +++= ...21 is the composite control. Also )(ux =  is the solution to (2) 

given u . The functions ),( uxGi  ),(),( uxhanduxg kj are assumed to be in class C1, with  
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 0
),(






x

uxg
,                                                                                                                            (4) 

in a ball about a solution point ),( ux . 

The function ),( uxGi is called an interval-valued function if the coefficients are taken as closed intervals; they 

will be categorized as interval-valued optimization problems. The functions,  

),(,),(),(,),(),,(,),(,),(,),( uxhuxhanduxguxguxGuxGuxGuxG kukljujliuiliuil
  satisfy

),(),(,),(),( uxGuxGuxGuxG iuiliuil
 , anduxguxg jujl ),(),(  ),(),( uxhuxh kukl  for every

sn RRux ),( .and   0),(,),(  uxGuxG iuil . 

In this game, cooperation among all of the players is possible. It is assumed that each player helps the others 

up to the point of disadvantage to himself. This is the Pareto- minimal (cooperative) solution concept. 

The auxiliary interval-valued fractional continuous static games of (IV-FCSG)1 problem can be written as: 

(IV-FCSG)2: 

 
 

,,...,2,1,
),(,),(

),(,),(
),( ri

uxGuxG

uxGuxG
uxGMin

iuil

iuil
i =


=                                                                                   (5) 

subject to  

,,...,2,1,0),( njuxg jl ==                                                                                                                (6)                                                                                                                

,,...,2,1,0),( njuxg ju ==                                                                                                                             (7)                                                                                                                            

,,...,2,1,0),( qkuxhkl =                                                                                                                           (8) 

.,...,2,1,0),( qkuxhku =                                                                                                                           (9) 

We can transform (IV-FCSG)2 problem into the interval-valued non-fractional continuous static game (IV-

NFCSG) by using Dinkelbach method [10] as the following parametric problem: 

(IV-NFCSG): 

    ,,...,2,1,),(,),(),(,),(),( riuxGuxGuxGuxGuxGMin iuiliiuili =−=                                 (10) 

subject to  

,,...,2,1,0),( njuxg jl ==                                                                                                                   (11) 

,,...,2,1,0),( njuxg ju ==                                                                                                                   (12) 

,,...,2,1,0),( qkuxhkl = (13)                                                                                                                             

(14)                                                                                                                              .,...,2,1,0),( qkuxhku = 
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NFCSG problem.The objective -is a feasible solution of IV),( ** ux,  i = 1,2,…,r, and RuxGii = ),( **where: 

function (10) can be written as: 

  riuxGuxGuxGuxGuxGMin iuiiuiliili ,...,2,1,),(),(,),(),(),( =−−=   

which can be put in the following form: 

  riuxGuxGuxGMin
u

i

l

ii ,...,2,1,),(,),(),( ==  

Where ),( uxG
l

i = ),(),( uxGuxG iliil
− , ),( uxG

u

i = uxGuxG iuiiu ,(),( − ). 

So IV-NFCSG problem (10)-(14) take the form: 

(IV-NFCSG)1: 

  ,,...,2,1,),(,),(),( riuxGuxGuxGMin
u

i

l

ii ==                                                                      (15)  

subject to  

,,...,2,1,0),( njuxg jl ==                                                                                                                (16)

,,...,2,1,0),( njuxg ju ==                                                                                                                  (17) 

,,...,2,1,0),( qkuxhkl =                                                                                                                         (18) 

.,...,2,1,0),( qkuxhku =                                                                                                               (19) 

Definition1.  

 Let ),( ** ux  be a feasible solution of (IV-NFCSG)1 problem, we say that ),( ** ux  is a non-dominated solution 

of  (IV-NFCSG)1  problem if there exist no feasible solution 
 

)ˆ,ˆ( ux   such that
 

)ˆ,ˆ( uxGi
 ),( ** uxGi

 ,  

i =1, 2….r. 

Now we consider the following real-valued optimization problem: 

(RV-OP): 

,,...,2,1,),(),(),( riuxGuxGuxGMin
u

i

l

ii =+=                                                                        (20)  

 

 

subject to  

,,...,2,1,0),( njuxg jl ==  (21) 

,,...,2,1,0),( njuxg ju ==  (22) 
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,,...,2,1,0),( qkuxhkl =
 

(23) 

.,...,2,1,0),( qkuxhku =  (24) 

 

Then we have the following Proposition.  

Proposition1. 

 If ),( ** ux   is a Pareto minimal solution of RV-OP problem, then ),( ** ux is a non- dominated solution of (IV 

–NFCSG)1 problem.  

Proof  

We see that problems (IV-NFCSG)1 and RV-OP problem have the identical feasible sets. Suppose that ),( ** ux

is not a non-dominated solution.Then there exist a feasible solution )ˆ,ˆ( ux  such that )ˆ,ˆ( uxGi
 ),( ** uxGi

 , it 

means that 



 .),()ˆ,ˆ(,),()ˆ,ˆ(

),()ˆ,ˆ(,),()ˆ,ˆ(

),()ˆ,ˆ(,),()ˆ,ˆ(













uxGuxGuxGuxG

oruxGuxGuxGuxG

oruxGuxGuxGuxG

u

i

u

i

l

i

l

i

u

i

u

i

l

i

l

i

u

i

u

i

l

i

l

i

 

It also shows that  )ˆ,ˆ( uxGi
  ),(  uxG

ii
 , i=1,2,….r, which contradicts the fact that ),( ** ux  is a Pareto minimal 

solution of RV-OP problem. 

Now the real-valued non-fractional continuous static game (RV-NFCSG) problem takes the form: 

RV-NFCSG: 

= ),( uxGMin i ),(),(),(),( uxGuxGuxGuxG iuiiuiliil
−+−  ,,...,2,1, ri =                                           (25) 

 subject to  

,,...,2,1,0),( njuxg jl ==                                                                                                               (26)  

,,...,2,1,0),( njuxg ju ==                                                                                                                             (27)  

,,...,2,1,0),( qkuxhkl =                                                                                                               (28)           

.,...,2,1,0),( qkuxhku =                                                                                                                         (29) 

Therefore, the Kuhn-Tuker necessary optimality condition for determining Pareto minimal solution 

corresponding to (RV-NFCSG) problem will have the following form:   
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( )

( )

,,...,1,0),(

,,...,1,0),(

,0
,,,,,,

,0
,,,,,,

njuxg

njuxg

u

uxL

x

uxL

ju

jl

==

==

=




=








 

.1,0

,,...,1,0),(

,,...,1,0),(

,,...,1,0),(

,,...,1,0),(

=

==

==

=

=

 ii

ku

kl

ku

kl

qkuxh

qkuxh

qkuxh

qkuxh





  

        where  L  is the Lagrangian function and  the vectors ,,, qnn RRR   qR  are the lagrange 

multipliars,
rR , 

 

  ( )

),(

),(),(),()(,,,,,,

1

1111

uxh

uxhuxguxgGuxL

ku

T

k

q

k

kl

T

k

q

k

ju

T

j

n

j

jl

T

j

n

j

iii

T

i

r

i





−

−−−=





=

====
 

),( ** ux is Pareto minimal solution for (RV-NFCSG) and )( ** ux = is the solution to problems (26) and (27). 

Now, we introduce an algorithm for solving (IV-FCSG)1 problem. 

4. Algorithm 

Step 1: Convert (IV-FCSG)1 problem to RV- NFCSG problems (25)-(29).   

Step2: Let ),( 11 ux be a feasible solution of RV-NFCSG problem and riuxGii ,...,1,),( 111 == .   

Let 1=M ( M number of iteration) and go to step (3). 

Step 3: Use the Pareto- minimal solution concept to solve the following sub-problem:  

 (SUB)M:  

)),(),(()),(),(()( uxGuxGuxGuxGGMin iuiliMiuiliMi
+−+=   

 subject to (26) – (29).  

Let a new solution point is ).,( 11 ++ MM ux  
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Step 4: If ,,...,1,0)( riG iMi ==   then ),( MM ux is a non-dominated solution of (IV-FCSG)1 problem 

and go to step5. Otherwise set, ( )   1,,...,2,1,, 11)1( +=== +++ MMrijuxG MMjMj  and go 

to step (3).  

Step 5:  Stop. 

In the next section, a flowchart is constructed to explain the algorithm’s steps as follows:   

5. Flowchart for solving (IFCSG) problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figer1. 

  To demonstrate the solution method of (IV-FCSG)1 problem, let us consider the following example. 

6. Numerical Example  

           Consider the following interval fractional continuous static games IV-FCSG problem between two-

players, where the player (1) selects a control 
1Ru  to minimize ),(1 uxG , and player (2) selects control 

1Rv to minimize ),(2 xG as:    

,
]4,2[

]2,1[]2,1[
2

2

1
−−

−−−
=

xu
GMin  

,
]4,2[

]2,1[]2,1[
2

2

2
−

−+−
=

xu
GMin  

Start Formulate the :)( MSUB  

)),(),((

),(),(()(

uxGuxG

uxGuxGMinG

iuiliM

iuiliMi

+−

+=




 

subject to   (26)-(29)  

Solving it by Pareto minimal solution 

Let (IV-FCSG)1 
problem as (1)-(3) 

The solution is ),( 11 ++ MM ux  Transform (IV-FCSG)1 
problem into RV-
NFCSG problem. 

Set 1=M  

Let ),( MM ux be feasible 

solution of RV-NFCSG problem and 

let riuxG MMiiM ,...,1,),( ==  

),( MM ux is 

non-dominated 
solution of  

( IV-FCSG)1 

0)( =
iMiG 

0)( =
iMiG   

Stop 

Set M = M+1 

No 

Yes 
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subject to 

 2.0

]4,6[]4,3[]1,0[]2,1[



−=−−−−=

v

vuxg
 

The above problem can be transform into IV-NFCSG as the form: 

]42,22[

]42,22[

2

21

22

21

2

2

2

11

22

11

2

1





−++−−=

++−−−=

xuxuGMin

xuxuGMin
 

subject to      

.20

.0432

,064

2

1



=−+=

=+−−−=

v

vxg

vuxg

 

Convert IV-NFCSG problem to RV-NFCSG Problem as:  

 
,2),(

,2),(

21

22

22

11

22

11





−+−=

+−=

xuxGMin

xuuxGMin
 

subject to      

.20

.0432

,064

2

1



=−+=

=+−−−=

v

vxg

vuxg

 

Let 1X ( )1,5.1,5.0 ==== vux  be a feasible solution of RV-NFCS.    

Let  ,625.1)( 1111 −== XG 625.1)( 1212 −== XG  and 75.0,25.0 21 ==   

For the Pareto minimal solution defines: 

,)2(.)432()64()25.3()25.3( 2121

22

2

22

1  −−−−+−+−−−−++−+−−= vxvuxxuxuL

Then: 

02

,0345.65.6

,022

2121

212121

121

=−++−=




=+−−++−=




=+−=











x

L

L

uu
u

L
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  2,1,1,0,1,0,0

0,0

0)2(,2

.0432

,064

2121

2

1

==+

=

=−

=−+

=+−−−

i

v

v

vx

vux

i



  

Obtain a new solution ( ) .2.1,1,2.02 ==== vuxX  

So, .486.0,486.0 2212 −=−=   

By computing .0599.0)(,0599.0)( 2221 =−= XGXG  

Therefore termination condition is not satisfied with this solution. 

Applying step 3 from the algorithm another time at, .486.0,486.0 2212 −=−=   

We obtain a new solution,  ( )4.1,5.0,1.03 −=X as illustrate in the table1.  

Iteration 

M 

 

( )vuxXM ,,=  

 

),( 21 MM   

 

))(),(( 21 MM XGXG   

1 

 

( )1.5.1,5.01 =X  (-1.625,-1.625) (-1.5,1.5) 

2 

 

( )2.1,1,2.02 =X
 

(-0.486,-0.486) (-0.599,0.599) 

 

3 

( )4.1,5.0,1.03 −=X
 

(-0.05,-0.05) (0.154,-0.154) 

 

4 

)33.1,675.0,005.0(4 =X
 

(-0.137,-0.137) (0.085,-0.085) 

5 )33.1,675.0,005.0(5 =X  (-0.109,-0.109) (0.029,0.029) 

6 )337.1,6575.0,105.5( 3

6

−−=X  (-0.120,-0.120) (8.78969
310− ,-8.78969

)10 3−  

7 )333.1,667.0,105( 4

7

−=X  (-0.125,-0.125) 
(1.6675

410− ,-1.6675
410− )

)0,0(  

Table1. 

At iteration 7, we get 71 (XG  ) = 0, 72 (XG  ) = 0, stop since the termination condition is satisfied with this 

solution and the non-dominated solution of IV-FCSG problem is 

( )333.1,667.0,105 4

7 ==== − vuxX . 
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7. Conclusions  

In this paper, a parametric approach is used to solve fractional continuous static games with interval-valued in 

the objective function and in the left hand said and right hand said of constraints. The Dinkelbach method is 

used to transform fractional continuous static games into non- fractional continuous static games. We use the 

Pareto-minimal solution concept to solve this type of game. 

Moreover, an algorithm and flowchart is presented to explain this method. Finally, a numerical example to 

illustrate the steps of an algorithm. There are many open points for future research, such as: 

• It is required to design computer programs for the developed algorithms. 

• It is required to continue research in the field of stability analysis of interval continuous static games. 

• It is required to continue research in interval-valued stochastic continuous static games.   
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