ON ABEL CONVERGENT SERIES OF FUNCTIONS

ERDAL GÜL AND MEHMET ALBAYRAK

Yildiz Technical University, Department of Mathematics, 34210 Esenler, Istanbul egul34@gmail.com mehmetalbayrak12@gmail.com

Abstract

In this paper, we are concerned with Abel uniform convergence and Abel point-wise convergence of series of real functions where a series of functions $\sum f_{n}$ is called Abel uniformly convergent to a function f if for each $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left|f_{x}(t)-f(t)\right|<\varepsilon
$$

For $1-\delta<x<1$ and $\forall t \in X$, and a series of functions $\sum f_{n}$ is called Abel point-wise convergent to f if for each $t \in X$ and $\forall \varepsilon>0$ there is a $\delta(\varepsilon, t)$ such that for $1-\delta<x<1$

$$
\left|f_{x}(t)-f(t)\right|<\varepsilon .
$$

2010 Mathematics Subject Classification: 40А30.

Key Words: Pointwise convergence; Uniform convergence; Abel convergence

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol .11, No. 9
www.cirjam.com , editorjam@gmail.com

1 INTRODUCTION

Firstly, we give some notations and definitions in the following. Throughout this paper, N will denote the set of all positive integers. We will use boldface $\mathbf{p}, \mathbf{r}, \mathbf{w}, \ldots$ for sequences $\mathbf{p}=\left(p_{n}\right), \mathbf{r}=\left(r_{n}\right), \mathbf{w}=\left(w_{n}\right), \ldots$ of terms in R, the set of all real numbers. Also, \mathbf{s} and \mathbf{c} will denote the set of all sequences of points in R and the set of all convergent sequences of points in R, respectively.

A sequences $\left(p_{n}\right)$ of real numbers is called Abel convergent (or Abel summable), (See $[1,3]$), to ℓ if for $0 \leq x<1$ the series $\sum_{k=0}^{\infty} p_{k} x^{k} \quad$ is convergent and

$$
\operatorname{Lim}_{x \rightarrow 1^{-}}(1-x) \sum_{k=0}^{\infty} p_{k} x^{k}=\ell
$$

Abel proved that if $\lim _{n \rightarrow \infty} p_{n}=\ell$, then Abel $-\lim _{n \rightarrow \infty} p_{n}=\ell$ (Abel).
A series $\sum_{n=0}^{\infty} p_{n}$ of real numbers is called Abel convergent series (See [1,3]), (or Abel summable) to ℓ if for $0 \leq x<1$ the series $\sum_{k=0}^{\infty} p_{k} x^{k}$ is convergent and

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{k=0}^{\infty} S_{k} x^{k}=\ell, \quad \text { where } S_{n}=\sum_{k=0}^{n} p_{k}
$$

In this case we write Abel $\sum_{n=0}^{\infty} p_{n}=\ell$. Abel proved that if $\lim _{n \rightarrow \infty} \sum_{k=0}^{n}=\ell$, then Abel $-\sum_{n=0}^{\infty} p_{n}=\ell$ (Abel), i.e. every convergent series is Abel summable. As we know the converse is false in general, e.g Abel $\sum_{\boldsymbol{n}=\mathbf{0}}^{\infty}(-1)^{n}=\frac{1}{2}$
(Abel), but $\sum_{n=0}^{\infty}(-\mathbf{1})^{n} \neq \frac{1}{2}$.

2 RESULTS

We are concerned with Abel convergence of sequences of functions defined on a subset X of the set of real numbers. Particularly, we introduce the concepts of Abel uniform convergence and Abel point-wise convergence of series of real functions and observe that Abel uniform convergence inherits the basic properties of uniform convergence.
Let $\left(\mathrm{f}_{\mathrm{n}}\right)$ be a sequences of real functions on X and for all $t \in X$ let $f_{x}(t)=(1-x) \sum_{n=0}^{\infty} S_{n}(t) x^{n}$, where $S_{n}(t)=\sum_{k=0}^{n} f_{k}(t)$.

Definition 2.1 A series of functions $\sum f_{n}$ called Abel point-wise convergent to a function f if for each $t \in X$ and $\forall \varepsilon>0$ there is a $\delta(\varepsilon, t)$ such that for $1-\delta<x<1$

$$
\mid f_{x}(t)-f(t)<\varepsilon
$$

In this case we write $\sum f_{n} \rightarrow f$ (Abel) on X.
It is easy to see that any point-wise convergent sequence is also Abel point-wise convergent. But the converse is not always true as being seen in the following example.
Example 2.1 Define $f_{n}:[0,1] \rightarrow R$ by

$$
f_{n}(t)=(-1)^{n}= \begin{cases}-1, & n \in N \text { and } n \text { odd } ; \\ 1, & n \in N \text { and } n \text { even }\end{cases}
$$

and

$$
S_{n}(t)=\left\{\begin{array}{lc}
0, & n \text { odd } ; \\
1, & n \text { even }
\end{array}\right.
$$

Then, for every $\varepsilon>0$,

$$
\left|(1-x) \sum_{n=0}^{\infty}\left(S_{n}(t)-\frac{1}{2}\right) x^{n}\right|<\varepsilon .
$$

Hence

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} S_{n}(t) x^{n}=\frac{1}{2}
$$

So $\sum f_{n}$ is Abel point-wise convergent to $\frac{1}{2}$ on [0,1]. But observe that $\sum f_{n}$ is not point-wise on $[0,1]$.

Definition 2.2 A series of functions $\sum f_{n}$ is called Abel uniform convergent to a function f if for each $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left|f_{x}(t)-f(t)\right|<\varepsilon
$$

for $1-\delta<x<1$ and $\forall t \in X$.
In this case we write $\sum f_{n} \Rightarrow f$ (Abel) on X.
The sequence is equicontinuous if for every $\varepsilon>0$ and every $x \in X$, there exists a $\delta>0$, such that for all n and all $x^{*} \in X$ with $\left|x^{*}-x\right|<\delta$ we have

$$
\left|f_{n}\left(x^{*}\right)-f_{n}(x)\right|<\varepsilon
$$

The next result is a Abel analogue of a well-known result.
Theorem 2.1 Let $\left(f_{n}\right)$ be equicontinuous on X. If a series of functions $\sum f_{n}$ converges Abel uniform to a function f on X, then f is continuous on X.
Proof. Let t_{0} be an arbitrary point of X. By hypothesis $\sum f_{n} \Rightarrow f$ (Abel) on X. Then, for every $\varepsilon>0$, there is a $\delta_{1}>0$ such that $1-\delta_{1}<x<1$ implies $\left|f_{x}(t)-f(t)\right|<\frac{\varepsilon}{3}$ and $\left|f_{x}\left(t_{0}\right)-f\left(t_{0}\right)\right|<\varepsilon$ for each $t \in X$. Since f_{n} is quicontinuous at $t_{0} \in X$, there is a $\delta_{2}>0$ and $n \in N$ such that $\left|t-t_{0}\right|<\delta_{2}$ implies $\left|f_{k}(t)-f_{k}\left(t_{0}\right)\right|<\frac{\varepsilon}{3 n}$ for each $t \in X$, so

$$
\begin{aligned}
\left|f_{x}(t)-f_{x}\left(t_{0}\right)\right| & =\left|(1-x) \sum_{n=0}^{\infty} S_{n}(t) x^{n}-(1-x) \sum_{n=0}^{\infty} S_{n}\left(t_{0}\right) x^{n}\right| \\
= & \left|(1-x) \sum_{n=0}^{\infty}\left(S_{n}(t)-S_{n}\left(t_{0}\right)\right) x^{n}\right| \\
& \leq(1-x) \sum_{n=0}^{\infty} \mid\left(S_{n}(t)-S_{n}\left(t_{0}\right) \mid x^{n}\right. \\
& \leq(1-x) \sum_{n=0}^{\infty} \frac{\varepsilon}{3} x^{n}=\frac{\varepsilon}{3}
\end{aligned}
$$

Now for all $0<x<1$, for $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and for all $t \in X$ for which $\left|t-t_{0}\right|<\delta$, we have

$$
\begin{aligned}
\left|f(t)-f\left(t_{0}\right)\right|=\mid f(t)- & f_{x}(t)+f_{x}(t)-f_{x}\left(t_{0}\right)+f_{x}\left(t_{0}\right)-f\left(t_{0}\right) \mid \\
& \leq\left|f(t)-f_{x}(t)\right|+\left|f_{x}(t)-f_{x}\left(t_{0}\right)\right|+\left|f_{x}\left(t_{0}\right)-f\left(t_{0}\right)\right|<\varepsilon
\end{aligned}
$$

Since $t_{0} \in X$ is arbitrary, f is continuous on X.
The next example shows that neither of the converse of Theorem 2.1 is true.

Example 2.2 Define $f_{n}:[0,1] \rightarrow R$ by

$$
f_{n}(t)=n^{2} t(1-t)^{n}
$$

Then we have $\sum f_{n}:[0,1] \rightarrow f=0$ (Abel) on $[0,1]$. Though all f_{n} and f are continuous on $[0,1]$, it follows from Definition 2.2 that the Abel point-wise convergence of $\left(f_{n}\right)$ is not uniform, since

$$
c_{n}=\max _{0 \leq t \leq 1}\left|\sum_{k=0}^{n} f_{k}(t)-f(t)\right|=\infty \quad \text { and Abel-lim } c_{n}=\infty \neq 0
$$

The following result is a different form of Dini's theorem.
Theorem 2.2 Let X be compact subset of $R,\left(f_{n}\right)$ be a sequence of continuous functions on X. Assume that f is continuous and $\sum f_{n} \rightarrow f$ (Abel) on X. Also let $\sum_{k=0}^{n} f_{k}$ be monotonic decreasing on $X ; \sum_{k=0}^{n} f_{k}(t) \geq \sum_{k=0}^{n+1} f_{k}(t)$
($n=1,2,3, \ldots$) for every $t \in X$. Then $\sum f_{n} \Rightarrow f$ (Abel) on X.
Proof. Put $h_{n}(t)=\sum_{k=0}^{n}\left(f_{k}(t)-f(t)\right)$. By hypothesis, each h_{n} is continuous and $h_{n} \rightarrow 0$ (Abel) on X, also h_{n} is a monotonic decreasing sequence on X. Since continuous functiō̄ h_{n} on set compact X, it is bounded on X. As all a series of functions h_{n} is bound and monotonic decreasing, it is pointwise convergence for all a $t \in X$. Since h_{n} is Abel pointwise to zero for all a $t \in X$, it find pointwise convergece to zero for all a $t \in X$. Hence for every $\varepsilon>0$ and each $t \in X$ there exists a number $n(t):=n(\varepsilon, t) \in N$ such that $0 \leq h_{n}(t)<\frac{\varepsilon}{2}$ for all $n \geq n(t)$.
Since $h_{n(t)}$ is continuous a $t \in X$ for every $\varepsilon>0$, there is an open set $V(t)$ which contains t such that $\mid h_{n(t)}(\ell)-$ $h_{n(t)}(t) \mid<\varepsilon / 2$ for all $\ell \in V(t)$. Hence for given $\varepsilon>0$, by monotonicity we have

$$
\begin{gathered}
0 \leq h_{n}(\ell) \leq h_{n(t)}(\ell)=h_{n(t)}(\ell)-h_{n(t)}(t)+h_{n(t)}(t) \\
<\left|h_{n(t)}(\ell)-h_{n(t)}(t)\right|+h_{n(t)}(t)<\varepsilon
\end{gathered}
$$

for every $\ell \in V(t)$ and for all $n \geq n(t)$. Since $X \subset \cup_{t \in X} V(t)$ and it is compact set, by the the Heine Borel theorem it has a finite open covering as

$$
X \subset V\left(t_{1}\right) \cup V\left(t_{2}\right) \ldots \cup V\left(t_{m}\right)
$$

Now, let $N=\max \left\{n\left(t_{1}\right), n\left(t_{2}\right), n\left(t_{3}\right), \ldots, n\left(t_{m}\right)\right\}$. Then $0 \leq h_{n}(\ell)<\varepsilon$ for every $t \in X$ and for all $n \geq N$. So $\sum f_{n} \Rightarrow f$ (Abel) on X.
Using Abel uniform convergence, we can also get some applications. We merely state the following theorems and omit the proofs.
Theorem 2.3 If a series function sequence $\sum f_{n}$ converges Abel uniformly on $[a, b]$ to a function f on $[a, b]$ and each f_{n} is an integrable on $[a, b]$ then, f is integrable on $[a, b]$. Moreover,

$$
\operatorname{Lim}_{x \rightarrow 1^{-}} \int_{a}^{b} f_{x}(t) d t=\int_{a}^{b} f(t) d t
$$

Theorem 2.4 Suppose that $\sum f_{n}$ is a function series such that each $\left(f_{n}\right)$ has a continuous derivative on $[a, b]$. If $\sum f_{n} \rightarrow f$ on $[a, b]$ and $\sum f_{n}^{*} \Rightarrow g$ (Abel) on $[a, b]$, then $\sum f_{n} \Rightarrow f$ (Abel) on $[a, b]$, where f is differentiable and $f^{*}=g$.

3 FUNCTIONS SERIES THAT PRESERVE ABEL CONVERGENCE

Recall that a function sequence $\left(f_{n}\right)$ is called convergence-preserving (or conservative) on $X \subset R$ if the transformed sequence ($f_{n}\left(p_{n}\right)$) converges for each convergent sequence $\mathbf{p}=\left(p_{n}\right)$ from X (see [4]). In this section, analogously, we describe the function sequences which preserve the Abel convergence of sequences. Our arguments also give a sequential characterization of the continuity of Abel limit functions of Abel uniformly convergent function series. First we introduce the following definition.
Definition 3.1 Let $X \subset R$ and let $\sum f_{n}$ be a series of real functions, and f a real function on X. Then series of functions $\sum f_{n}$ is called Abel preserving Abel convergence (or Abel conservative) on X, if it transforms Abel convergent sequences to Abel convergent sequences, i.e. series of functions $\sum f_{n}\left(p_{n}\right)$ is Abel convergent to $f(\ell)$ whenever $\left(p_{n}\right)$ is Abel convergent to ℓ. If series of functions $\sum f_{n}$ is Abel conservative and preserves the limits of all Abel convergent sequences from X, then series of functions $\sum f_{n}$ is called Abel regular on X.
Hence, if series of functions $\sum f_{n}$ is conservative on X, then series of functions $\sum f_{n}$ is Abel conservative on X. But the following example shows that the converse of this result is not true.
Example 3.1 Let $f_{n}:[0,1] \rightarrow R$ defined by

$$
f_{n}(t)=(-1)^{n} n= \begin{cases}-n, & n \text { odd } \\ n, & n \text { even }\end{cases}
$$

and

$$
S_{n}(t)=\left\{\begin{array}{cl}
\frac{-n-1}{2}, & n \in N \text { and } n \text { odd } \\
\frac{n}{2}, & n \in N \text { and } n \text { even }
\end{array}\right.
$$

Suppose that $\left(w_{n}\right)$ is an arbitrary sequence in [0,1] such that $\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} w_{n}(t) x^{n}=\mathrm{L}$. Then, for every $\varepsilon>0, \quad\left|(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(w_{n}\right)-\left(-\frac{1}{4}\right)\right) x^{n}\right|<\varepsilon$. Hence $\operatorname{Lim}_{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} S_{n}\left(w_{n}\right)=-\frac{1}{4}$. So $\sum f_{n} \quad$ is Abel conservative on $[0,1]$. But observe that $\sum f_{n}$ is not conservative on $[0,1]$.
The next well-known theorem plays an importent role in the proof of Theorem 3.2 .

Theorem 3.1 If the series $\sum_{n=0}^{\infty} f_{n}$ is Abel pointwise convergent to f on X and $f_{n}(t) \geq 0$ for n sufficiently large for all $t \in X$ then $\sum_{n=0}^{\infty} f_{n}$ converges to f for all $t \in X$.
Proof. There exists n_{0} such that if $n>n_{0}$ then $f_{n}(t)>0$ for all $t \in X$. Thus the $\left(S_{n}\right)_{n_{0+1}}^{\infty}$ is an increasing sequence if S_{n} is bounded then $\sum_{n=0}^{\infty} f_{n}(t)=f(t)$ for all $t \in X$. So for all $t \in X$

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{k=0}^{\infty} f_{k}(t) x^{k}=\sum_{k=0}^{\infty} f_{k}(t)
$$

If S_{n} is not bounded $\operatorname{Lim}_{n \rightarrow \infty} S_{n}=\infty$, so $\sum_{n=0}^{\infty} f_{n}(t)$ is not Abel point-wise convergent for all $t \in X$ (which contradicts the hypothesis).
Now we are ready to prove the following theorem.
Theorem 3.2 Let $\left(f_{n}\right)$ be a sequence of nonnegative functions defined on a closed interval $[a, b] \subset R$, $a, b>0$. Then a series of nonnegative functions $\sum f_{n}$ is Abel conservative on $[a, b]$ if and only if a series of nonnegative functions $\sum f_{n}$ converges Abel uniformly on $[a, b]$ to a continuous function.
Proof. Necessity. Assume that a series of nonnegative functions $\sum f_{n}$ is Abel conservative on $[a, b]$. Choose the sequence $\left(r_{n}\right)=(r, r, \ldots)$ for each $r \in[a, b]$. Since $A-\lim \left(r_{n}\right)=r, A-\lim S_{n}\left(r_{n}\right)$ exists, hence $A-\lim S_{n}(r)=f(r)$ for all $r \in[a, b]$: We claim that f is continuous on $[a, b]$. To prove this we suppose that f is not continuous at a point $p_{0} \in[a, b]$.Then there exists a sequence $\left(p_{k}\right)$ in $[a, b]$ such that $\lim _{k \rightarrow \infty} p_{k}=$ p_{0}, but $\lim f\left(p_{k}\right)$ exists and $\lim f\left(p_{k}\right)=L \neq f\left(p_{0}\right)$. Since a series of nonnegative functions $\sum f_{k}$ is Abel pointwise convergent of f on $[\mathrm{a}, \mathrm{b}]$, we obtain $\sum f_{n} \rightarrow f$ (Abel) on $[\mathrm{a}, \mathrm{b}]$, from Theorem 3.1. Hence we write,

$$
\begin{aligned}
& \text { for } k=1 \Rightarrow \lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{1}\right)-f\left(p_{1}\right) x^{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} S_{n}\left(p_{1}\right)=f\left(p_{1}\right)\right. \\
& \text { for } k=2 \Rightarrow \lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{2}\right)-f\left(p_{2}\right) x^{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} S_{n}\left(p_{2}\right)=f\left(p_{2}\right)\right. \\
& \text { for } k=3 \Rightarrow \lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{3}\right)-f\left(p_{3}\right) x^{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} S_{n}\left(p_{3}\right)=f(3)\right. \\
& \quad \ldots \\
& \text { for } k=j \Rightarrow \lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{j}\right)-f\left(p_{j}\right) x^{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} S_{n}\left(p_{j}\right)=f\left(p_{j}\right) .\right.
\end{aligned}
$$

Now, by the "diagonal process" as in [5] and [6]

$$
\mid(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{n}\right)-f\left(p_{n}\right) x^{n}|\leq| \sum_{j=1}^{\infty}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{j}\right)-f\left(p_{j}\right) x^{n} \mid\right.\right.
$$

So we have

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(p_{n}\right)-f\left(p_{n}\right)\right) x^{n}=0 \tag{3.1}
\end{equation*}
$$

Then,

$$
\sum_{n=0}^{\infty} S_{n}\left(p_{n}\right) x^{n}=\sum_{n=0}^{\infty}\left(S_{n}\left(p_{n}\right)-f\left(p_{n}\right)+f\left(p_{n}\right)\right) x^{n}=\sum_{n=0}^{\infty}\left(S_{n}\left(p_{n}\right)-f\left(p_{n}\right)\right) x^{n}+\sum_{n=0}^{\infty} f\left(p_{n}\right) x^{n}
$$

and hence from (3.1) one obtains

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} S_{n}\left(p_{n}\right) x^{n}=\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} f\left(p_{n}\right) x^{n}
$$

If $\lim f\left(p_{n}\right)=L$, then

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} f\left(p_{n}\right) x^{n}=L .
$$

So we find that

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{n=0}^{\infty} S_{n}\left(p_{n}\right) x^{n}=L . \tag{3.2}
\end{equation*}
$$

Hence series of nonnegative functions $\sum_{n=0}^{\infty} f_{n}\left(p_{n}\right)$ is not Abel convergent since the series of functions
$\sum_{n=0}^{\infty} f_{n}\left(p_{n}\right)$ has two different limit value. So, the series of nonnegative functions $\sum f_{n}\left(p_{n}\right)$ is not Abel convergent
convergent, which contradicts the hypothesis. Thus f must be continuous on $[a, b]$. It remains to prove that series of nonnegative functions $\sum f_{n}$ converges Abel uniformly on $[a, b]$ to f. Assume that a series of functions $\sum f_{n}$ is not Abel uniformly convergent to f on $[a, b]$. Hence there exists a number $\varepsilon_{0}>0$ and numbers $r_{n} \in[a, b]$ such that $\mid(1-x) \sum_{n=0}^{\infty}\left(S_{n}\left(r_{n}\right)-f\left(r_{n}\right) x^{n} \mid \geq 2 \varepsilon_{0}\right.$. We obtain from Theorem 3.1 that $\mid S_{n}\left(r_{n}\right)-f\left(r_{n}\right) \geq 2 \varepsilon_{0}$. The bounded sequence $r=\left(r_{n}\right)$ contains a convergent subsequence $\left(r_{n_{i}}\right), \lim _{x \rightarrow 1^{-}}(1-x) \sum_{i=0}^{\infty} r_{n_{i}} x^{i}=\alpha$, say. By the continuity of f, $\lim f\left(r_{n_{i}}\right)=f(\alpha)$. So there is an index i_{0} such that $\left|f\left(r_{n_{i}}\right)-f(\alpha)\right|<\varepsilon_{0}, i \geq i_{0}$. For the same i^{\prime} s, we have

$$
\left|(1-x) \sum_{i=0}^{\infty}\left(S_{n_{i}}\left(r_{n_{i}}\right)-f(\alpha)\right) x^{i}\right| \geq\left|(1-x) \sum_{i=0}^{\infty}\left(S_{n_{i}}\left(r_{n_{i}}\right)-f\left(r_{n_{i}}\right)\right) x^{i}\right|-\left|(1-x) \sum_{i=0}^{\infty}\left(f\left(r_{n_{i}}\right)-f(\alpha)\right) x^{i}\right| \geq \varepsilon_{0}
$$

Hence a series of nonnegative functions $\sum f_{n_{i}}\left(r_{n_{i}}\right)$ is not Abel convergent, which contradicts the hypothesis. Thus a series of nonnegative functions $\sum f_{n}$ must be Abel uniformly convergent to f on $[a, b]$.
Sufficiency. Assume that $\sum f_{n} \Rightarrow f$ (Abel) on $[a, b]$ and f is continuous. Let $p=\left(p_{n}\right)$ be a Abel convergent Sequence in $[a, b]$ with $\mathrm{A}-\lim p_{n}=p_{0}$. Since Theorem 3.1 and $\sum f_{n} \Rightarrow f$ (Abel) on $[a, b]$ and, we obtain that $\lim p_{n}=p_{0}$. Since $\lim p_{n}=p_{0}$ and f is continuous, we obtain that there is $\mathrm{A}-\lim f\left(p_{n}\right)$ and let A $-\lim f\left(p_{n}\right)=f\left(p_{0}\right)$. Let $\varepsilon>0$ be given. We write $\left|(1-x) \sum_{n=0}^{\infty}\left(f\left(p_{n}\right)-f\left(p_{0}\right)\right) x^{n}\right|<\frac{\varepsilon}{2}$. As $f_{n} \Rightarrow f$ (Abel) on [a,b], we have $\left|(1-x) \sum_{n=0}^{\infty}\left(f_{n}(t)-f(t)\right) x^{n}\right|<\frac{\varepsilon}{2}$ for every $t \in[a, b]$. Hence taking $t=\left(p_{n}\right)$ we have

$$
\left|(1-x) \sum_{n=0}^{\infty}\left(f_{n}\left(p_{n}\right)-f\left(p_{0}\right)\right) x^{n}\right| \leq\left|(1-x) \sum_{n=0}^{\infty}\left(f_{n}\left(p_{n}\right)-f\left(p_{n}\right)\right) x^{n}\right|+\left|(1-x) \sum_{n=0}^{\infty}\left(f\left(p_{n}\right)-f\left(p_{0}\right)\right) x^{n}\right|<\varepsilon
$$

This shows that $\sum f_{n}\left(p_{n}\right) \rightarrow f\left(p_{0}\right)$ (Abel), whence the proof follows.
Theorem 3.2 contains the following necessary and sufficient condition for the continuity of Abel limit functions of function series that converge Abel uniformly on a closed interval.
Theorem 3.3 Let $\sum f_{k}$ be a series of nonnegative functions that converges Abel uniformly on a closed interval $[a, b], a, b>0$ to a function f. The A-limit function f is continuous on $[a, b]$ if and only if the series of nonnegative functions $\sum f_{k}$ is Abel conservative on $[a, b]$.
Now, we study the Abel regularity of function series. If series of nonnegative functions $\sum f_{k}$ is Abel regular on $[a, b]$, then obviously A-lim $\sum f_{n}(t)=t$ for all $t \in[a, b], a, b>0$. So, taking $f(t)=t$ in Theorem 3.2, we immediately get the following result.
Theorem 3.4 Let $\sum f_{k}$ be a series of nonnegative functions on $[a, b], a, b>0$. Then series of nonnegative functions $\left(f_{k}\right)$ is Abel regular on $[a, b]$ if and only if series of nonnegative functions $\sum f_{k}$ is Abel uniformly convergent on $[a, b]$ to the function fdefined by $f(t)=t$

REFERENCES

[1] N.H. Abel Resherches sur la srie N.H. Abel, Recherches sur la srie $1+\frac{m}{1} x+\frac{m(m-1)}{1.2} x^{2}+\cdots$, J. Fr. Math. 1 (1826) 311-339
[2] Tauber, A, Ein Satz aus der Theorie der Unendlichen Reihen. Monatsh. Phys., VII (1897)273-277
[3] Hardy, G. H., 1991. Divergent series. Second Edition, AMS Chelsea Publishing, 396s. USA.
[4] Kolk, E. Convergence-preserving function sequences and uniform convergence. J. Math. Anal. Appl. 238 (1999), 599-603.
[5] Bartle, R. G. Elemnts of Real Analysis. John and Sons Inc., New York, 1964.
[6] Duman ,O. and Orhan, C., μ-statistacally convergent function sequences, 84 (129) (2004), 413-422.

