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ABSTRACT

In 1994 E. Odell and Th. Schlumprecht showed that the Hilbert space (`2) was arbitrarily distortable.
However, we do not have a defined sequence of norms that would perform this distortion. G. An-
droulakis and the author defined a class of norms equivalent to the Hilbert space norm. These norms
are candidate sequences of norms that might distort `2. These norms are recursively defined and
calculations with these norms are quite difficult. Here we present a tool, a Python program, that
calculates the norms defined by G. Androulakis and the author.
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1 Introduction to the Distortion Problem

In the paper [1] a family of some new Tsirelson-type norms were introduced which are equivalent to usual norm on the
separable Hilbert space `2. The motivation for presenting these norms is the following question of E. Odell and Th.
Schlumprecht [3] which is also mentioned by T.W. Gowers [2]:

The Distortion Problem. Is it possible, for every λ > 0 to explicitly define an equivalent norm ‖ · ‖ on `2 such that
every infinite dimensional subspace Y of `2 contains two vectors y1 and y2 with with ‖y1‖2 = ‖y2‖2 = 1 (where ‖ · ‖2
denotes the usual norm of `2 ) and |y1|/|y2| > λ?

It is known that there exists some sequence of norms to satisfy the distortion problem [3, 4]. However, there is no
explicitly defined solution. That is, we know the distortion problem has the answer yes, but we do not know the
sequence of norms. This problem has been open for nearly 30 years and there has been some work done. Androulakis
and Sanacory presented a candidate sequence of norms to answer the question (see [1]). However, calculations are too
complicated and present difficulties in showing distortion on this new norm.

2 Candidates to solve the Distortion Problem

To define the new norms equivalent to the `2-norm on`2 we first introduce some notation. For x = (x(i)) ∈ `2 and
E ⊆ N we denote by Ex the natural projection of x on E, i.e. Ex = ((Ex)(i)) where (Ex)(i) = x(i) for all i ∈ E
and (Ex)(i) = 0 otherwise. Let c00 be the vector space of scalar sequences with finite support. Set

A =

{
y = (y(i))Ni=1 ∈ (0,∞)N : N ∈ N, N ≥ 2,

N∑
i=1

|y(i)|2 = 1

}
(1)

We define a sequence of equivalent norms ‖ · ‖y , for y ∈ A, on `2 as follows. Fix y = (y(i))Ni=1 ∈ A. Then ‖ · ‖y is the
unique norm which satisfies

‖x‖y = sup

N∑
i=1

y(i)‖Eix‖y ∨ ‖x‖∞ for every x ∈ c00, (2)
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Figure 1: The horizontal axis shows the two vectors
have the same norm while the vertical axis shows the
vectors norms deviate.

where the supremum is taken with respect to any sequence of sets E1 < E2 < · · · < EN . Notice that in the definition
of ‖ · ‖y we allow the sets Ei to be empty and we adopt the convention that “A < ∅” and “∅ < B” are valid for any
A,B ⊆ N . We now show that for every y ∈ A there exists a unique norm ‖ · ‖y which satisfies 2.

For every fixed y ∈ A we define a sequence of norms ‖ · ‖(n)y for n ∈ N ∪ {0} which increases to the norm ‖ · ‖y, as
follows. Let ‖ · ‖(0)y = ‖ · ‖∞ (the `∞ norm). If for n ∈ N ∪ {0} the ‖ · ‖(n)y has been defined, then we define

‖x‖(n+1)
y = sup

N∑
i=1

y(i)‖Eix‖(yn) ∨ ‖x‖(yn)forx ∈ c00, (3)

where the supremum is taken with respect to any sequence of sets E1 < E2 < · · · < EN .

Then ‖ · ‖y is the (pointwise) limit of ‖ · ‖(n)y for n ∈ N ∪ {0}, and it satisfies 2.

3 Calculations

The calculations are very difficult by hand. Se we used computer power to write a program in Python. The program will
compute the norm of one vector or the norm of a net of vectors of a given dimension. The program can be found at
https://github.com/sanacoryf/ASNorm. Since the definition of the AS norms are recursive, the calculation can
take some time 2 as the dimension of the calculation increases.

3.1 One Sample Calculation

The program can calculate the norm (given some norming vector referred to as y above) of a single vector or it can
calculate the norm of a net (with an adjustable delta of 0.1 units) of vectors in the positive orthant of some given
dimension n.

We will run an example running the calculation over a net. So to perform a calculation we will need a norming vector
(or a family of norming vectors) and the dimension of the net.

For our sample calculation we will look at a family of vectors in the sphere of `2. Let’s look at the family yn =
(1/
√
n)ni=1 for n > 2. So our first vector for consideration would be y2 = (1/

√
2, 1/
√
2). And we will compute over

dimension n = 4.

We get the out put in the file norms.txt.

v e c t o r ( 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 )
ASNorm 2
ENorm 2
R a t i o 1
Name : 1330 , d t y p e : o b j e c t
v e c t o r ( 0 . 4 , 1 . 0 , 0 . 2 , 0 . 4 )
ASNorm 1.00711
ENorm 1.16619
R a t i o 0 .863587
Name : 1841 , d t y p e : o b j e c t

2The calculations were run on single linux machine with an i7 8th generation chip and 32 GB RAM.
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Giving a pair of vectors that maximizes the ratio |y1|/|y2| ≈ 1/0.863587 ≈ 1.158. Not very much distortion yet. The
program also outputs a graph in the slice of the unit ball defined by the span of y1 and y2 and displays the `2 norms of
y1 and y2 normalized in `2. So their `2 norms are one but their ‖ · ‖y norms display the distortion.
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