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Abstract: 

This paper investigates the dynamic behaviour of uniform Rayleigh beam resting on  Pasternak foundation and 

subjected to exponentially varying magnitude moving the load. The solution techniques are based on finite 

Fourier sine transformed Laplace transformation and convolution theorem. The results show that for a fixed 

value of axial force, damping coefficient and rotatory inertia, increases in shear modulus and foundation 

modulus reduces the response amplitude of the dynamical system. It was also found that increases in axial 

force, rotary inertia, and damping coefficient for fixed values of shear modulus and foundation modulus lead 

to decreases in the deflection profile of the Rayleigh beam resting on Pasternak foundation. Finally, it was 

found that the effect of shear modulus is more noticeable that that of the foundation modulus. 

Keywords: Pasternak Foundation, Shear Modulus, Uniform Beam, Exponentially Varying Moving Load, 

Damping Coefficient, Foundation Modulus, Axial Force. 

1 INTRODUCTION 

The response of structural and flexible members to moving loads has been the subject of numerous researches 

owing to its relevance in many diverse areas. The structure has commonly been modelled either as a beam or a 

plate in most of the analytical studies in engineering, applied mathematics, and mathematical physics. The 

dynamic response analysis is very complex in such structural members under the passage of moving loads due 

to the interaction between the passing load and the structure. The response of railroads to moving trains, the 

response of bridges to moving vehicles, belt drives to the conveyor and computer tape drive to floppy disks are 

some of the application of such moving load problem Adams [1] and Shabnam et al. [2]. 

Moreover, modern means of transport are ever faster and heavier, while the structure over which they move is 

ever more slender and lighter Fryba [3]. The dynamic stresses produce are larger by far than the static ones. 

Theism has continued to motivate a lot of research activities in this area. 

The dynamic response of a simply supported beam, traversed by a constant force moving at a uniform speed 

was first studied by Kyrylo [4]. He used the method of expansion of eigenfunction to obtain his results. Later 

Timoshenko [5] used energy methods to obtain solutions in series form for the simply supported finite beam 

on an elastic foundation subjected to the time dependent points loads moving with uniform velocities across 

the beam. Kenny [6] similarly investigated the dynamic response of infinite elastic beams on elastic foundation 

under the influence of load moving at constant speeds. He included the effects of viscous damping in the 

governing differential equation. 

In a recent development, some of the researchers that made tremendous feat in the dynamic study of structures 

under moving loads includes Oni and Awodola [7], Liu and Chang [8], Oni and Omolefe [9], Misra [10], Oni and 

Omolefe [11], Achawakorn and Jearsiri Pongkul [12]. However, all the researchers aforementioned considered 
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only one parameter model which has various shortcoming because it predicts discontinuities in the deflection 

of the surface of the foundation at the ends of a finite beam and this is in contradiction to an observation made 

in practice. 

Several researchers in recent time that considered two parameters models in their studies so as to overcome 

the shortcoming of the one parameter model include Jimoh and Ajoge [13], Jimoh and Ajoge [14], Oni and 

Jimoh [15], Oni and Jimoh [16], Oni and Jimoh [17], Oni and Ogunbamike [18]. 

In all those researches, exponentially varying magnitude moving load were not considered. The present paper 

is concerned with the response of uniform Rayleigh beam resting on Pasternak foundation and traversed by 

exponentially varying magnitude moving load. 

2. THE INITIAL BOUNDARY-VALUE PROBLEM 

The governing partial differential equation for a uniform Rayleigh beam length L on Pasternak foundation and 

traversed by a moving load Q(x,t) of mass, m moving with velocity c and damping term included is given by 

Frybal [3] 

𝐸𝐼
𝜕4𝑌(𝑥,𝑡)

𝜕𝑥4 + 𝜇
𝜕2𝑌(𝑥,𝑡)

𝜕𝑡2 − 𝑁
𝜕2𝑌(𝑥,𝑡)

𝜕𝑥2 − 𝜇𝑅0
2 𝜕4𝑌(𝑥,𝑡)

𝜕𝑥2𝜕𝑡2 +
𝜀𝜕𝑌(𝑥,𝑡)

𝜕𝑡
+ 𝐾𝑌(𝑥, 𝑡) + 𝐺

𝜕2𝑌(𝑥,𝑡)

𝜕𝑥2 = 𝑄(𝑥. 𝑡)   

      (1) 

Where  

EI = flexural rigidity of the structures, 

 𝜇 = mass per unit length of the beam  

K = foundation modulus,  

G = Shear modulus  

N = axial force,  

𝜀 = damping coefficient,  

Ro =rotatory inertia 

E= young’s modulus,  

I = moment of inertia,  

Y(x,t) = transverse displacement,  

x = spatial coordinate and  

t = time coordinate 

The boundary condition of the structure under consideration is simply supported and is given as 

𝑌(0, 𝐿) = 0 =  𝑌(𝐿, 𝑡) 
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𝜕2𝑌(0, 𝐿)

𝜕𝑥2
= 0 =

𝜕2𝑌(𝐿, 𝑡)

𝜕𝑥2
= 0                                          (2) 

And the initial conditions are taken as  

𝑌(𝑥, 0) = 0 =
𝜕𝑌(𝑥, 0)

𝜕𝑡
= 0                                                 (3) 

 

The load moving on the elastic beam is assumed to be an exponentially varying magnitude moving load of the 

form 

                                                  𝑄(𝑥, 𝑡) = 𝑄𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)                     (4) 

Where  

Q = Mg = moving force of constant magnitude 

g = acceleration due to gravity 

c = constant velocity of the load motion 

d = arbitrary constant 

f(x-ct) = Dirac Delta function which is defined as the unit impulse function of point  x = ct 

By putting (4) into (1), we obtained 

𝐸𝐼
𝜕4𝑌(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑌(𝑥, 𝑡)

𝜕𝑡2
− 𝑁

𝜕2𝑌(𝑥, 𝑡)

𝜕𝑥2
− 𝜇𝑅0

2
𝜕4𝑌(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡2
+

𝜀𝜕𝑌(𝑥, 𝑡)

𝜕𝑡
+ 𝐾𝑌(𝑥, 𝑡) + 𝐺

𝜕2𝑌(𝑥, 𝑡)

𝜕𝑥2

= 𝑄𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)                                                          (5) 

3. SOLUTION OF THE MATHEMATICAL PROBLEM 

In this section, we proceed to solve the initial boundary value problem described by 2, 3, and 5. We remark that 

the integral transform techniques have proved suitable and effectively applicable to solving moving load 

problems such as the one under investigation [3]. Therefore, this method is adopted in the solution of the IBVP. 

Specifically, the Fourier transformation for the length coordinate and the Laplace transformation for the time 

coordinate with boundary and initial conditions are used in this work. 

3.1 FINITE FOURIER TRANSFORMED GOVERNING EQUATION 

Here, we proceed to take the Fourier transform of the governing partial differential equation (5). We find, 

however, that the boundary conditions in equation (2) may be accommodated only by using a finite Fourier sine 

transform, so we shall apply the finite Fourier sine integral transformation for the length coordinate, and this is 

defined as  

𝑌(𝑛, 𝑡) = ∫ 𝑉(𝑥, 𝑡) sin
𝑛𝜋𝑥

𝐿
 

𝐿

0

 𝑑𝑥, 𝑛 = 1,2,3               (6) 

With the inverse transform defined as  
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𝑉(𝑥, 𝑡) =
2

𝐿
∑ 𝑌(𝑛, 𝑡)

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
                                           (7) 

Thus, by invoking equation (6) on equation (5), we have 

𝐸𝐼 (
𝑛𝜋

𝐿
)

4

𝑌(𝑛, 𝑡) + 𝜇𝑌𝑡𝑡(𝑛, 𝑡) − (−𝑁
𝑛2𝜋2

𝐿2
𝑌(𝑛, 𝑡)) − (−𝜇𝑅0

2
𝑛2𝜋2

𝐿2
𝑌𝑡𝑡(𝑛, 𝑡)) + 𝜀𝑌𝑡(𝑛, 𝑡) + 𝐾𝑌(𝑛, 𝑡)

+ (−𝐺
𝑛2𝜋2

𝐿2
𝑌(𝑛, 𝑡)) = 𝑄𝑒−𝑑𝑡 sin

𝑚𝜋𝑡

𝐿
    (8) 

Equation (8) can be conveniently written as  

𝑌𝑡𝑡(𝑛, 𝑡) + 𝑎11𝑌𝑡(𝑛, 𝑡) + 𝑎22𝑌(𝑛, 𝑡) = 𝑎33 sin 𝑑0𝑡 𝑒−𝑑𝑡                             (9) 

where  

 𝑑0 =
𝑛𝜋𝑐

𝐿
,         𝑑1 = 1 + 𝑅0

2 𝑛2𝜋2

𝐿2 ,         𝑑2 =
𝜀

𝜇
,         𝑑3 =

 𝐸𝐼𝑛4𝜋4

𝜇𝐿4 ,          𝑑4 =  
𝑛2𝜋2

𝜇𝐿2
(𝑁 − 𝐺) 

𝑑5 =
𝐾

𝜇
,       𝑑6 =

𝑄

𝜇
,       𝑄 =  𝑀𝑔,     𝑎11 =

𝑑2

𝑑1

,     𝑎22 =
𝑑3 + 𝑑4 + 𝑑5

𝑑1

,    

𝑎33 =  
𝑑6

𝑑1

                                                                                               (10) 

Equation (9) represents the finite Fourier transform governing equations of the uniform Rayleigh beam resting 

on Pasternak foundation and subjecting to exponentially varying magnitude moving load moving with constant 

velocity 

3.2 LAPLACE TRANSFROMED SOLUTIONS 

We apply the method of the Laplace integral transformation for the time coordinate between 0 and ∞ to solve 

equation (9). The operator of the Laplace transform is here indicated by  

𝐿[𝑓(𝑡)] = ∫ 𝑓(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡                            (11) 

Where 

L= Laplace transform operator 

S = Laplace transform variable 

That is, in particular, we use 

𝐿[𝑌(𝑛, 𝑡)] = 𝑌(𝑠, 𝑡) = ∫ 𝑌(𝑛, 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡                                                (12)   

Using the information (12) on (9) we have 

𝑒−𝑠𝑡𝑑𝑡 + 𝑎11 ∫ 𝑌𝑡(𝑛, 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡 + 𝑎22 ∫ 𝑌(𝑛, 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡 = 𝑎33 ∫ sin 𝑑0𝑡 𝑒−𝑠𝑡𝑑𝑡  
∞

0

𝑒−𝑑𝑡   𝑑𝑡                            (13) 
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On evaluating each term of equation (13) by the method of integration by parts and using the set of initial 

conditions (3), we obtain 

𝑆2𝑌(𝑛, 𝑠) + 𝑎11𝑆𝑌(𝑛, 𝑠) + 𝑎22𝑌(𝑛, 𝑠) = 𝑎33 (
𝑑0

(𝑠 + 𝑑)2 + 𝑑0
2)          (14) 

Equation (14) can be re-written as  

𝑌(𝑛, 𝑠) =
𝑎33

(𝑆 − 𝑏1)(𝑆 − 𝑏2)
(

𝑑0

(𝑠 + 𝑑)2 + 𝑑0
2)                                          (15) 

Where  

𝑏1= 
−𝑎11

2
+

√𝑎11
2 −4𝑎22

2
                                                                                                         (16) 

𝑏2= 
−𝑎11

2
+

√𝑎11
2 −4𝑎22

2
                                                                                                         (17) 

Equation (15) can be simplified to obtain 

𝑌(𝑛, 𝑠) =
𝑎33

(𝑏1 − 𝑏2)
[(

1

𝑆 − 𝑏1

) (
𝑑0

(𝑠 + 𝑑)2 + 𝑑0
2) − (

1

𝑆 − 𝑏2

) (
𝑑0

(𝑠 + 𝑑)2 + 𝑑0
2)]    (18) 

3.3 THE INVERSE INTEGRAL TRANSFORMATION 

We proceed in this section to obtain the inverse transformation of equation (18). To obtain the inverse 

transformation of (18), we shall adopt the following representation. 

𝐹1(𝑆) =
1

𝑆 − 𝑏1

 ,       𝐹2(𝑆) =
1

𝑆 − 𝑏2

,     𝑔(𝑆) =
𝑑0

(𝑠 + 𝑑)2 + 𝑑0
2       (19) 

So that the Laplace inversion of (18) is the convolution of 𝑓𝑖 and g defined as  

𝑓𝑖 ∗ 𝑔 = ∫ 𝐹1(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢, 𝑖 = 1,2 …          (20)
𝑡

0

 

Thus, the Laplace inversion of equation (18) is given by 

𝑌(𝑛, 𝑡) = 1 + 𝑒𝑏1𝑡𝐽1 − 𝑒𝑏2𝑡𝐽2      (21) 

Where  

𝐽1 = ∫ 𝑒−(𝑏1−𝑑)𝑢 sin 𝑑0𝑢  𝑑𝑡                                                                                    (22)
𝑡

0

 

𝐽2 = ∫ 𝑒−(𝑏2−𝑑)𝑢 sin 𝑑0𝑢  𝑑𝑡                                                                                     (23)
𝑡

0

 

𝐻 =
𝑎33

(𝑏1 − 𝑏2)
                                                                                                               (24) 

By evaluating the integrals in (22) and (23), we obtain 
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𝐽1 =
𝑑0

𝑑0
2 + (𝑏1 + 𝑑)2

[1 − 𝑒−(𝑏1+𝑑)𝑡 cos 𝑑0𝑡 − (
𝑏1 + 𝑑

𝑑0

) 𝑒−(𝑏1+𝑑)𝑡 sin 𝑑0𝑡] (25) 

𝐽2 =
𝑑0

𝑑0
2 + (𝑏2 + 𝑑)2

[1 − 𝑒−(𝑏2+𝑑)𝑡 cos 𝑑0𝑡 − (
𝑏2 + 𝑑

𝑑0

) 𝑒−(𝑏2+𝑑)𝑡 sin 𝑑0𝑡] (26) 

Using equations (25) and (26) in equation (21) and upon evaluation, we have 

𝑌(𝑛, 𝑡) =
𝐻𝑑0

𝑑0
2 + (𝑏1 + 𝑑)2

(𝑒𝑏1𝑡𝑒−𝑑𝑡 cos 𝑑0𝑡 − (
𝑏1 + 𝑑

𝑑0

) 𝑒−𝑑𝑡 sin 𝑑0𝑡)

−
𝐻𝑑0

𝑑0
2 + (𝑏2 + 𝑑)2

(𝑒𝑏2𝑡𝑒−𝑑𝑡 cos 𝑑0𝑡 − (
𝑏2 + 𝑑

𝑑0

) 𝑒−𝑑𝑡 sin 𝑑0𝑡)  (27) 

Using equation (27) in equation (7), we have 

𝑉(𝑥, 𝑡) =
2

𝐿
∑

𝐻𝑑0

𝑑0
2 + (𝑏1 + 𝑑)2

(𝑒𝑏1𝑡𝑒−𝑑𝑡 cos 𝑑0𝑡 − (
𝑏1 + 𝑑

𝑑0

) 𝑒−𝑑𝑡 sin 𝑑0𝑡)

∞

𝑛=1

−
𝐻𝑑0

𝑑0
2 + (𝑏2 + 𝑑)2

(𝑒𝑏2𝑡𝑒−𝑑𝑡 cos 𝑑0𝑡

− (
𝑏2 + 𝑑

𝑑0

) 𝑒−𝑑𝑡 sin 𝑑0𝑡) sin
𝑛𝜋𝑥

𝐿
                                           (28)                

Equation (28) represents the transverse displacement of the uniform Rayleigh beam resting on Pasternak 

foundation subjected to exponentially varying moving load. 

4.0 NUMERICAL ANALYSIS AND DISCUSSION OF RESULTS 

To illustrate the theory described in this paper numerically, the values of the physical constants and parameters 

considered are 

𝜋 =
22

7
,        𝐸𝐼 = 15000𝑁𝑚2,      𝑃 = 15𝑁,       𝜇 = 0.065,     𝐿 = 12.9𝑚  𝑎𝑛𝑑 𝐼 = 2.87698 × 10  −3 𝑚 

The responses of the uniform Rayleigh beam to exponentially varying magnitude moving load for various values 

of foundation modulus (K), shear modulus (G), axial force (N), Rotatory inertia (Ro) and damping coefficient are 

shown in the following figures (Figures 1-5) 

The response of the beam to exponentially varying magnitude moving load for various values of the shear 

modulus (K) at fixed value of rotatory inertia (Ro), shear modulus (G), damping coefficient (𝜀) and axial force (N) 

is shown in Figure 1 while figure 2 shows the dynamic response of the system. Figures 1 and 2 shows that the 

response amplitude of the beam decreases with increases values of shear modulus and foundation modulus, 

respectively. 

Figures 3, 4, and 5 show the deflection profiles of the beam for various values of the axial force, damping 

coefficient, and rotatory inertia, respectively. From the figures, it is observed that increasing the values of each 

of the parameters decreases the response amplitudes of the beam. 

5. CONCLUSION 

The dynamic response of uniform Rayleigh beam resting on Pasternak foundation and subjected to 

exponentially varying magnitude moving load has been studied in this paper. The governing partial differential 

equations of the problem have been solved by using the finite Fourier integral sine transformed, Laplace 
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transformation and convolution theorem and the prescribed initial and boundary conditions. It is assumed that 

the beam is of uniform cross-section and of constant mass. The effects of shear modulus, foundation modulus, 

axial force, rotatory inertia, and damping coefficient on the deflections of the beams are highlighted. It is found 

that the amplitudes of the deflections profiles of the beam decrease with increasing values of each of the 

structural parameters. Furthermore, it is also found that the effect of shear modulus is more noticeable than that 

of the foundation modulus. 

 

 

 

 

 

 

 

Figure 1: Deflection profile of a uniform Rayleigh beam resting on bi-parametric subgrades under 

exponentially varying magnitude moving Load for various values of foundation modulus (K). 

 

 

 

 

 

 

 

 

 

Figure 2: Deflection profile of a uniform Rayleigh beam resting on bi-parametric subgrades  
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under exponentially varying magnitude moving Load for various values of shear modulus (G). 

 

 

 

 

 

 

 

Figure 3: Deflection profile of a uniform Rayleigh beam resting on bi-parametric subgrades  

 

 

under exponentially varying magnitude moving Load for various values of the axial force (N). 
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Figure 4: Deflection profile of a uniform Rayleigh beam resting on bi-parametric subgrades under 

exponentially varying magnitude moving Load for various values of rotatory inertia (RO). 

 

 

 

 

 

 

 

 

 

 

Figure 5: Deflection profile of a uniform Rayleigh beam under exponentially varying magnitude 

moving Load for various values of damping coefficient (ƹ). 
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