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Abstract 

This paper presents how the steps that used to determine a multiplicative inverse by method based on the 

Euclidean algorithm, can be used to find a greatest common divisor for polynomials in the Galois field (GF (2𝑛)). 
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1 Introduction  

The problem considered in this paper is computation of the greatest common divisor of nonzero polynomials 

𝑀(𝑥) and 𝑃(𝑥), where deg 𝑀(𝑥) < deg 𝑃(𝑥) in the Galois field 𝐹(𝑥) = GF (2𝑛), 𝑛 ≥ 2 , which appears in many 

situations in cryptography. The process of computing the greatest common divisor is inseparable from 

computing the multiplicative inverse. In general, the extended Euclidean algorithm can be used to compute 

them. 

To compute a greatest common divisor, we will use the more elegant theorem (presented in the paper [1]), 

which computes the multiplicative inverse in simple and straightforward steps. 

2 Basic Definitions 

2.1 Greatest Common Divisor (gcd)  

Let 𝑀(𝑥) and 𝑃(𝑥) in 𝐹(𝑥), then the greatest common divisor of 𝑀(𝑥) and 𝑃(𝑥), denoted 𝑔𝑐𝑑(𝑀(𝑥), 𝑃(𝑥))  is 

the polynomial of greatest degree in 𝐹(𝑥) which divides both 𝑀(𝑥) and 𝑃(𝑥). [2] 

2.2 Irreducible polynomial 

A polynomial 𝑃(𝑥) ∈ 𝐹(𝑥), is irreducible in 𝐹(𝑥) if 𝑃(𝑥) can not be expressed as a product 𝐴(𝑥)𝐵(𝑥) of two 

polynomials 𝐴(𝑥) and 𝐵(𝑥) in 𝐹(𝑥) both of lower degree than the degree of 𝑃(𝑥). [3] 

2.3 Multiplicative inverse (MI) 

The multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥) is 𝑀−1(𝑥) such that  

𝑀(𝑥)𝑀−1(𝑥) = 1( 𝑚𝑜𝑑 𝑃(𝑥))           → (1)  

We will denote it by 𝑇[𝑀(𝑥)]. [2] 

3 Relationship between gcd and MI  

Bezout identity can be stated as follow:  
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If 𝑑(𝑥) = 𝑔𝑐𝑑(𝑀(𝑥), 𝑃(𝑥)) for given polynomials 𝑀(𝑥) and 𝑃(𝑥) in 𝐹(𝑥), then there are two 

polynomials 𝐴(𝑥) and 𝐵(𝑥), (are not unique), such that 

𝑑(𝑥) = 𝐴(𝑥)𝑀(𝑥) + 𝐵(𝑥)𝑃(𝑥)      → (2) 

If 𝑑(𝑥) = 1 , and since 

𝐵(𝑥)𝑃(𝑥) = 0 (𝑚𝑜𝑑 𝑃(𝑥))            → (3) 

we get 

𝐴(𝑥)𝑀(𝑥) = 1 (𝑚𝑜𝑑 𝑃(𝑥))          → (4) 

Hence 𝐴(𝑥) is a multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥), this means a multiplicative inverse only exists when 

the gcd is 1, 

4 Theorem and  corollaries 

4.1 Theorem  (proved in the paper [1]). 

Given 𝑀1(𝑥) and 𝑃(𝑥), if there are 𝑞1(𝑥) and 𝑟1(𝑥) such that  

𝑀1(𝑥)𝑞1(𝑥) + 𝑟1(𝑥) = 𝑄1(𝑥)      → (5)  

where 𝑄1(𝑥) = 𝑃(𝑥) + 1, then 

𝑇[𝑀1(𝑥)] = {

𝑞1(𝑥) , 𝑖𝑓 𝑟1(𝑥) = 0

𝑞1(𝑥) + 𝑇 [
𝑀1(𝑥)

𝑟1(𝑥)
] , 𝑖𝑓 𝑟1(𝑥) ≠ 0

      → (6) 

And suppose that 𝑟1(𝑥) ≠ 0, and 𝑀2(𝑥) = 𝑟1(𝑥) + 1, if there are 𝑞𝑖(𝑥) and 𝑟𝑖(𝑥) such that 

𝑀𝑖(𝑥)𝑞𝑖(𝑥) + 𝑟𝑖(𝑥) = 𝑄𝑖(𝑥)   ,   𝑖 ≥ 2     → (7) 

where 𝑀𝑖+1(𝑥) = 𝑟𝑖(𝑥), and 𝑄𝑖 = 𝑀𝑖−1 then when 𝑟i(𝑥) = 1, 

𝑇[𝑀1(𝑥)] = 𝑇𝑖[𝑀1(𝑥)] = 𝑞𝑖(𝑥)𝑇𝑖−1[𝑀1(𝑥)]+𝑇𝑖−2⌊𝑀1(𝑥)⌋      → (8) 

where  𝑇0[𝑀1(𝑥)] = 1,  𝑇1[𝑀1(𝑥)] = 𝑞1(𝑥) .  

4.2 Corollary (1) 

Let  𝑑(𝑥) = 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)), with 𝑞1(𝑥) and 𝑟1(𝑥) satisfing the hypotheses of the theorem, then  

𝑑(𝑥) = {
1 ,  𝑖𝑓  𝑟1(𝑥) = 0

𝑀1(𝑥) ,  𝑖𝑓  𝑟1(𝑥) = 1
        → (9) 

Proof: 

From Eq (6), when 𝑟1(𝑥) = 0 , there is a multiplicative inverse, 𝑇[𝑀1(𝑥)] = 𝑞1(𝑥). So 𝑑(𝑥) = 1. 

When 𝑟1(𝑥) = 1 , Eq (5) becomes 

𝑀1(𝑥)𝑞1(𝑥) = 𝑃(𝑥)                         → (10) 
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Implying that 𝑀1(𝑥)| 𝑃(𝑥), giving 𝑑(𝑥) = 𝑀1(𝑥). 

We note that when 𝑟1(𝑥) = 1, 𝑃(𝑥) must be a reducible polynomial. 

4.3 Corollary (2) 

Let 𝑑(𝑥) = 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)) , and 𝑞𝑖(𝑥) and 𝑟𝑖(𝑥) satisfing the hypotheses of the theorem, then  

𝑑(𝑥) = {
𝑟𝑖−1 ,  𝑖𝑓   𝑟𝑖(𝑥) = 0

1 ,  𝑖𝑓   𝑟𝑖(𝑥) = 1
      → (11) 

Proof: 

𝑑(𝑥) = 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)) 

          = 𝑔𝑐𝑑(𝑀1(𝑥), 𝑄1(𝑥) + 1) 

          = 𝑔𝑐𝑑(𝑀1(𝑥), 𝑟1(𝑥)) 

          = 𝑔𝑐𝑑(𝑀2(𝑥) + 1, 𝑄2(𝑥)) 

          = 𝑔𝑐𝑑(𝑀2(𝑥) + 1, 𝑟2(𝑥))  

When 𝑟2(𝑥) = 0 

𝑑(𝑥) = 𝑔𝑐𝑑(𝑀2(𝑥) + 1,0) 

          = 𝑀2(𝑥) + 1 

          = 𝑟1(𝑥) 

If 𝑟2(𝑥) ≠ 0 

𝑑(𝑥) = 𝑔𝑐𝑑(𝑀2(𝑥) + 1, 𝑟2(𝑥)) 

          = 𝑔𝑐𝑑(𝑀3(𝑥), 𝑄3(𝑥)) 

          = 𝑔𝑐𝑑(𝑀3(𝑥), 𝑟3(𝑥)) 

          = 𝑔𝑐𝑑(𝑀4(𝑥), 𝑄4(𝑥)) 

          =  ⋯ 

          = 𝑔𝑐𝑑(𝑀𝑖+1(𝑥), 𝑄𝑖+1(𝑥)) 

          = 𝑔𝑐𝑑(𝑟𝑖(𝑥), 𝑀𝑖(𝑥)) 

          = 𝑔𝑐𝑑(𝑟𝑖(𝑥), 𝑟𝑖−1(𝑥)) 

When 𝑟𝑖(𝑥) = 0   , 𝑖 > 2 

𝑑(𝑥) = 𝑔𝑐𝑑(0, 𝑟𝑖−1(𝑥)) 

          = 𝑟𝑖−1(𝑥) 
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When 𝑟𝑖(𝑥) = 1, there is 𝑇[𝑀1(𝑥)], so 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)) = 1. 

We note that when 𝑟𝑖(𝑥) = 0, 𝑃(𝑥) must be a reducible polynomial. 

 

5 Procedure to find gcd 

To find 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)), we seek for polynomials 𝑞1(𝑥) and 𝑟1(𝑥) satisfying Eq (5), then from Eq (9), we can find 

𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)) . 

If 𝑟1(𝑥) is neither 0 nor 1, then we put 𝑀2(𝑥) = 𝑟1(𝑥) + 1, and seek for polynomials 𝑞𝑖(𝑥) and 𝑟𝑖(𝑥) satisfying    

Eq (7), and by using Eq (11), we can find 𝑔𝑐𝑑(𝑀1(𝑥), 𝑃(𝑥)) . 

6 Examples 

6.1 In Advanced Encryption Standard (AES), 𝐹(𝑥) = GF (28), and the irreducible polynomial is  

 𝑃(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 . If 𝐴(𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 + 1 , 𝐵(𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥. 

𝑖 𝐴(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 + 1 𝑥2 + 𝑥 0 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

From Eq (6),  𝑇[𝐴(𝑥)] = 𝑥2 + 𝑥 . 

From Eq (9),  𝑔𝑐𝑑(𝐴(𝑥), 𝑃(𝑥)) = 1 . 

𝑖 𝐵(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 𝑥2 + 𝑥 𝑥2 + 𝑥 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

2 𝑥2 + 𝑥 + 1 𝑥4 + 𝑥 + 1 𝑥 + 1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥  

3 𝑥 + 1 𝑥 1 𝑥2 + 𝑥 + 1 

𝑟3(𝑥) = 1, from Eq (8),   

 𝑇[𝐵(𝑥)] = q3(𝑥)𝑇3[𝐵(𝑥)] + 𝑇2[𝐵(𝑥)] 

                 = 𝑥[(𝑥4 + 𝑥 + 1)(𝑥2 + 𝑥) + 1] + 𝑥2 + 𝑥 

                 = 𝑥7 + 𝑥6 + 𝑥4 . 

From Eq (11),  𝑔𝑐𝑑(𝐵(𝑥), 𝑃(𝑥)) = 1 . 

6.2 For 𝐹(𝑥) = GF (2𝑛) , Take 𝑃(𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1 . If 𝐴(𝑥) = 𝑥4 + 𝑥3 + 1 , 𝐵(𝑥) =

𝑥4 + 𝑥3. 

𝑖 𝐴(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥4 + 𝑥3 + 1  𝑥2 + 1 1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 

From Eq (9),  𝑔𝑐𝑑(A(𝑥), 𝑃(𝑥)) = 𝐴(𝑥) = 𝑥4 + 𝑥3 + 1 . 

𝑖 𝐵(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 
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1 𝑥4 + 𝑥3 𝑥2 + 1 𝑥2 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 

2 𝑥2 + 1 𝑥2 + 𝑥 + 1 𝑥 + 1 𝑥4 + 𝑥3 

3 𝑥 + 1 𝑥 + 1 0 𝑥2 + 1 

From Eq (11),   

𝑔𝑐𝑑(𝐵(𝑥), 𝑃(𝑥)) = 𝑟2(𝑥) 

                                 = 𝑥 + 1. 

Conclusions 

This paper demonstrates how simply and efficiently we can compute the gcd of 𝑀(𝑥) and 𝑃(𝑥) using the 

method presented in [1].   
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