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Abstract 

Second-order cone programming has received considerable attention in the past decades because of its wide 

range of applications. Non-interior continuation method is one of the most popular and efficient methods for 

solving second-order cone programming partially due to its superior numerical performances. In this paper, a 

new smoothing form of the well-known Fischer-Burmeister function is given. Based on the new smoothing 

function, an inexact non-interior continuation algorithm is proposed. Attractively, the new algorithm can start 

from an arbitrary point, and it solves only one system of linear equations inexactly and performs only one line 

search at each iteration. Moreover, under a mild assumption, the new algorithm has a globally linear and locally 

Q-quadratical convergence. Finally, some preliminary numerical results are reported which show the 

effectiveness of the presented algorithm. 

Keywords: Second-order cone programming; non-interior continuation method; interior-point method; 

smoothing function; Euclidean Jordan algebra. 

1. Introduction 

Second-order cone programming (SOCP for simplicity) is convex optimization in which a linear function is 

minimized over the intersection of an affine linear manifold with the Cartesian product of several second-order 

cones.  SOCP has received considerable attention from researchers because of its wide range of applications in 

many fields such as engineering technology, economic management, optimal control and design, machine 

learning, pattern recognition, combinatorial optimization, robust optimization, and so on (see, e.g., [1-8] and 

references therein). 

SOCP includes linear programming (LP), convex quadratic programming (CQP) and quadratically constrained 

convex quadratic programming (QCCQP) as special cases. Furthermore, it is also a special case of semidefinite 

programming (SDP). Hence, SOCP problems can be solved theoretically by using a SDP method. Just like LP, 

CQP and SDP problems, SOCP problems can also be solved in polynomial time by interior-point methods (IPMs) 

[9]. However, the computational effort per iteration required by these methods to solve SOCP problems is 

greater than that required to solve LP and CQP problems but less than that required to solve SDP with the same 

size and structure. Solving SOCP by SDP approach is not advisable both on numerical grounds and 

computational complexity concerns. Thus, SOCP deserves to be researched in its own right, because of its 

computational tractability and its broad applicability. On the other hand, though smoothing Newton-type 

method can be used to solve SOCP problems, computing the exact solution to the system of equations is 

expensive when the problem is large-scale, and the solution may not be justified if initial point is far from the 

solution of the SOCP. However, Inexact method can overcome the drawbacks. 

The standard SOCP problem is as follows 

1 1

min ( ) : , , 1,2, ,
i

r r
i T i i i

i n
i i

c x A x b x i r

= =

  
=  = 

  
                                                                              (1) 
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where ,i im n n
iA R c R


  , and mb R  are given data; 

i

i
nx   are the variables; 

in  is a second-order 

cone (SOC) with dimension in , which is defined by  1
1 2 1 2 1 2( ; ) | , , .i i

i

n n
n x x x R x R x x R

−
 =     It 

is well known that 
in is a closed, pointed (i.e.,  ( ) 0

i in n  − = ) and convex cone. Hence SOCP problems 

are convex optimization problems. It is easy to verify that 
in  is self-dual, that is, for each 

i

i
nx  ,   

 * | ( ) 0 .i
i i

ni i T i
n n s R s x = =    

The dual problem of (1) is 

 max : , 1,2, ,
i

T T i i i
i nb y A y s c s i r+ =  =                                                                         (2) 

where my R is the variable and , 1,2, ,
i

i
ns i r = , are the slack variables. Denote 1 2( ; ; ; )rx x x x= , 

where .
i

i
nx   Correspondingly, define 

1 2 1 2, ( , , , ) ,
r

m n
n n n rA A A A R  =    =   

1 2 1 2( , , , ) , ( , , , ) ,r n r nc c c c R s s s s R=  =   

where 1 2 rn n n n+ + + = , r  is the number of SOCs. 

Problems (1) and (2) can be written as 

 min : ,Tc x Ax b x=                                                                                                                (3) 

and 

 max : , ,T T mb y A y s c s y R+ =                                                                                          (4) 

respectively, where nc R  and mb R . The vector 1 2( ; ; ; )re e e e=  is the identity element of  , where 

1
(1;0) inie R R

−
=    is the identity element of 

in . 

We refer to inequality 0x   as the second-order cone inequality. For any nx R , 0x   if and only if 0Tx s  , 

for all .s  

Throughout this paper, we make the following assumption. 

ASSUMPTION 1.1 Both (3) and (4) are strictly feasible, i.e., there exists a vector ( , , ) int intmx y s R     

such that Ax b=  and TA y s c+ = , where int  denotes the interior of  . 

It is well known that under Assumption 1.1, the SOCP (3) is equivalent to its optimality conditions: 
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,

,

0, , , ,

T

m

Ax b

A y s c

x s x s y R

=

+ =

=                                                                                                               (5) 

where 0x s =  is referred to the complementary condition. 

Interior-point method (IPM) is one of the most effective methods for solving SOCPs. Several IPMs designed for 

LP have been successfully extended to SOCP. There are extensive literatures focusing on IPMs for SOCPs [5,7]. 

IPMs typically deal with the following perturbation of the optimality conditions (5): 

,

,

, , int , ,

T

m

Ax b

A y s c

x s e x s y R

=

+ =

=                                                                                                           (6) 

where 0   is a parameter, and 1(1;0) ne R R −=    is the identity element. This set of conditions are called 

the central path conditions as they define a trajectory approaching the solution set as 0  . Conventional 

IPMs usually apply a Newton-type method to the equations in (6) with a suitable line search dealing with 

intx   and ints   explicitly. 

It is proved that IPMs are globally convergent under certain assumptions. However, most IPMs need a feasible 

initial point with the exception of the infeasible IPMs (see, e.g., [10]). This is usually difficult in most cases. 

Recently non-interior continuation methods have attracted much attention partially due to their superior 

numerical performances [11,12]. However, in order to prove their global/local-quadratic convergence, these 

algorithms either depend on the assumptions of uniform nonsingularity and strict complementarity or need to 

solve two linear systems of equations and perform at least two line searches at each iteration [13]. 

Motivated by this direction, the goal of the paper is to propose a new inexact non-interior continuation method 

for SOCP, which employs a new smoothing function to characterize the central path conditions. The new 

algorithm only needs to solve one system of linear equations inexactly and perform only one line search per 

iteration, and it can start from an arbitrary point. The global as well as the locally quadratic convergence of the 

proposed algorithm is analyzed, where the theory of Euclidean Jordan Algebra is used extensively. 

The main difference of the non-interior continuation algorithm to be discussed in this paper from IPMs is that 

we reformulate (6) as a smoothing linear system of equations. It is shown that our algorithm has the following 

good properties: 

(i) It can start from an arbitrary initial point; 

(ii) It needs to solve only one linear system of equations inexactly and perform only one line search per 

iteration, and it can be fit for solve large-scale problems; 

(iii) It is globally and locally Q-quadratically convergent under a mild assumption, without strict 

complementarity. The result is stronger than the many corresponding results of IPMs. 

The following notations and terminologies are used throughout the paper. We use ``,'' for adjoining vectors 

and matrices in a row and ``;'' for adjoining them in a column. 
nR  denotes the space of n -dimensional real 
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column vectors, and n mR R  is identified with n mR + . Denote 2x x x= . x  is the unique vector in nR  

such that x x x= . 

For any , nx y R , we write x y  ( )x y  if x y−   ( intx y−   ). R+ ( R++ ) denotes the set of 

nonnegative (positive) real numbers. 

This paper is organized as follows: In section 2, we give some preliminaries and the equivalent formulation of 

the perturbed optimality conditions. A smoothing function and its properties are given in section 3. In section 

4, we describe an inexact non-interior continuation algorithm for SOCP. In section 5, the convergence of the the 

algorithm is analyzed. Numerical experiments are shown in section 6. Some conclusions are given in section 7. 

2. Preliminaries and equivalent formulation of perturbed optimality conditions 

In this section, we mainly recall some basic results of Euclidean Jordan algebra, which are extensively used in 

this paper. The reader is referred to [13] for more details of Jordan algebra. 

Let J  be a finite dimensional real vector space. ( , )J  is called a Jordan algebra if there exists a bilinear 

mapping J J J →  denoted by “ ” such that x y y x=  and 2 2x xx x
L L L L=  for any ,x y J , where 

2x x x= , :xL J J→  is a linear transformation defined by :xL y x y= . 

A Jordan algebra has an identity, if there exists a unique element e J  such that x e e x x= =  for all x J . 

Let ( , )J  be a Jordan algebra. ( , )J  is called a Euclidean Jordan algebra if an associate inner product ,   is 

defined, and , ,x y z x y z=  holds for any , ,x y z J . 

The set  2 :x x J  is called the cone of squares of Euclidean Jordan algebra ( , , , )J   . Let ( )G   denote 

the group of automorphisms of a cone  .  is a homogeneous cone if ( )G   acts on it transitively. That is, if 

, intx y  , then there exists ( )g G   such that ( )g x y= . Symmetric cones are cones that are self-dual 

and homogeneous. By Theorem III.2.1 in [13], we know that a cone is symmetric if and only if it is the cone of 

squares of some Euclidean Jordan algebra. 

An element c J  is called idempotent if 0c c c=  . Two elements ,x y J  are orthogonal if 0x y = . An 

idempotent c  is primitive if it is nonzero and can’t be expressed by sum of two other nonzero idempotents. For 

any x J , let deg( )x  be the minimal positive integer such that  2 deg( ), , , , xe x x x  is linearly dependent. 

Then rank of J , denoted by ( )rk J , is defined as  max deg( ) :x x J . 

A set of primitive idempotents  1 2, , , rc c c  is called a Jordan frame if 0i jc c =  for any  , 1, 2, ,i j r  

with i j  and 

1

r

i
i

c e

=

= , where ( )rk J r= . 
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THEOREM 2.1 (Spectral Decomposition Theorem [13]) Let ( , , , )J    be a Euclidean Jordan algebra with 

( )rk J r= . Then for any x J , there exists a Jordan frame  1 2, , , rc c c  and real numbers 1 2, , , r    

such that 

1

r

i i
i

x c
=

= . The numbers 1 2, , , r    are uniquely determined by x . 

Every ( 1,2, , )i i r =  is called an eigenvalue of x , which is a continuous function with respect to x  (see [14]). 

Define 

1

( )
r

i
i

tr x 
=

=  and 

1

det( )
r

i

i

x 

=

= , where ( )tr x  denotes the trace of x  and det( )x  denotes the 

determinant of x . 

For any ,x y J , x  and y  are said to be operator commute if xL  and yL  commute, i.e., x y y xL L L L= . It is 

well known that x  and y  operator commute if and only if x  and y  have their spectral decompositions with 

respect to a common Jordan frame, i.e., 

1

r

i i
i

x c
=

=  and 

1

r

i i
i

y w c

=

=  for a Jordan frame  1 2, , , rc c c . 

We define the inner product ,   by , : ( )x y tr x y=  for any ,x y J . Thus, we may define a norm on J  

by 

2 2

1

: , ( ) , .
r

i
i

x x x tr x x J

=

= = =    

An element x J  is said to be invertible if there exists some finite positive integer k   and some real 

numbers i  such that the vector 

0

k
i

i
i

y x
=

=  satisfies y x e= . We denote the inverse of x  as 1x− . If 

2x y=  and 0x  , then x  can be written as y . Given x J  with 

1

r

i i
i

x c
=

= , where  1 2, , , rc c c  is a 

Jordan frame and 1 2, , , r    are eigenvalues of x , then 
2 2

1

r

i i
i

x c
=

= . Furthermore, if 0i   for all 

{1,2, , }i r , then 
1/2 1/2

1

r

i i
i

x c
=

= ; if 0i   for all {1,2, , }i r , then 
1 1

1

r

i i
i

x c− −

=

= . More generally, 

we extend the definition of any real valued analytic function g to elements of Euclidean Jordan algebras via 

their eigenvalues, i.e., 

1

( ) ( )
r

i i
i

g x g c
=

=  where x J  has the spectral decomposition 

1

r

i i
i

x c
=

= . 

Without loss of generality, in the following, we assume that ( , , , )J    is a Euclidean Jordan algebra and  is 

its cone of squares, with , : ( )u v tr u v=  for any ,u v J . Suppose that ( , , , )J    has an identity element 

e  and ( ) 2rk J r= = . Thus, instead of (1) and (2), we consider the following SOCP problem with a single SOC 
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 , : ,min
x

c x Ax b x= 
                                                                                                               (7) 

and its dual problem 

 , : , ,max
T m

x

b y A y s c s y R+ =                                                                                                   (8) 

where , ,n m n mc R A R b R   . Here and below,   refers to the standard Euclidean norm, and we denote 

1 2( ; )x x x=  instead of 1 2( , )T Tx x . For any 1
1 2 1 2( ; ), ( ; ) nx x x y y y R R −= =   , their Jordan product [13] is 

defined as 1 2 1 2( ; ).Tx y x y x y y x= +  It needs to note that our analysis can be easily extended to general 

cases with Cartesian product of SOCs. 

For any vector 1
1 2( ; ) nx x x R R −=   , we define its spectral decomposition associated with SOC   as 

1 1 2 2x u u = +                                                                                                                          (9) 

where the spectral values i  and the associated spectral vectors iu  of x  are given by 

1 2( 1)ii x x = + −                                                                                                                                    (10) 

2
2

2

2

1
(1; ( 1) ), 0;

2

1
(1; ( 1) ), 0

2

i

i
i

x
x

x
u

w x


− 


= 
 − =


                                                                                                               (11) 

For 1,2i = , with any 1nw R −  such that 1w = . If 2 0x  , then the decomposition (9) is unique. Some 

interesting properties of 1 2,   and 1 2,u u  are summarized below. 

PROPERTY 2.1 For any 1
1 2( ; ) nx x x R R −=   , the spectral values 1 2,   and spectral vectors 1 2,u u  given 

by (10) and (11), have the following properties: 

(i) 1 2 ;u u e+ =  

(ii) 1u  and 2u  are idempotent under the Jordan product, i.e., 
2 , 1, 2;i iu u i= =  

(iii) 1u  and 2u  are orthogonal under the Jordan product and have length 
2

;
2

 

(iv) 1 2,   are nonnegative (respectively, positive) if and only if x  (respectively, intx  ). 

Given 
1

1 2( ; ) nx x x R R −=   , the matrix of linear transformation is an arrow-shaped matrix defined by 
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1 2

2 1

: ,
T

x
x x

L
x x I

 
=  
 
 

 

where I represents the ( 1) ( 1)n n−  −  identity matrix. It is easy to verify that 

x x s sx s L s L L e L x s x= = = =  for any , nx s R . Moreover, xL  is symmetric positive definite 

(semidefinite) if and only if intx   ( x ), i.e., 0x   ( 0x  ). 

3. A smoothing function and its properties 

In this section, we first introduce a new smoothing function. In [12], it has been shown that the vector-valued 

Fischer-Burmeister function 
nnn

FB RRRsx →:),(  defined by 

2 2( , )FB x s x s x s = + − +                                                                                                             (12) 

satisfies the following important property 

( , ) 0 0, 0, 0.FB x s x s x s =    =                                                                                                     (13) 

The Fischer-Burmeister function has many interesting properties. However, it is typically nonsmooth, because it 

is not derivable at 
1)0,0( − nRR . This undoubtedly limits its practical applications. Recently, some smoothing 

methods are presented, such as the method using Chen-Harker-Kanzow-Smale smoothing function [15]. 

In this paper, by smoothing the symmetric perturbed form of FB , we obtain a new vector-valued function 

nnn RRRR → ++:  as follows: 

1
2 2 2 2 2

1
( , , ) ( ) ( ) 2 (1 ) .

1
x s x s x s x s e    


  = + − + + + + + +

                                                         (14) 

As we will show, the function ),,( sx  has many nice properties which make it easy to characterize the central 

path conditions (6). In particular, ),,( sx  is smooth for any 
nn RRRsxz = ++),,(:  . This property 

plays an important role in the analysis of the quadratic convergence of our smoothing Newton method. 

DEFINITION 3.1 [16] For a non-differentiable function : n mg R R→ , we consider a function : n mg R R →  

with a parameter 0  that has the following properties: 

(i) g  is differentiable for any 0 ; 

(ii) 0
lim ( ) ( )g x g x


=
 for any nx R . 

Such a function g  is called a smoothing function of g . 
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In fact, we will prove in the following that the function ),,( sx  given by (14) is a smoothing function of 

( , )FB x s . Thus, we can solve a family of smoothing subproblems 0)( = z  for 0  and obtain a solution 

of ( , ) 0FB x s =  by letting 0 . 

Now, we give the main properties of ),,( sx . 

THEOREM 3.1 (i) ),,( sx  is globally Lipschitz continuous for any ( , , ) n nx s R R R ++   . Moreover, 

),,( sx  is continuously differentiable at any ( , , ) n nx s R R R ++    with its Jacobian given by 

1 2

1 2

1 2

1
( )2

1

1

1
( ) 2

(1 )

1
'( , , )

1 1

1

1 1

w w w

w w w

w w w

L L x s e

x s I L L L

I L L L







 



 

−
−

−

−

  
− −  

 +   
 

   = − +  + + 
 
  

− +  
+ +  

 

                                                                                       (15) 

where 

1
1

: ,
1 1

w x s


 
= +

+ +
                                                                                                                 (16) 

2
1

: ,
1 1

w x s


 
= +

+ +
                                                                                                                 (17) 

2 2 2
1 2: 2 ,w w w e= + +                                                                                                               (18) 

(ii) 0
lim ( , , ) ( , )FBx s x s


 

 =

 for any ( , ) n nx s R R  . Thus, ),,( sx  is a smoothing function of 

),( sxFB . 

Proof. (i) It is not difficult to show that ),,( sx  is globally Lipschitz continuous, and continuously 

differentiable at any ( , , ) n nx s R R R ++   . Now we prove (15). For any n nz R R R++   , from (18), we 

have 

1 2

1
1 2' [ ( ) ' ( ) ' 2 ].w w ww L L w L w e   −= + +  

It follows from (16) and (17) that 

1 2

1
( ) ' ( ),

(1 )
w x s


= − +

+
 

2 2

1
( ) ' ( ).

(1 )
w x s


= −

+
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Thus, we obtain 

1 2

1

2

1
' ( )( ) 2 .

(1 )
w w ww L L L x s e 



−
 

= − − + + 
+  

 

Hence, 

1 2

1
( )2

1
' ( ) ( ) 2 .

(1 )
w w wz L L x s e 



−
−

 
 = − − 

+  
                                                                        (19) 

Similarly, we can obtain 

1 2

1 1
' ,

1 1
x w w ww L L L



 

−  
= + 

+ + 
    

1 2

1 1
' .

1 1
s w w ww L L L



 

−  
= + 

+ + 
 

Therefore, we have 

1 2

1 1
' ( ) ,

1 1
x w w wz I L L L



 

−  
 = − + 

+ + 
                                                                                                 (20) 

1 2

1 1
' ( ) .

1 1
s w w wz I L L L



 

−  
 = − + 

+ + 
                                                                                                    (21) 

From (19)–(21), we obtain the desired result (15). 

(ii) For any 1
1 2 1 2( ; ), ( ; ) nx x x s s s R R −= =   , it follows from the spectral factorization of  

2
1 1 2 2( ) ( ) ( ) ( )w u u     = +  that 

1 1 2 2( ) [ ( ) ( ) ( ) ( )],z x s u u      = + − +  

where 

2 2 2
1 2( ) 2 2( 1) ( ) , 1,2i

i w w v i   = + + + − =  

1 ( )
(1; ( 1) ), ( ) 0;

2 ( )
( ) 1,2

1
(1; ( 1) ), ( ) 0,

2

i

i
i

v
v

v
u i

w v










− 


= =
 − =


 

0 0 1 1 0 0 1 1
1 1 1 1

( ) ,
1 1 1 1 1 1 1 1

v x s x s x s x s
   


       

     
= + + + + +     

+ + + + + + + +     
 

with 1nw R −  being an arbitrary vector satisfying 1w = . In a similar way, we can easily obtain 
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1 1 2 2( , ) ( ),FB x s x s u u  = + − +  

where 

2 2
2( 1) , 1,2i

i x s v i = + + − =  

1
(1; ( 1) ), 0;

2
1,2

1
(1; ( 1) ), 0,

2

i

i
i

v
v

v
u i

w v


− 


= =
 − =


 

0 1 0 1v x x s s= + , 

with 1nw R −  being the vector in ( )iu  . It is evident that 0
lim ( )v v





=
. Hence, 

0
lim ( )i i


  


=
, 0
lim ( )i iu u





=
, 1,2.i =  

Thus, we have 0
lim ( , , ) ( , )FBx s x s


 

 =

. Therefore, it follows from (i) and Definition 3.1 that ),,( sx  is a 

smoothing function of ( , )FB x s . 

4. The  inexact non-interior continuation algorithm 

Based on the smoothing function (14) introduced in the previous section, the aim of this section is to propose 

a new inexact non-interior continuation algorithm for the SOCP and show its well-definedness under suitable 

assumptions. 

Let : ( , , )z x y= . By using the smoothing function (14), we define the function 

( , , ) : n m m nG x y R R R R R R ++ ++  →    as follows: 

( ) : .

( , , )T

G z Ax b

x c A y





 
 

= − 
 
 − 

                                                                                                       (22) 

In view of (13) and (22), *: ( *, *, *)z x y=  is a solution of the system ( ) 0G z =  if and only if 

( *, *, *)Tx y c A y−  solves the optimality conditions (5) [5,11]. It is well-known that problems (7) and (8) are 

equivalent to (22) in the sense that their solutions are coincident. Define merit function : nR R R+ +  →  by 

2
( ) : ( ) .z G z =                                                                                                                     (23) 

Then, *z  is a solution of ( ) 0G z =  if and only if ( *, *, *)Tx y c A y−  is the optimal solution of (7) and (8). 

Therefore we can apply Newton's method to the nonlinear system of equations ( ) 0G z = . 
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Let (0,1)   and define the function ( )z  by 

2
( ) : min{1, ( ) }.z G z =                                                                                                        (24) 

Next, we give the formal description of our algorithm. 

ALGORITHM 4.1 (An inexact non-interior continuation algorithm for SOCP) 

Step 0 Choose constants (0,1), (0,1)   , and 0 R ++ , and let 0: ( ,0,0)z = . Let 0 0( , ) n mx y R R   

be arbitrary initial point and 0 0 0 0: ( , , )z x y= . Choose , (0,1)t   such that 0 1/ 2, 0 1 2t    − . Let 

{ }kt  is a sequence such that 0 kt t  . Set : 0k = . 

Step 1  If ( ) 0kG z = , then stop. Else, let 

1: ( ) : min{ , ( ), ( )}.k k k kz z z     −= =                                                                                         (25) 

Step 2 Compute : ( , , )k k k kz x y =     by solving the following system of linear equations 

( )
( ) '( )

k
k k k k

z
G z G z z

r

 
+  =   

 
                                                                                                   (26) 

such that ( )k
k kr t G z , where ( ) '( ) .k

k k kr z z z=  +   

Step 3 Let max{ | 0,1,2, }k
  = =  such that 

2 2
( ) [1 (1 2 ) ] ( ) .k k k kG z z t G z    +   − − −                                                                         (27) 

Let : k
k

 = . 

Step 4 Set 1 :k k k kz z z+ = +   and : 1k k= + . Go to step 1. 

To analyze Algorithm 4.1, we study the Lipschitzian, smoothness and differential properties of the function 

( )G z  given by (22). Moreover, we derive the A  computable formula for the Jacobian of the function ( )G z  and 

give the condition for the Jacobian to be nonsingular. Throughout the rest of this paper, we make the following 

assumption: 

ASSUMPTION 4.1 The matrix  has full row rank. 

LEMMA 4.1 [12] For any , nx s R  and 0w  , we have 

2 2 2 0,w xw x s L L +  −  0, ( )( ) 0.w s w x w sL L L L L L−  − −                                                (28) 

Moreover, (29) remains true when ``  '' is replaced by `` ''. 



Journal of Advances in Mathematics vol 16 (2019) ISSN:  2347-1921          https://rajpub.com/index.php/jam 

8308 

THEOREM 4.1 Let : ( , , )z x y=  and : n m m nG R R R R R R++ ++  →    be defined by (22). Then the 

following results hold. 

(i) G is globally Lipschitz continuous, and continuously differentiable at any : ( , , ) m
nz x y R R R ++=     

with its Jacobian given by 

1 0 0

'( ) 0 0

( ) ( ) ( ) T

G z A

B z C z D z A

 
 

=  
 

− 

                                                                                                 (29) 

where 

1 2

1
( )2

1
( ) ( ) 2 ,

(1 )

T
w w wB z L L x c A y e



−
−

 
= − + − 

+  
 

1 2

1 1
( ) ,

1 1
w w wC z I L L L



 

−  
= − + 

+ + 
 

1 2

1 1
( ) ,

1 1
w w wD z I L L L



 

−  
= − + 

+ + 
 

1
1

( ),
1 1

Tw x c A y


 
= + −

+ +
 

2
1

( ),
1 1

Tw x c A y


 
= + −

+ +
 

2 2 2
1 2 2 .w w w e= + +  

(ii) Under Assumption 4.1, '( )G z  is nonsingular for any 0  . 

Proof. By Theorem 3.1, we can easily show that (i) holds. Now we prove (ii). For any fixed 0,   let 

: ( , , ) n mz x y R R R =       . It is sufficient to prove that the linear system of equations 

'( ) 0G z z =                                                                                                                             (30) 

has only zero solution, i.e., 0, 0, 0x y =  =  = . By (29) and (30), we have 

0, =                                                                                                                                     (31) 

0,A x =                                                                                                                                    (32) 

( ) ( ) 0.TC z x D z A y −  =                                                                                                              (33) 
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Premultiplying (33) by wL , we have 

1 2 1 2

1 1
0.

1 1 1 1

T
w w w w w wL L L x L L L A y

 

   

   
− −  − − −  =   

+ + + +   
                                             (34) 

On the other hand, since 

2 2 2 2 2 2
1 2 1 1

1
( )

1 1
w w w w w w



 


− + = − +

+ +
 

2 2 2
2 2

1
2 0,

1 1
w w e




 



+ + = 

+ + 
 

it follows from Lemma 4.1 that 

1 2

1
0,

1 1
w w wL L L



 
− − 

+ +
                                                                                                             (35) 

1 2

1
0,

1 1
w w wL L L



 
− − 

+ +
                                                                                                             (36) 

1 2 1 2

1 1
0.

1 1 1 1
w w w w w wL L L L L L

 

   

  
− − − −   

+ + + +  

                                                                                    (37) 

Hence 
1 2

1

1 1
w w wL L L



 
− −

+ +
 is invertible. Premultiplying (34) by 

1 2

1
1

1 1

T
w w wx L L L



 

−
 

 − − 
+ + 

 

and taking into account 0A x = , we have 

1 2 1 2

1
1 1

0.
1 1 1 1

T
w w w w w wx L L L L L L x

 

   

−
   

 − − − −  =   
+ + + +   

                                                                (38) 

Denote 

1 2

1
2 1

.
1 1

w w w
e

x L L L x
e e



 

−
 −

 = − −  
 + + 

                                                                                  (39) 

Then from (38), we obtain 

1 2 1 2

1 1
0.

1 1 1 1

T
w w w w w wx L L L L L L x

 

   

  
 − − − −  =  

+ + + +  
                                              (40) 
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From (37) we know that 
1 2 1 2

1 1

1 1 1 1
w w w w w wL L L L L L

 

   

  
− − − −  

+ + + +  
is positive definite. Therefore, 

it follows from (40) that 0x = . Hence, (39) gives that 0x = . Since A  has full row rank, (34) implies 0y = . 

Thus the linear system of equations (30) has only zero solution, which shows that '( )G z  is nonsingular. So we 

gain the required results. 

5. Convergence analysis 

In this section, we analyze the global and local convergence properties of Algorithm 4.1. It is shown that any 

accumulation point of the iteration sequence is a solution of the system ( ) 0G z = . If the accumulation point 

*z  satisfies a nonsingularity assumption, then the iteration sequence converges to *z locally Q-quadratically 

without strict complementarity. To show the global convergence of Algorithm 4.1, we need the following Lemma. 

LEMMA 5.1 Suppose that Assumption 4.1 holds. For any : ( , , ) n mz x y R R R ++=    , if '( )G z  is 

nonsingular, then there exists a closed neighborhood ( )z  and a positive number (0,1]   such that for any 

( , , ) ( )z x y z=    and all [0, ]  , we have R ++ , '( )G z  is invertible and 

0( ) [1 (1 2 ) ] ( ).kz z t z    +   − − −                                                                                            (41) 

Proof. Since '( )G z  is nonsingular and 0  , there exists a close neighborhood ( )z  of z  such that for any 

( )z z , we have 0   and that '( )G z  is invertible. For any ( )z z , let ( , , )z x y =     be a unique 

solution of the following equation 

( )
( ) '( ) ,

z
G z G z z

r

 
+  =  

 
                                                                                                                (42) 

where the residual vector ( ) '( )r z z z= +   satisfies ( )r t G z . From (42), for any ( )z z  and all 

[0,1]  , we have 

(1 ) ( ) 0.z     +  = − +                                                                                                            (43) 

When ( ) 1z  , ( ) ( ) ( )z z G z   =   = , while ( ) 1z  , ( ) ( ) ( ) ( )z z z G z   =    = , 

thus for any n mz R R R++    

( ) ( )z G z                                                                                                                            (44) 

always holds. For any [0,1]  , let 

( ) : ( ) ( ) '( ) ,r G z z G z G z z  = +  − −                                                                                                 (45) 

Then by (42) and (44), we have 

0

( ) (1 ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

[1 (1 2 )] ( ) ( ) .

k

k

G z G z z r r G z G z t G z r

t G z r

        

  

 − + + +  − + + +

 − − − +
            (46) 
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It is evident that ( )G z  is continuously differentiable at ( )z z , which implies ( ) ( )r o = . Therefore it 

follows (46) that there exists an (0,1)   such that 

0( ) [1 (1 2 ) ] ( )kG z z t G z   +   − − −                                                                                        (47) 

holds for all (0, ]   and all ( )z z . Thus, by (47), for all (0, ]   and all ( )z z , we have 

2
0 0( ) [1 (1 2 ) ] ( ) [1 (1 2 ) ] ( ),k kz z t z t z       +   − − −   − − −   

which is completed the proof. 

THEOREM 5.1 Suppose that Assumption 4.1 holds and { }kz  is the iteration sequence generated by Algorithm 

4.1, then 

(i) k R ++  and kz   for any 0k  , where 

 0: ( ) ;n mz R R R z  ++ =                                                                                            (48) 

(ii) any accumulation point *: ( *, *, *)z x y=  of { }kz  is a solution of ( ) 0.G z =  

Proof. (i) Suppose that 0k  . It follows from (26) and Step 4 that 

0( ) ,k k k    = − +                                                                                                            (49) 

1 .k k k k   + = +                                                                                                                (50) 

Substituting (49) into (50), we have 

1 0 0(1 ) 0,k k k k k k k k k k           + = − + = − +                                                                             (51) 

which, together with 0 0   and (0,1)k
k k


 =   implies that k R ++  for any 0k  . 

Now we prove kz   for any 0k   by induction. Since 
2

0 0 0( ) min{1, ( ) } (0,1),z G z   = =    it is 

easy to see that 0z  . Suppose that kz  , then 

0.k k                                                                                                                                               (52) 

We consider the following two cases: 

Case (I): If ( ) 1kG z  , then 

.k =                                                                                                                                   (53) 

Since 
2

1 1min{1, ( ) }k kG z  + +=  , it follows from (27), (43), (52) and (53) that 
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1 1 0 0 0 0 0 0(1 ) 0.k k k k k k k            + +−  − + − = − =                                                  (54) 

Case (II): If ( ) 1kG z  , then 

2
( ) .k kG z =                                                                                                                      (55) 

By (27), 1( ) ( ) 1k kG z G z+   . From (43), (55), and taking into account 
2

1 1( )k kG z + += , we have 

2 2
1 1 0 0 0 1 0 0 0

2
0 0

(1 ) ( ) (1 ) ( )

( ) 0.

k k k k k k k k k k k k

k k

G z G z

G z

               

  

+ + +− = − + −  − + −

= − =
             (56) 

Combining (54) and (56) yields that kz   for any 0k  . 

Next, we prove (ii). Without loss of generality, we assume that { }kz  converges to *z  as k →+ . Since 

{ ( ) }kG z  is monotonically decreasing and bounded from below, it follows from the continuity of ( )G   that 

{ ( ) }kG z  converges to a nonnegative number ( *)G z . Then by the definition of ( )  , we obtain that { }k  

converges to 
2

* min{1, ( *) }G z = . On account of (43) and Theorem 5.1 (i), we have 

1 00 (1 ) ,k k k k k k      + = − +   

which implies that { }k  converges to * . If ( *) 0G z = , then we obtain the desired result. In the following, 

we suppose ( *) 0G z  . By Lemma 4.1, 00 * *    . It follows from Theorem 4.1 that '( *)G z  exists and 

it is invertible. Hence, by Lemma 5.1, there exists a closed neighborhood ( )z  of z  and a positive number 

(0,1]   such that for any ( , , ) ( )z x y z=   and [0, ]  , we have R ++ , '( )G z  is invertible and 

2 2
0( ) [1 (1 2 ) ] ( ) .kG z z t G z   +   − − −                                                                                  (57) 

Therefore, for a nonnegative integer   such that (0, ]  , and all sufficiently large k , we have 

2 2
0( ) [1 (1 2 ) ] ( ) .kG z z t G z    +   − − −  

Note that for all k  large enough, k
k

   =  , it follows from (27) that 

2 2 2
0 0( ) [1 (1 2 ) ] ( ) [1 (1 2 ) ] ( ) .k k kG z z t G z t G z       +   − − −  − − −  

This contradicts the fact that the sequence { ( ) }kG z  converges to ( *) 0G z  . This completes the proof. 

To establish the locally Q-quadratic convergence of Algorithm 4.1, we need the following assumption: 
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ASSUMPTION 5.1 Assume that *z  satisfies the nonsingularity condition, i.e., all ( *)V G z  are nonsingular. 

Now we are in the position to give the local convergence result for Algorithm 4.1. 

THEOREM 5.2 Suppose that Assumption 4.1 holds and that *z  is an accumulation point of the iteration 

sequence { }kz  generated by Algorithm 4.1. If Assumption 5.1 holds, then 

(i) 1k   for all kz  sufficiently close to *z ; 

(ii) { }kz  converges to *z  Q-quadratically, i.e., 
2

1 * ( * )k kz z O z z+ − = − . Moreover, 2
1 ( )k kO + = . 

Proof. By using Theorem 4.1, we can prove the theorem similarly as Theorem 8 in [11]. For brevity, we omit the 

details here. 

It should be noted that the local Q-quadratic convergence of Algorithm 4.1 depends on the strong 

semismoothness of the new smoothing function. 

6.Numerical experiments 

In this section, we conducted some numerical experiments to evaluate the efficiency of Algorithm 4.1. All these 

experiments were performed on an Lenovo notebook computer Y470 with Intel(R) Core(TM) i7-2630QM CPU 

2.00 GHz and 6 GB memory. The operating system was Windows WIN 7 and the implementations were done in 

MATLAB 7.0.1. 

In all these experiments, we choose 

1
0 0(1;0) , 0n mx e R R y R−= =   =   

as initial points. The parameters used in Algorithm 4.1 were as follows: 

0 0.001, 0.25, 0.65, 0.85.   = = = =  

We used 
10( ) 10G z −  as the stopping criterion. 

Firstly, for given size m  and n , we randomly generate six test problems. To be specific, we generate a random 

matrix m nA R   with full row rank and random vectors intx  , ints  , my R , and then let :b Ax=  

and : Tc A y s= + . Thus the generated SOCP problems and their corresponding dual problems have optimal 

solutions and their optimal values coincide, since the set of strictly feasible solutions of SOCP and its dual 

problem are nonempty. For comparison purpose, we also use SDPT3 [17] to solve the same problems. 

The results are listed in Table 1 which indicates that Algorithm 4.1 performs very well. We also obtained similar 

results for other random examples. 

Table 1. Comparison of Algorithm 4.1 and SDPT3 for randomly generated SOCP problems 

   SDPT3 Algorithm 4.1 

problem m n IT CPU(s) IT CPU(s) 
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problem 1 50 50 7 0.12 5 0.10 

problem 2 100 100 10 0.19 7 0.13 

problem 3 150 150 16 0.38 12 0.31 

problem 4 200 200 20 1.25 14 0.86 

problem 5 250 250 27 1.96 19 1.27 

problem 6 300 300 38 2.31 26 1.42 

Next, we consider the following SOCP problem min{ , : , },nc x Ax b x=   whose data are given as follows: 

50 6

3 50 6

,

3 50 6

3 50

m nA R 

 
 
− 
 = 
 

− 
 − 

 

25 2 ( ,1) ( ,1),

25 2 ( ,1) ( ,1)

c e rand n ones n

b e rand m ones m

= + −

= + −
 

where )1,(kones  denotes the vector with dimension k  and its elements being all ones. Note that the problem 

has representativeness to some extent. 

Table 2 displays the numerical results of Algorithm 4.1 for the above problem. The present method is efficient 

as far as the numerical results are considered. Algorithm 4.1 can also deal with large-scale and sparse second-

order cone programming efficiently. Therefore, the new method may be of practical interest. 

Table 2. Numerical results for Algorithm 4.1 

m  n  Iter CPU time (s) )(zG  

50 50 6 0.1220 1310152479.3 −  

100 100 7 0.4771 1310901354.4 −  

150 150 7 1.7603 1310572183.2 −  

200 200 8 2.0476 1310349761.5 −  

250 250 9 2.1742 1310026815.7 −  

300 300 10 1.8394 1310572470.3 −  

350 350 10 2.5328 1310478249.7 −  

400 400 9 2.1761 1310152840.8 −  

450 450 10 2.9637 
131033262.6 −  

500 500 11 3.7648 1310467159.5 −  
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7. Conclusions 

Based on a new smoothing function, we give a new inexact non-interior continuation algorithm for SOCP 

problems. The presented algorithm solves only one system of linear equations inexactly and performs only one 

line search at each iteration, and it can start from an arbitrary point. The algorithm is globally and locally Q-

quadratically convergent under a mild assumption without strict complementarity. The result is stronger than 

that of the corresponding results of IPMs. 
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