A unique Solution of Stochastic Partial Differential Equations with Non-Local Initial condition

## Mahmoud M. El-Borai

Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
m_m_elborai@yahoo.com

## A. Tarek S.A.

Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
ahmedsayed2890@gmail.com

$$
\begin{align*}
& \text { Abstract } \\
& \text { In this paper, we shall discuss the uniqueness "pathwise uniqueness" } \\
& \text { of the solutions of stochastic partial differential equations (SPDEs) with } \\
& \text { non-local initial condition, } \\
& d u(x, t)=\sum_{|q| \leq 2 m} a_{q}(x, t) D^{q} u(x, t) d t+b(u(x, t)) d t+\sigma(u(x, t)) d B(t) \\
& \qquad u(x, 0)=\phi(x)+\sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right) \tag{1}
\end{align*}
$$

We shall use the Yamada-Watanabe condition for "pathwise uniqueness" of the solutions of the stochastic differential equation; this condition is weaker than the usual Lipschitz condition. The proof is based on Bihari's inequality.
Keywords: Stochastic partial differential equation, Pathwise uniqueness, Bihari's inequality.

## 1 Introduction

Our main result is using the Yamada-Watanabe condition, which relaxes the Lipschitz condition for the pathwise uniqueness of the solutions of stochastic differential equation in [3], [4] in the proof the pathwise uniqueness of (1). Before starting the main theorem, we start with some definitions and theorems necessary for the sequel.

## 2 Materials and Methods

Definition 1. The triple $(\Omega, \Im, \mathbb{P})$ consisting of a sample space $\Omega$, the $\sigma$-algebra $\Im$ of subsets of $\Omega$ and a probability measure $\mathbb{P}$ defined on $\Im$ is known as a probability space.
Definition 2. A filtration is a family $\left\{\Im_{t}\right\}_{(t>0)}$ of increasing sub- $\sigma$-algebra of $\Im\left(i . e ., \Im_{t} \subset \Im_{s} \subset \Im, \quad \forall \quad 0 \leq t<s<\infty\right)$.

Remark 1. The probability space together with its family of increasing sub- $\sigma$ algebra denoted by $\left(\Omega, \Im, \Im_{t}, \mathbb{P}\right)$ is called a standard filtration space.

Definition 3. Let $(\Omega, \Im, \mathbb{P})$ be a probability space. A real-valued function X : $\Omega \rightarrow R$ is called $\Im$-measurable or random variable, if for all $a \in R,\{\omega \in \Omega$ : $\mathrm{X}(\omega) \leq a\} \in \Im$.

Definition 4. A family of random variables $\mathrm{X}_{t}, t \in I$, where $I \subset R$ is an interval defined on a probability space $(\Omega, \Im, \mathbb{P})$ and indexed by a parameter $t$ takes all possible values of $I$ is called a stochastic process.

Definition 5. Let $\left(\Omega, \Im, \Im_{t}, \mathbb{P}\right)$ be a standard filtration space and $I \subset R$ be an interval. The stochastic process $\mathrm{X}_{t}$ is said to be $\Im_{t}$-adapted if for all $t \in I$, the random variable $\mathrm{X}_{t}$ is $\Im_{t}$-measurable.

We further define the expectation $\mathbb{E}[\mathrm{X}]=\int_{\Omega} \mathrm{X} d \mathbb{P}$, for any random variable X.

Theorem 1 (Bihari's inequality). Let I denote an interval of the real line of the form $[a, \infty),[a, b]$ or $[a, b)$ with $a<b$. Let $\beta, v: I \rightarrow[0, \infty)$ and $\gamma:[0, \infty) \rightarrow$ $[0, \infty)$ be three functions, where $v$ and $\gamma$ are continuous on $I, \beta$ is continuous on the interior of $I$ with $\int_{a}^{t} \beta(s) d s<\infty$ for all $t \in I$ and $\gamma$ is non-decreasing and strictly positive on $(0, \infty)$,
a. If, for some $\alpha>0$, the function $v$ satisfies the inequality

$$
\begin{equation*}
v(t) \leq \alpha+\int_{a}^{t} \beta(s) \gamma(v(s)) d s, \quad t \in I \tag{2}
\end{equation*}
$$

then

$$
v(t) \leq F^{-1}\left(\int_{a}^{t} \beta(s) d s\right), \quad t \in[a, T]
$$

where $F^{-1}$ is the inverse function of

$$
\begin{array}{r}
F(x)=\int_{a}^{x} \frac{d y}{\gamma(y)}, \quad x>0 . \\
\text { and } T=\sup \left\{t \in I \left\lvert\, \int_{a}^{t} \beta(s) d s<\int_{\alpha}^{\infty} \frac{d y}{\gamma(y)}\right.\right\}
\end{array}
$$

b. If the function $v$ satisfies (2) with $\alpha=0$ and $\int_{0}^{x} \frac{d y}{\gamma(y)}=+\infty \quad \forall x>0$
then $v(t)=0 t \in I$.
Proof. for proof see [5].
Definition 6. $\mathfrak{L}^{2}(\Omega, \mathcal{H})$; collection of all strongly measurable $\mathcal{H}$-valued random variables is a banach space equipped with the norm $\|\bullet\|_{\mathfrak{L}^{2}}:=\left[\mathbb{E}\|\bullet\|_{\mathcal{H}}^{2}\right]^{1 / 2}$
Theorem 2. Consider the SPDE's

$$
d u(x, t)=\sum_{|q| \leq 2 m} a_{q}(x, t) D^{q} u(x, t) d t+b(u(x, t)) d t+\sigma(u(x, t)) d B(t)
$$

with non-local initial condition

$$
u(x, 0)=\phi(x)+\sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right)
$$

where $x \in R^{n}, B(t)$ is a standard Brownian motion defined over the standard filtration space $\left(\Omega, \Im, \Im_{t}, \mathbb{P}\right), D=\left(D_{1}, \cdots, D_{n}\right), q=\left(q_{1}, \cdots, q_{n}\right), D_{i}:=\frac{\partial}{\partial x_{i}}$, $D^{q}=D_{1}^{q_{1}}, \cdots, D_{n}^{q_{n}}$ and $q$ is a multi-index, $|q|=q_{1}+\cdots+q_{n}, 0 \leq t_{1}<\cdots<t_{p}$.

Equation (1) is called parabolic in the region $\Gamma=\left\{(x, t): x \in R^{n}, t \geq 0\right\}$, if for any point $(x, t) \in \Gamma$ the real part of the $\lambda$-roots of the characteristic equation

$$
\operatorname{Det}\left[(-1)^{m} \sum_{|q|=2 m} a_{q}(x, t) \xi^{q}-\lambda \mathbf{I}\right]=0,
$$

satisfy the inequality $\operatorname{Re}[\lambda(x, t, \xi)] \leq-\delta|\xi|^{m}$ where $\delta$ is a positive constant, $\xi \in R^{n}, \xi^{q}=\xi_{1}^{q_{1}} \cdots \xi_{n}^{q_{n}}, \mathbf{I}$ is the unit matrix. We suppose that the coefficients $a_{q},|q| \leq 2 m$ are continuous and bounded on $R^{n+1}$ and satisfy the HÖlder condition with respect to $x$. Under these conditions, there exists a fundamental solution $\Theta(x, t, y, \theta)$ which satisfies

1. $\frac{d \Theta}{d t}=\sum_{|q| \leq 2 m} a_{q}(x, t) D^{q} \Theta(x, t, y, \theta), \quad t>0, \quad x, y \in R^{n}$.
2. $\frac{\partial \Theta}{\partial t}$ and $D^{q} \Theta \in \mathcal{C}\left(\Gamma_{1}\right)$ such that $\Gamma_{1}=\left\{(x, t, y, \theta) \in R^{2 n} \times(0, \infty) \times\right.$ $(0, \infty)\}, \quad|q| \leq 2 m$.
3. $\left\|D^{q}(x, t, y, \theta)\right\| \leq\left[\frac{A_{1}}{t^{\zeta}}\right] e^{-A_{2} \zeta_{1}}, \zeta_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{\frac{2 m}{2 m-1}} t^{\frac{-1}{2 m-1}}, \zeta=-\frac{n+|q|}{2 m}$ and $A_{1}, A_{2}$ are positive constants.

Definition 7. By a solution of the equation (1), we mean a family of stochastic processes $\Upsilon=\{u, B(t)\}$ defined on a standard filtration space $\left(\Omega, \Im, \Im_{t}, \mathbb{P}\right)$ such that

1. With probability one, $u$ and $B(t)$ are continuous in $t$ and $B(0)=0$.
2. They are adapted to $\Im_{t}$, i.e., for each $t, u$ and $B(t)$ are $\Im_{t}$-measurable.
3. $B(t)$ is a system of $\Im_{t}$-martingale such that $\left\langle B^{i}, B^{j}\right\rangle=\delta_{i j} \cdot t$, $i, j=1,2, \cdots, n$.
4. Theorem (2) holds.
5. $\Upsilon=\{u, B(t)\}$ satisfies

$$
\begin{align*}
u(x, t) & =\int_{R^{n}} \Theta(x, t, y, 0) u(y, 0) d y \\
& +\int_{0}^{t} \int_{R^{n}} \Theta(x, t, y, s) b(u(y, s)) d y d s \\
& +\int_{0}^{t} \int_{R^{n}} \Theta(x, t, y, s) b(u(y, s)) d y d B(s) \tag{3}
\end{align*}
$$

where the integral by $d B(s)$ is understood in the sense of the stochastic integral.

Definition 8 (Pathwise Uniqueness). We shall say that the pathwise (strong) uniqueness holds for (1) if, for any two solutions $\Upsilon=\{u, B(t)\}$ and $\bar{\Upsilon}=$ $\{\bar{u}, \overline{B(t)}\}$, defined on a same filtration space $\left(\Omega, \Im, \Im_{t}, \mathbb{P}\right), u(x, 0)=\hat{u}(x, 0)$ and $B(t) \equiv \hat{B}(t)$ imply $u \equiv \bar{u}$.

It supposed that $c M^{*}<1$ where $c=\sum_{i=1}^{p}\left|c_{i}\right|$.
Theorem 3. If $u \in \mathcal{C}([0, T] ; \mathcal{H})$ is an $\Im_{t}$-adapted stochastic process and satisfies equation (3), then $u(x, t)$ satisfies the following equation

$$
\begin{align*}
u(x, t) & =Z(t) \Lambda^{-1} \phi(x)+Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) b(u(x, s)) d s \\
& +Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) \sigma(u(x, s)) d B(s) \\
& +\int_{0}^{t} Z(t) b(u(x, t)) d s+\int_{0}^{t} Z(t) \sigma(u(x, t)) d B(s) . \tag{4}
\end{align*}
$$

where $\Lambda=I-\sum_{i=1}^{p} c_{i} Z\left(t_{i}\right)$ and $Z(t)$ is an operator defined as

$$
Z(t) f=\int_{R^{n}} \Theta(x, t, y, 0) f d y
$$

Proof.

$$
\begin{aligned}
\sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right) & =\sum_{i=1}^{p} c_{i} \int_{R^{n}} \Theta\left(x, t_{i}, y, 0\right)\left[\phi(y)+\sum_{j=1}^{p} c_{j} u\left(y, t_{i}\right)\right] \\
& +\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} \int_{R^{n}} \Theta\left(x, t_{i}, y, s\right) b(u(y, s)) d y d s \\
& +\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} \int_{R^{n}} \Theta\left(x, t_{i}, y, s\right) \sigma(u(y, s)) d y d B(s)
\end{aligned}
$$

$$
\sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right)-\sum_{i=1}^{p} c_{i} \sum_{j=1}^{p} c_{j} \int_{R^{n}} \Theta\left(x, t_{i}, y, 0\right) u\left(y, t_{i}\right)
$$

$$
=\sum_{i=1}^{p} c_{i} \int_{R^{n}} \Theta\left(x, t_{i}, y, 0\right) \phi(y)
$$

$$
+\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} \int_{R^{n}} \Theta\left(x, t_{i}, y, s\right) b(u(y, s)) d y d s
$$

$$
+\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} \int_{R^{n}} \Theta\left(x, t_{i}, y, s\right) ?(u(y, s)) d y d B(s)
$$

$$
\begin{aligned}
\Lambda \sum_{i=1}^{p} c_{i} u\left(y, t_{i}\right) & =\sum_{i=1}^{p} c_{i} Z\left(t_{i}\right) \phi(y)+\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) b(u(x, s)) d s \\
& +\sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) \sigma(u(x, s)) d B(s)
\end{aligned}
$$

using $u(x, 0)=\phi(x)+\sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right)$ and multiply with $Z(t)$,

$$
\begin{aligned}
Z(t) \phi(x)+Z(t) \sum_{i=1}^{p} c_{i} u\left(x, t_{i}\right) & =Z(t) \phi(x)+Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} Z\left(t_{i}\right) \phi(x) \\
& +Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) b(u(x, s)) d s \\
& +Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right) \sigma(u(x, s)) d B(s),
\end{aligned}
$$

It is easy to see that $\Lambda^{-1}=I+\Lambda^{-1} \sum_{i=1}^{p} c_{i} Z\left(t_{i}\right)$, then we get the result.

## 3 Main Result

In this section, we state and discuss the main theorem for this paper.
Theorem 4. Let $\sigma(x)=\left[\begin{array}{ccc}\sigma_{1}\left(x_{1}\right) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{n}\left(x_{n}\right)\end{array}\right], b(x)=\left(b_{1}(x), \cdots, b_{n}(x)\right)$ such that:

1. There exists a positive increasing function $\rho(\varrho), \varrho \in(0, \infty)$ such that

$$
\left|\sigma_{i}(\tau)-\sigma_{i}(\eta)\right| \leq \rho(|\tau-\eta|), \quad \tau, \eta \in R, \quad i=1,2, \cdots, n
$$

and

$$
\int_{0+} \rho^{-2}(\varrho) d \varrho=+\infty
$$

2. There exists a positive increasing concave function $\kappa(\varrho), \varrho \in(0, \infty)$ such that

$$
\left|b_{i}(x)-b_{i}(y)\right| \leq \kappa(\|x-y\|), \quad x, y \in R^{n}, \quad i=1,2, \cdots, n
$$

and

$$
\int_{0+} \kappa^{-1}(\varrho) d \varrho=+\infty
$$

3. Theorem (2) holds.
then the pathwise uniqueness of the solutions holds for (1).
Proof. Let $a_{0}=1>a_{1}>a_{2}>\cdots>a_{k} \rightarrow 0$ be defined by

$$
\int_{a_{1}}^{a_{0}} \rho^{-2}(\varrho) d \varrho=1, \int_{a_{2}}^{a_{1}} \rho^{-2}(\varrho) d \varrho=2, \cdots, \int_{a_{k}}^{a_{k-1}} \rho^{-2}(\varrho) d \varrho=k, \cdots .
$$

then there exists a twice continuity differentiable function $\psi_{k}(\varrho)$ on $[0, \infty)$ such that $\psi_{k}(0)=0$,

$$
\psi_{k}^{\prime}(\varrho)=\left\{\begin{array}{llllll}
0 & & & 0 \leq \varrho \leq a_{k} \\
\text { between } & 0 & \text { and } & 1 & , & a_{k} \leq \varrho \leq a_{k-1} \\
1 & & & & , & \varrho \geq a_{k-1}
\end{array}\right.
$$

and

$$
\psi_{k}^{\prime \prime}(\varrho)=\left\{\begin{array}{lllll}
0 & & & 0 \leq \varrho \leq a_{k} \\
\text { between } & 0 & \text { and } & \frac{2}{k} \cdot \rho^{-2}(\varrho) & , \\
0 & & & a_{k} \leq \varrho \leq a_{k-1} \\
0 & & \varrho a_{k-1}
\end{array}\right.
$$

we extend $\psi_{k}(\varrho)$ on $(-\infty, \infty)$ symmetrically, i.e., $\psi_{k}(\varrho)=\psi_{k}(|\varrho|)$ clearly $\psi_{k}(\varrho)$ is a twice continuously differentiable function on $(-\infty, \infty)$ such that $\psi_{k}(\varrho) \uparrow|\varrho|$ as $k \rightarrow \infty$.

Now let $\{u, B(t)\}$ and $\{\bar{u}, \overline{B(t)}\}$ be two solutions of (1) on the same probability space such that $u(x, 0)=\bar{u}(x, 0)$ and $B(t) \equiv \overline{B(t)}$ then,

$$
\begin{aligned}
& u^{j}(x, t)-\bar{u}^{j}(x, t)=\int_{0}^{t} Z(t)\left[\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right] d B^{j}(s) \\
& \quad+Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right)\left[\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right] d B^{j}(s) \\
& \quad+Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right)\left[b_{j}(u(y, s))-b_{j}(\bar{u}(y, s))\right] d s \\
& \quad+\int_{0}^{t} Z(t)\left[b_{j}(u(y, s))-b_{j}(\bar{u}(y, s))\right] d s
\end{aligned}
$$

According to theorem (3), there is a positive constant $M$ such that $\|Z(t)\|_{\mathcal{H}} \leq$ $M$, and by Ito's formula,

$$
\begin{aligned}
& \psi_{k}(u(x, t)-\bar{u}(x, t))=\int_{0}^{t} \psi_{k}^{\prime}\left(u^{j}-\bar{u}^{j}\right) Z(t)\left[\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right] d B^{j}(s) \\
& \quad+\int_{0}^{t} \psi_{k}^{\prime}\left(u^{j}-\bar{u}^{j}\right)\left[Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right)\left\{\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right\}\right] d B^{j}(s) \\
& \quad+\int_{0}^{t} \psi_{k}^{\prime}\left(u^{j}-\bar{u}^{j}\right)\left[Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right)\left\{b_{j}(u(y, s))-b_{j}(\bar{u}(y, s))\right\}\right] d s \\
& \quad+1 / 2 \int_{0}^{t} \psi_{k}^{\prime \prime}\left(u^{j}-\bar{u}^{j}\right)\left[Z(t) \Lambda^{-1} \sum_{i=1}^{p} c_{i} \int_{0}^{t_{i}} Z\left(t_{i}\right)\left\{\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right\}\right]^{2} d s \\
& \quad+\int_{0}^{t} \psi_{k}^{\prime}\left(u^{j}-\bar{u}^{j}\right)\left[Z(t)\left\{b_{j}(u(y, s))-b_{j}(\bar{u}(y, s))\right\}\right] d s \\
& \quad+1 / 2 \int_{0}^{t} \psi_{k}^{\prime \prime}\left(u^{j}-\bar{u}^{j}\right)\left[Z(t)\left\{\sigma_{j}\left(u^{j}(y, s)\right)-\sigma_{j}\left(\bar{u}^{j}(y, s)\right)\right\}\right]^{2} d s \\
& \quad=I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}
\end{aligned}
$$

It is clear that $\mathbb{E}\left[I_{1}\right]=\mathbb{E}\left[I_{2}\right]=0$ and since $\psi_{k}^{\prime}$ is uniformly bounded, $\kappa$ is concave

$$
\begin{aligned}
\left\|\mathbb{E}\left[I_{5}\right]\right\| & \leq k_{1} \int_{0}^{t} \mathbb{E}[\kappa(\|u-\bar{u}\|)] d s \\
& \leq k_{1} \int_{0}^{t} \kappa(\mathbb{E}\|u-\bar{u}\|) d s
\end{aligned}
$$

by Jensen's inequality. Similarly for $I_{3}$.
We have, for $I_{6}$

$$
\begin{aligned}
\left\|I_{6}\right\| & \leq 1 / 2 \int_{0}^{t} \psi_{k}^{\prime \prime}\left(u^{j}-\bar{u}^{j}\right)\|Z(t)\|^{2} \rho^{2}\left(\left|u^{i}-\bar{u}^{i}\right|\right) d s \\
& \leq k_{2} \cdot t \max _{a_{k} \leq|\varrho| \leq a_{k-1}}\left[\psi_{k}^{\prime \prime}(\varrho) \rho^{2}(\varrho)\right] \\
& \leq k_{2} \cdot t \cdot \frac{2}{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

Similarly for $I_{4}$.
Where $k_{1}$ and $k_{2}$ are positive constants. Also, $\psi_{k}\left(u^{i}-\bar{u}^{i}\right) \uparrow\left|u^{i}-\bar{u}^{i}\right|$ as $k \rightarrow \infty$,

$$
\mathbb{E}\left(\left|u^{i}-\bar{u}^{i}\right|\right) \leq k_{1} \int_{0}^{t} \kappa(\mathbb{E}\|u-\bar{u}\|) d s, \quad i=1,2, \cdots, n
$$

and hence, we have

$$
\mathbb{E}(\|u-\bar{u}\|) \leq k_{3} \int_{0}^{t} \kappa(\mathbb{E}\|u-\bar{u}\|) d s
$$

where $k_{3}$ is positive constant.
By using theorem (2), this implies $\mathbb{E}(\|u-\bar{u}\|)=0$ and therefore $u \equiv \bar{u}$

## References

[1] R.Durrett, Stochastic Calculus: A practical Introduction, (1996).
[2] Brent Oksendal, Stochastic Differential Equations, Fifth Edition, SpringerVerlag.
[3] T. YAMADA and S. WATANABE, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ, 155-167, (1971) .
[4] T. YAMADA and S. WATANABE, On the uniqueness of solutions of stochastic differential equations II, J. Math. Kyoto Univ, 553-563, (1971) .
[5] S. ALTAY and UWE SCHMACK, Lecture notes on the Yamada- Watanabe Condition for the pathwise uniqueness of solutions of certain stochastic Differential Equations, (2013).
[6] Mahmoud M. El-Borai and Farouk K. Assaad, On the asymptotic Behavior of Some Nonlinear Parabolic Systems, KYUNGPOOK Math. J, 37-42, 37(1997).
[7] Mahmoud M. El-Borai, On some fractional evolution equations with nonlocal conditions, International J. of pure and appl. Math., vol 24, No. 3, 405-415, (2005).
[8] Mahmoud M. El-Borai, On some stochastic fractional integro-differential equations, Advanced in dynamical system and application, vol.1, No.1, 49-57, (2006).
[9] Mahmoud M.El-Borai, Khairia El-Said El-Nadi, Osama L. Mostafa and hamdy M. Ahmed, Volterra Equations with fractional stochastic integrals, Mathematical problems in Engineering, 453-468, 5 (2004).
[10] K. Balachandran, S. Kiruthika, Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators, Comput. Math. Appl, 1350-1358, 62 (2011).

