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Abstract 

This paper gives some techniques to compute the set of multiplicative inverses, which uses in the Advanced 

Encryption Standard (AES).  
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 1 Introduction  

Sometimes, we want to create another form to a specific mapping seeking for simplicity. In AES, the substitution 

table is made for substituting a byte by another for all byte values from 0 to 255. The first operation in 

constructing this table is computing [1] the multiplicative inverse of an input byte in Galois field (GF (28)), based 

on the irreducible polynomial 𝑃(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1. To do this, we can use the extended Euclidean 

algorithm [2]. 

Although it is straightforward, some people think it is a complicated way. 

Here, are some techniques to compute these multiplicative inverses. 

2 The methodology 

The multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥) is 𝑀−1(𝑥) such that 

𝑀(𝑥)𝑀−1(𝑥) = 1 (𝑚𝑜𝑑 𝑃(𝑥))      → (1)  

and this implies 

𝑃(𝑥) | [𝑀(𝑥)𝑀−1(𝑥) − 1]      → (2)  

we can take  

𝑃(𝑥) = 𝑀(𝑥)𝑀−1(𝑥) − 1     → (3)  

Let 𝑇[𝑀(𝑥)] represents the multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥), and 𝑄(𝑥) = 𝑃(𝑥) + 1 , then 

𝑀(𝑥)𝑇[𝑀(𝑥)] = 𝑄(𝑥)      → (4) 

There is one of two possible equations: 

𝑀(𝑥)𝐴(𝑥) = 𝑄(𝑥)      → (5) 

or 

𝑀(𝑥)[𝐴(𝑥) + 𝐵(𝑥)] = 𝑄(𝑥)      → (6) 

In case 1,  
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𝑇[𝑀(𝑥)] = 𝐴(𝑥)      → (7) 

The multiplicative inverse is  
𝑄(𝑥)

𝑀(𝑥)
 . 

In case 2,  

𝑇[𝑀(𝑥)] = 𝐴(𝑥) + B(𝑥)      → (8) 

Write  Eq (6) as 

𝑀(𝑥)𝐴(𝑥) + 𝑀(𝑥)𝐵(𝑥) = 𝑄(𝑥)      → (9) 

let  

𝑀(𝑥)𝐴(𝑥) = 𝑄(𝑥) − 𝑟(𝑥)     → (10) 

where  

𝑟(𝑥) = 𝑀(𝑥)𝐵(𝑥)      → (11) 

rewrite Eq (11) as 

𝑟(𝑥)𝐶(𝑥) = 𝑀(𝑥)      → (12) 

then 

𝐵(𝑥) =
1

𝐶(𝑥)
     → (13) 

and since 

1 = 𝑄(𝑥) (𝑚𝑜𝑑 𝑃(𝑥))      → (14) 

we get 

𝐵(𝑥) =
𝑄(𝑥)

𝐶(𝑥)
= 𝑇[𝐶(𝑥)]      → (15) 

and  Eq (8) becomes 

𝑇[𝑀(𝑥)] = 𝐴(𝑥) + 𝑇[𝐶(𝑥)]      → (16) 

To compute 𝑇[𝑀(𝑥)] , we need to compute 𝑇[𝐶(𝑥)] = 𝑇 [
𝑀(𝑥)

𝑟(𝑥)
] . 

So, the multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥) equals  𝑞(𝑥) =
𝑄(𝑥)

𝑀(𝑥)
 , if there is no a remiander 𝑟(𝑥) , and 

equals 𝑞(𝑥) plus the multiplicative inverse of  
𝑀(𝑥)

𝑟(𝑥)
 , if there is a remainder 𝑟(𝑥) .  

3 Results and Discussion 

Let us take some examples:  

Example (1):  Computing 𝑇(𝑥) 
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𝑖 𝑀(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥 𝑥7 + 𝑥3 + 𝑥2 + 1 0 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

so,   

𝑇(𝑥) = 𝑥7 + 𝑥3 + 𝑥2 + 1   

Example (2):  Computing 𝑇(𝑥2) 

𝑖 𝑀(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥2 𝑥6 + 𝑥2 + 𝑥 𝑥 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

then 

𝑇(𝑥2) = 𝑥6 + 𝑥2 + 𝑥 + 𝑇(𝑥) 

            = 𝑥7 + 𝑥6 + 𝑥3 + 𝑥 + 1 

Example (3):  Computing 𝑇(𝑥4) 

𝑖 𝑀(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥4 𝑥4 + 1 𝑥3 + 𝑥 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

2 𝑥3 + 𝑥 𝑥 𝑥2 𝑥4 

3 𝑥2 𝑥 𝑥 𝑥3 + 𝑥 

4 𝑥 𝑥 0 𝑥3 + 𝑥 

then 

𝑇(𝑥4) = 𝑞1 + 𝑇{𝑞2 + T[𝑞3 + 𝑇(𝑞4)]} 

            = 𝑥4 + 1 + 𝑇{𝑥 + T[𝑥 + 𝑇(𝑥)]} 

We note that this technique iterates computing multiplicative inverse when  𝑟𝑖(𝑥) ≠ 0, and we maybe face 

computing a multiplicative inverse many times, in the example (3), we need to compute 𝑇(𝑥) , 𝑇[𝑥 + 𝑇(𝑥)] , 

and 𝑇{𝑥 + T[𝑥 + 𝑇(𝑥)]} .  

Instead of doing this, we put 

𝑀2(𝑥) = 𝑟1(𝑥) + 1     → (17) 

and starting from the step (𝑖 = 2) , we repeat the solution til  𝑟𝑖(𝑥) = 1. 

If 𝑟𝑖(𝑥) = 1 ,  𝑖 ≥ 2 , then 

𝑇[𝑀(𝑥)] = 𝑇𝑖[𝑀(𝑥)] = 𝑞𝑖(𝑥)𝑇𝑖−1[𝑀(𝑥)]+𝑇𝑖−2[𝑀(𝑥)]      → (18) 

where 

𝑇0[𝑀(𝑥)] = 1     → (19) 

and    
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𝑇1[𝑀(𝑥)] = 𝑞1(𝑥)𝑇0[𝑀(𝑥)] = 𝑞1(𝑥)      → (20) 

𝑀2(𝑥) becomes 𝑟1(𝑥) + 1  so, 𝑄(𝑥) must be 𝑄(𝑥) + 1 , we prove the Eq (18) by the mathematical induction, (let 

us just take the first step). 

When 𝑖 = 2 

𝑇2[𝑀(𝑥)] = 𝑞2(𝑥)𝑇1[𝑀(𝑥)]+𝑇0[𝑀(𝑥)] 

                  =
𝑀(𝑥)

𝑟1(𝑥) + 1
[
𝑄(𝑥) − 𝑟1(𝑥)

𝑀(𝑥)
] + 1 

                  =
𝑄(𝑥) + 1

𝑟1(𝑥) + 1
 

                  =
𝑄(𝑥)

𝑀2(𝑥)
 

Example (4):  Repeating compute 𝑇(𝑥4) using this second technique.   

𝑖 𝑀(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥4 𝑥4 + 1 𝑥3 + 𝑥 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

2 𝑥3 + 𝑥 𝑥 𝑥2 𝑥4 

2′ 𝑥3 + 𝑥 + 1 𝑥 𝑥2 + 𝑥 𝑥4 

3 𝑥2 + 𝑥 𝑥 + 1 1 𝑥3 + 𝑥 + 1 

 

𝑟3(𝑥) = 1 , so, from Eq (18) 

𝑇[𝑀(𝑥)] = 𝑞3(𝑥)𝑇2[𝑀(𝑥)]+𝑇1[𝑀(𝑥)] 

                  = 𝑞3(𝑥)[𝑞2(𝑥)𝑞1(𝑥) + 1]+𝑞1(𝑥) 

                  = (𝑥 + 1)[𝑥(𝑥4 + 1) + 1] + 𝑥4 + 1 

                  = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 

To avoid repeating step (𝑖 = 2) , we use this technique when 𝑟1(𝑥) ≠ 0 immediately. 

Example (5):  Computing 𝑇(𝑥6 + 𝑥5 + 𝑥4 + 𝑥2) 

We found 𝑇(𝑥4) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2, let us compute 𝑇(𝑥6 + 𝑥5 + 𝑥4 + 𝑥2)  

𝑖 𝑀(𝑥) 𝑞(𝑥) 𝑟(𝑥) 𝑄(𝑥) 

1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 𝑥2 + 𝑥 𝑥5 + 𝑥 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 

2 𝑥5 + 𝑥 + 1 𝑥 + 1 𝑥4 + 1 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 

3 𝑥4 + 1 𝑥 1 𝑥5 + 𝑥 + 1 

 

𝑟3(𝑥) = 1 , so, from Eq (18) 
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𝑇[𝑀(𝑥)] = 𝑞3(𝑥)𝑇2[𝑀(𝑥)]+𝑇1[𝑀(𝑥)] 

                  = 𝑞3(𝑥)[𝑞2(𝑥)𝑞1(𝑥) + 1]+𝑞1(𝑥) 

                  = 𝑥[(𝑥 + 1)(𝑥2 + 𝑥) + 1] + 𝑥2 + 𝑥 

                  = 𝑥4 

Conclusions 

These techniques compute a multiplicative inverse of 𝑀(𝑥) modulo 𝑃(𝑥) by easy and clear steps, and when  

𝑟1(𝑥) ≠ 0 , we can use the formula Eq (18), after using Eq (17). 

References 

1. Advanced Encryption Standard (AES), FIPS Publication 197, National Institute of Standards and 

Technology (NIST), November 26, 2001. 

2. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, 

1997.  


