DOI: https://doi.org/10.24297/jam.v16i0.8016

CONGRUENCES ON *-SIMPLE TYPE A I-SEMIGROUPS

¹Ndubuisi R.U, ²Asibong-Ibe U.I, ³Udoaka O.G

^{1, 2}Department of Mathematics & Statistics, University of Port Harcourt, Port Harcourt, Nigeria.

³Department of Mathematics & Statistics, Akwa Ibom State University, Ikot Akpaden, Nigeria.

u_ndubuisi@yahoo.com

Abstract

This paper obtains a characterisation of the congruences on *-simple type A I-semigroups. The *-locally idempotent-separating congruences, strictly *-locally idempotent-separating congruences and minimum cancellative monoid congruences, are characterised.

Keywords: Type A I-Semigroup, *-Locally Idempotent-Separating, Cancellative Monoid Congruence, Generalized Bruck-Reilly *-Extensions.

1. Introduction

For a semigroup S, E(S) will denote the set of idempotents of S. If S is a semigroup with non-empty set of idempotents E(S), we define a partial order " \leq " on E(S) such that $e \leq f$ if and only if ef = fe = e. Let I denote the set of all integers and let \mathbb{N}^0 denote the set of non-negative integers. A semigroup S is said to be an I-semigroup if and only if E(S) is order isomorphic to I under the reverse of the partial order.

The structure theorem for *-simple type A I-semigroups was established in [8], as an extension of the structure theorem for simple I-inverse semigroups and *-simple type A ω -semigroups due to Warne [10] and Asibong-Ibe [1]. This paper is a follow up of the study of congruences on *-bisimple type A I-semigroups studied by Ndubuisi and Asibong-Ibe [7], where the congruences were identified as idempotent-separating congruence and minimum cancellative monoid congruence.

Earlier investigations in [6] and [10] studied congruences on *-simple type A ω -semigroups and congruences on simple I-inverse semigroups respectively. Determination of congruences throughout this paper is based on their description in [6].

This work is divided as follows. Section 2 contains a minimum of results concerning *-simple type A *I*-semigroups. The content of section 3 is a determination of *-locally idempotent-separating congruences, strictly *-locally idempotent-separating congruences and minimum cancellative monoid congruences of a *-simple type A I-semigroup.

Let us recall some definitions which will be useful in the study.

Let S be a semigroup and let $a, b \in S$. Then the elements a and b are said to to be \mathcal{R}^* -related written $a \mathcal{R}^* b$ if and only if for all $x, y \in S^1$, xa = ya if and only if xb = yb. The relation \mathcal{L}^* is defined

dually. The join of the equivalence relations \mathcal{R}^* and \mathcal{L}^* is denoted by \mathcal{D}^* and their intersection by \mathcal{H}^* . Thus $a \mathcal{H}^*b$ if and only if $a \mathcal{R}^*b$ and $a \mathcal{L}^*b$. In general $\mathcal{R}^* \circ \mathcal{L}^* \neq \mathcal{L}^* \circ \mathcal{R}^*$ as shown in [3].

Following Fountain [4] a semigroup is an abundant semigroup if every \mathcal{L}^* -class and every \mathcal{R}^* -class in S contain idempotents. An abundant semigroup S is adequate [3] if E(S) forms a semilattice. In an adequate semigroup every \mathcal{L}^* -class \mathcal{R}^* -class contains a unique idempotent.

Let a be an element of an adequate semigroup S, and a^* (a^{\dagger}) denotes the unique idempotent in the \mathcal{L}^* -class L_a^* (\mathcal{R}^* -class R_a^*) containing a.

We remark that a type A (in particular, right type A) semigroup realized in Fountain [2] as a special type of right PP monoid with e-cancellable element where $e \in E(S)$, the set of idempotents in S. An adequate semigroup S is said to be a type A semigroup if $ea = a(ea)^*$ and $ae = (ae)^\dagger a$ for all $a \in S$ and $e \in E(S)$.

We conclude this section by defining the relation \mathcal{J}^* . Let S be a semigroup and I^* be an ideal of S. Then I^* is said to be a *-ideal if $L_a^* \subseteq I^*$ and $R_a^* \subseteq I^*$ for all $a \in I^*$. The smallest *-ideal containing 'a' is the principal *-ideal generated by 'a' and is denoted by $J^*(a)$. For $a, b \in S$, $a \mathcal{J}^*b$ if and only if $J^*(a) = J^*(b)$. The relations \mathcal{J}^* contains \mathcal{D}^* .

A semigroup S is said to be *-simple if the only *-ideal of S is itself. Clearly a semigroup is *-simple if all its elements are \mathcal{J}^* -related. To have a clear picture of \mathcal{J}^* -related elements we recall the following Lemma.

Lemma 1.1 [3]. Let S be a semigroup and $a, b \in S$. Then $b \in J^*(a)$ if and only if there are elements $a_0, a_1, \ldots, a_n \in S$, $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in S^1$ such that $a = a_0$, $b = a_n$ and $a_i \mathcal{D}^* x_i a_{i-1} y_i$, for $i = 1, 2, \ldots, n$.

Other basic results discussed in [3] will be assumed. The notation adopted in this paper is similar to that in Fountain [3], Howie [5], Asibong-Ibe [1] and Makanjuola [6].

Recently type A semigroups have been shown to be special type of restriction semigroups. In this case type A ω -semigroup will essentially be an ω -restriction semigroups. The idea developed here will prove useful in the study of restriction semigroups.

However, we will in this work retain the term type A semigroups generally.

2. *-Simple Type A I-Semigroups

Following [9], let $T = \bigcup_{i=0}^{d-1} M_i$ be a chain of cancellative monoids. Each element $x_i \in T$ is necessarily in M_i for $0 \le i \le d-1$. An identity $e_i \in M_i$ is an idempotent in T. Clearly $e_i \in T$ form a chain of idempotents $e_0 > e_i > \cdots > e_{d-1}$.

Let $\theta: T \to M_0$ be a monoid morphism and let $S = T \times I \times I$ (where I is the set of all integers) be the set of all ordered triples (x_i, m, n) where $m \in \mathbb{N}^0$, $n \in I$, $0 \le i \le d-1$ and $x_i \in T$.

Define multiplication on S by the rule

$$(x_{i}, m, n)(y_{j}, p, q) = \begin{cases} (x_{i}. f_{n-p,p}^{-1}. y_{j} \theta^{n-p}. f_{n-p,q}, m, n+q-p) & \text{if } n \geq p \\ (f_{p-n,m}^{-1}. x_{i} \theta^{p-n}. f_{p-n,n}. y_{j}, m+p-n, q) & \text{if } n \leq p \end{cases}$$

where θ^0 is the identity automorphism of T, and for $m \in \mathbb{N}^0$, $n \in I$, $f_{0,n} = e_i$, the identity of M_i , while for m > 0, $f_{m,n} = u_{n+1}\theta^{m-1} \cdot u_{n+2}\theta^{m-2} \cdot ... u_{n+(m-1)}\theta \cdot u_{n+m}$, and

 $f_{m,n}^{-1} = u_{n+m}^{-1} \cdot u_{n+(m-1)}^{-1} \theta \dots u_{n+2}^{-1} \theta^{m-2} \cdot u_{n+1}^{-1} \theta^{m-1}$, where $\{u_n : n \in I\}$ is a collection of T with $u_n = e_i$ for n > 0. Denote a semigroup formed by $S = GBR^*(T,\theta)$ where $T = \bigcup_{i=0}^{d-1} M_i$.

If for each i we now let $M_i = \{e_i\}$, a monoid with one element, we obtain the set $I \times I$ under the multiplication

$$(md+i,nd+i)(pd+j,qd+j) = \begin{cases} (md+i,(n+q-p)d+i) & \text{if } n \ge p \\ \left((m+p-n)d+j,qd+j\right) & \text{if } n \le p \end{cases}$$

We denote $I \times I$ under the above multiplication by B_d^* and call it the extended bicyclic semigroup.

If we let (x_i, m, n) be an idempotent in S. Then

$$(x_{i}, m, n) = (x_{i}, m, n)(x_{i}, m, n)$$

$$\begin{cases} (x_{i} \cdot f_{n-m,m}^{-1} \cdot x_{i} \theta^{n-m} \cdot f_{n-m,n}, m, n-m+n) & \text{if } n \geq m \\ (f_{m-n,m}^{-1} \cdot x_{i} \theta^{m-n} \cdot f_{m-n,n} \cdot x_{i}, m-n+m, n) & \text{if } n \leq m \end{cases}$$

in which case m = n, $x_i^2 = x_i$.

Conversely, suppose $x_i^2 = x_i$ then we have that $(x_i, m, n)(x_i, m, n) = (x_i, m, n)$. Thus (x_i, m, n) is an idempotent if and only if m = n and x_i is an idempotent in S.

The following results were proved in [8].

Lemma 2.1. Let $S = GBR^*(T, \theta)$ be a generalized Bruck-Reilly *-extension of a monoid T, where $T = \bigcup_{i=0}^{d-1} M_i$ is a finite chain of cancellative monoids M_i . Let $(x_i, m, n), (y_i, p, q) \in S$. Then

- i) $(x_i, m, n) \mathcal{R}^*(y_i, p, q)$ if and only if m = p and i = j.
- ii) $(x_i, m, n) \mathcal{L}^*(y_i, p, q)$ if and only if n = q and i = j.
- iii) $(x_i, m, n) \mathcal{J}^*(y_i, p, q)$. That is S is *-simple.

Lemma 2.2. $S = GBR^*(T, \theta)$ is a type A semigroup if and only T is a type A semigroup

Theorem 2.3. Let $S = GBR^*(T, \theta)$ be the generalized Bruck-Reilly *-extension of the monoid T where $T = \bigcup_{i=0}^{d-1} M_i$. Then S is a *-simple type A I-semigroup with $d \mathcal{D}^*$ -classes.

We conclude this section, with the structure theorem of *-simple type A I-semigroups.

Theorem 2.4 [8]. Let S be a *-simple type A I-semigroup with d \mathcal{D}^* -classses. Then S is isomorphic to a generalized Bruck-Reilly *-extension $S = GBR^*(T,\theta)$ of a monoid T, where $T = \bigcup_{i=0}^{d-1} M_i$ is a finite chain of cancellative monoids M_i and θ is an endomorphism of T with image in M_0 .

3. The Congruences

In this section, we will determine the congruence relations on a *-simple type A I-semigroup $S = GBR^*(T,\theta)$. We first present the properties of the congruences and then show that every congruence relation ρ on S is either a *-locally idempotent-separating congruence (if no two distinct \mathcal{D}^* -related idempotents are ρ -related) or all the idempotents are in one ρ -class. We also provide a method for constructing the strictly *-locally idempotent separating congruences. Lastly, we show that there is a minimum cancellative monoid congruence on S.

Lemma 3.1. Let $S = GBR^*(T, \theta)$ be a *-simple type A I-semigroup where $T = \bigcup_{i=0}^{d-1} M_i$ is a semilattice of cancellative monoids. Then \mathcal{H}^* is a congruence on S, and $S/\mathcal{H}^* \cong B_d^*$.

Proof. The mapping $\theta: S \to B_d^*$ by

$$(x_i, m, n)\theta = (md + i, nd + i)$$

is onto. It is a homomorphism since

$$((x_{i}, m, n)(y_{j}, p, q)) \theta = \begin{cases} (x_{i} \cdot f_{n-p,p}^{-1} \cdot y_{j} \theta^{n-p} \cdot f_{n-p,q}, m, n+q-p) & \text{if } n \geq p \\ (f_{p-n,m}^{-1} \cdot x_{i} \theta^{p-n} \cdot f_{p-n,n} \cdot y_{j}, m+p-n, q) & \text{if } n \leq p \end{cases} \times \theta$$

$$= \begin{cases} (x_{i} \cdot f_{n-p,p}^{-1} \cdot y_{j} \theta^{n-p} \cdot f_{n-p,q}, m, n+q-p) \theta & \text{if } n \geq p \\ (f_{p-n,m}^{-1} \cdot x_{i} \theta^{p-n} \cdot f_{p-n,n} \cdot y_{j}, m+p-n, q) \theta & \text{if } n \leq p \end{cases}$$

$$= \begin{cases} (md+i, (n+q-p)d+i) & \text{if } n \geq p \\ ((m+p-n)d+j, qd+j) & \text{if } n \leq p \end{cases}$$

$$= (md+i, nd+i)(pd+j, qd+j) \qquad \text{if } n \leq p \end{cases}$$

$$= (x_{i}, m, n) \theta (y_{i}, p, q) \theta.$$

Thus θ is a homomorphism.

Furthermore, $(x_i, m, n)(y_j, p, q) \in \mathcal{H}^*$ if and only if (md + i, nd + i) = (pd + j, qd + j); hence $\theta \circ \theta^{-1} = \mathcal{H}^*$ and the result follows.

Lemma 3.2. Let ρ be a congruence on a *-simple type A I-semigroup $S = GBR^*(T,\theta)$ where $T = \bigcup_{i=0}^{d-1} M_i$. Suppose that

- (i) $(e_i, m, m) \rho (e_i, m, m)$ then for any $n \in I$, $(e_i, n, n) \rho (e_i, n, n)$
- (ii) $(e_i, m, m) \rho (e_i, m+1, m+1)$ then for any $n \in I$, $(e_i, n, n) \rho (e_i, n+1, n+1)$

Proof. i) Let (e_0, n, m) , $(e_0, m, n) \in S$, then

$$(e_0, n, m)(e_i, m, m)(e_0, m, n) = (e_i, n, n).$$

 $(e_0,n,m)(e_j,m,m)(e_0,m,n)=(e_j,n,n),$

and

$$(e_0, m, n)(e_i, n, n)(e_0, n, m) = (e_i, m, m).$$

 $(e_0, m, n)(e_i, n, n)(e_0, n, m) = (e_i, m, m).$

ii) Let (e_0, n, m) , $(e_0, m, n) \in S$, then we have

$$(e_0, n, m)(e_i, m, n) = (e_i, n, n).$$

$$(e_0, n, m)(e_i, m+1, m+1)(e_0, m, n) = (e_i, n+1, n+1),$$

and

$$(e_0, m, n)(e_i, n, n)(e_0, n, m) = (e_i, m, m).$$

$$(e_0, m, n)(e_j, n + 1, n + 1)(e_0, n, m) = (e_j, m + 1, m + 1).$$

Hence the proof.

We now establish an important property of congruences on *-simple type A *I*-semigroups.

Theorem 3.3. A congruence ρ on a *-simple type A *I*-semigroup is either a *-locally idempotent-separating congruence or all the idempotents are in one ρ -class.

Proof. Suppose that the idempotent elements of S are not in one ρ -class and $e_{md+i} \, \rho \, e_{(m+k)d+i}$ for some $m,k \in I,k>0$ and $0 \le i \le d-1$. We are to show that no two distinct \mathcal{D}^* -related idempotents are ρ -related. Let k=1 which implies that $e_{md+i} \, \rho \, e_{(m+1)d+i}$. Using Lemma 3.2 and the fact that $e_m \, \rho \, e_n$ implies $e_m \, \rho \, e_k$ for every $n \le k \le m$ together with the transitive property of the congruence, we see that the idempotents are in one ρ -class which is contrary to our assumption. Thus, no two distinct \mathcal{D}^* -related idempotents are ρ -related. Therefore ρ is a *-locally idempotent-separating congruence. This completes the proof.

A typical *-idempotent-separating congruence of a *-simple type A *I*-semigroup is characterized in the theorem.

Theorem 3.4. Let $S = GBR^*(T, \theta)$ where $T = \bigcup_{i=0}^{d-1} M_i$. The relation ρ on $S = GBR^*(T, \theta)$ defined by the rule:

$$(x_i, m, n) \rho (y_i, p, q)$$
 if and only if $m = p$, $n = q$, $i = j$ and $(x_i, y_i) \epsilon \ker \theta$

is a *-locally idempotent separating congruence

Proof. It can be easily shown that ρ is reflexive and symmetric. To show transitivity, we let (x_i, m, n) ρ (y_j, p, q) , (y_j, p, q) ρ (z_k, u, v) for all (x_i, m, n) , (y_j, p, q) , (z_k, u, v) ϵ S. Then m = p, n = q, i = j, (x_i, y_j) ϵ ker θ and p = u, q = v, j = k, (y_j, z_k) ϵ ker θ .

Consequently, m = u, n = v, i = k. Hence $(x_i, z_k) \in \ker \theta$, which means that ρ is transitive.

Next is to show that ρ is a congruence. Now let $a=(x_i,m,n),\ b=(y_j,p,q).$ That ρ is a congruence entails showing that

 $a \rho b$ implies $ag \rho bg$ (for right congruence)

 $a \rho b$ implies $ga \rho gb$ (for left congruence)

$$\forall g = (z_k, w, l) \in S = GBR^*(T, \theta).$$

Consequently,

$$ag = (x_{i}, m, n)(z_{k}, w, l)$$

$$= \begin{cases} (x_{i}. f_{n-w,w}^{-1}. z_{k} \theta^{n-w}. f_{n-w,l}, m, n+l-w) & \text{if } n \geq w \\ (f_{w-n,m}^{-1}. x_{i} \theta^{w-n}. f_{w-n,n}. z_{k}, m+w-n, l) & \text{if } n \leq w \end{cases}$$

$$bg = (y_{j}, p, q)(z_{k}, w, l)$$

$$= \begin{cases} (y_{j}. f_{q-w,w}^{-1}. z_{k} \theta^{q-w}. f_{q-w,l}, p, q+l-w) & \text{if } q \geq w \\ (f_{w-q,p}^{-1}. y_{j} \theta^{w-n}. f_{w-q,q}. z_{k}, p+w-q, l) & \text{if } q \leq w \end{cases}$$

So, if $(x_i, m, n) \rho (y_i, p, q)$, then

$$(x_i, m, n)(z_k, w, l) \rho (y_i, p, q)(z_k, w, l) =$$

$$\begin{cases} \left(x_{l}.f_{n-w,w}^{-1}.z_{k}\theta^{n-w}.f_{n-w,l},m,n+l-w\right) & \text{if } n \geq w \\ \left(f_{w-n,m}^{-1}.x_{l}\theta^{w-n}.f_{w-n,n}.z_{k},m+w-n,l\right) & \text{if } n \leq w \end{cases}$$

$$\rho \begin{cases} \left(y_{j}.f_{q-w,w}^{-1}.z_{k}\theta^{q-w}.f_{q-w,l},p,q+l-w\right) & \text{if } q \geq w \\ \left(f_{w-q,p}^{-1}.y_{j}\theta^{w-q}.f_{w-q,q}.z_{k},p+w-q,l\right) & \text{if } q \leq w \end{cases}$$

But $(x_i, m, n) \rho(y_i, p, q)$ if and only if m = p, n = q, i = j and $(x_i, y_i) \epsilon \ker \theta$.

Thus,
$$\begin{cases} \left(x_{i}.f_{n-w,w}^{-1}.z_{k}\theta^{n-w}.f_{n-w,l},m,n+l-w\right) & \text{if } n \geq w \\ \left(f_{w-n,m}^{-1}.x_{i}\theta^{w-n}.f_{w-n,n}.z_{k},m+w-n,l\right) & \text{if } n \leq w \end{cases}$$

$$\rho \begin{cases} \left(y_{j}.f_{n-w,w}^{-1}.z_{k}\theta^{n-w}.f_{n-w,l},m,n+l-w\right) & \text{if } n \geq w \\ \left(f_{w-n,m}^{-1}.y_{j}\theta^{w-n}.f_{w-n,n}.z_{k},m+w-n,l\right) & \text{if } n \leq w \end{cases}$$

Hence ρ is a right congruence.

That ρ is a left congruence follows similarly. Thus ρ is a congruence.

Furthermore, $(e_i, m, m) \rho(e_i, n, n)$ implies m = n which implies $(e_i, m, m) = (e_i, n, n)$. Thus any two distinct idempotent elements which are \mathcal{D}^* -related cannot lie in the same ρ -class. Hence the proof.

We will now construct the strictly *-locally idempotent-separating congruences on *-simple type A *I*-semigroups.

3.5. Notation. Let $k_0, k_1, k_2, k_3, ..., k_t$ be a sequence of non-empty integers, satisfying $0 \le k_0 < k_1 ... < k_t < d-1$, $k_0 = -1$, $k_{t+1} = d-1$.

Define a relation $\rho = \rho(k_0, k_1, ..., k_t)$ on $S = GBR^*(T, \theta)$ by

$$\left\{ \begin{aligned} & (x_i, m, n) \; \rho \; (y_j, p, q) \; \text{ implies} \; \begin{cases} & m = p, \; n = q \; \text{for} \; k_{v-1} < i, j \le k_v, \; \; 0 \le v \le t+1 \\ & \text{or} \; \; m = p+1, \; n = q+1 \; \text{for} \; i \le k_0 \; \text{and} \; j > k_t \\ & \text{or} \; \; m+1 = p, \; n+1 = q \; \text{for} \; j \le k_0 \; \text{and} \; i > k_t \end{cases}$$

Lemma 3.6. With the notation introduced, $\rho = \rho(k_0, k_1, ..., k_t)$ is a strictly *-locally idempotent-separating congruence on $S = GBR^*(T, \theta)$.

Proof. Suppose ρ is a strictly *-locally idempotent-separating congruence on $S = GBR^*(T, \theta)$. Then we have that

$$(x_i, m, n) \rho (y_i, p, q)$$
 implies $(y_i, n, m) \rho (x_i, q, p)$

since it is evident that the relation ρ defined above is a congruence on a type A semigroup (where (y_j, n, m) is inverse of (x_i, m, n) and (x_i, q, p) is the inverse of (y_j, p, q)).

Now we have that $(x_i, m, n)^{\dagger} \rho (y_j, p, q)^{\dagger}$ and $(x_i, m, n)^* \rho (y_j, p, q)^*$ implies $(e_i, m, m) \rho (e_i, p, p)$ and $(e_i, n, n) \rho (e_i, q, q)$.

That is, we have that $e_{md+i} \rho e_{pd+j}$ and $e_{nd+i} \rho e_{qd+j}$.

Suppose $md + i \ge (p+1)d + j$ then $e_{pd+j} \rho e_{(p+1)d+j}$ then $i < j, m \le p+1$. $i > j, m \le p$.

Similarly, we have $j < i, p \le m + 1$. $j > i, p \le m$.

Consequently, we have i < j, $m \le p+1 \le m+1$. That is m=p or p+1.

i > j, $m \le p \le m + 1$. That is p = m or m + 1.

Interchanging the roles of m and n, p and q we have that

i < j, n = q or q + 1. i > j, q = n or n + 1.

Now using Lemma 3.2 and considering some cases, we have the desired result.

We now consider cancellative monoid congruences. These can be characterized as follows:

Theorem 3.7. Let $S = GBR^*(T, \theta)$ be a *-simple type A *I*-semigroup. Define a relation σ on S by

$$(x_i, m, n) \sigma (y_i, p, q)$$

if and only if m - n = p - q and $x_i = y_i$. Then

- i) σ is the minimum congruence on S.
- ii) S/σ is a cancellative monoid.

Proof. i) That σ is reflexive and symmetric can be easily checked. To show transitivity, let $(x_i, m, n) \sigma(y_i, p, q)$ and $(y_i, p, q) \sigma(z_k, r, c)$ for $(x_i, m, n), (y_i, p, q), (z_k, r, c) \in S$. Then we have m - n = p - q, $x_i = y_i$ and p - q = qr-c, $y_i=z_k$. This implies m-n=r-c and $x_i=z_k$. Thus σ is transitive.

Now let $a = (x_i, m, n)$, $b = (y_i, p, q)$. That σ is a congruence entails showing that

$$a \sigma b \Rightarrow au \sigma bu$$
 (for right congruence)

$$a \sigma b \Rightarrow ua \sigma ub$$
 (for left congruence)

 $\forall u = (z_k, r, c) \in S$. So, we have that

$$au = (x_i, m, n)(z_k, r, c) = \begin{cases} (x_i. f_{n-r,r}^{-1}. z_k \theta^{n-r}. f_{n-r,c}, m, n+c-r) & \text{if } n \ge r \\ (f_{r-n,n}^{-1}. x_i \theta^{r-n}. f_{r-n,n}. z_k, m+r-n, c) & \text{if } n \le r \end{cases}$$

$$bu = (y_j, p, q)(z_k, r, c) = \begin{cases} (y_j. f_{q-r,r}^{-1}. z_k \theta^{q-r}. f_{q-r,c}, p, q+c-r) & \text{if } q \ge r \\ (f_{r-q,q}^{-1}. y_j \theta^{r-q}. f_{r-q,q}. z_k, p+r-q, c) & \text{if } q \le r \end{cases}$$

$$bu = (y_j, p, q)(z_k, r, c) = \begin{cases} (y_j, f_{q-r,r}^{-1}, z_k \theta^{q-r}, f_{q-r,c}, p, q+c-r) & \text{if } q \ge r \\ (f_{r-q,q}^{-1}, y_j \theta^{r-q}, f_{r-q,q}, z_k, p+r-q, c) & \text{if } q \le r \end{cases}$$

Suppose $(x_i, m, n) \sigma (y_i, p, q)$, we have

$$m - (n + c - r) = (m - n) + (r - c)$$
 and $p - (q + c - r) = (p - q) + (r - c)$

$$m+r-n-c = (m-n)+(r-c)$$
 and $p+r-q-c = (p-q)+(r-c)$.

Since m-n=p-q, we have that (m-n)+(r-c)=(p-q)+(r-c).

Consequently, σ is a right congruence. That σ is a left congruence follows similarly. Thus σ is a congruence.

Suppose ρ is any other congruence. Then we have $(1, m, m) \rho$ (1,0,0) for all $m \in I$. If $(x_i, m, n) \sigma$ (y_j, p, q) , then $(x_i, m, n)(1, p, p) = (y_j, p, q)(1, p, p)$ for some $p \in I$

Since $(1, m, m) \rho (1,0,0)$, then $(x_i, m, n)(1, p, p) \rho (x_i, m, n)$.

Similarly, $(y_i, p, q)(1, p, p) \rho(y_i, p, q)$ so that $(x_i, m, n) \rho(y_i, p, q)$. Hence $\sigma \subseteq \rho$.

ii) Obviously the class of σ containing the idempotents is the identity element for S/σ . So we have $(1, m, n)\sigma(y_i, p, q)\sigma = (y_i, p, q)\sigma$. Thus S/σ is a monoid.

To show that S/σ is cancellative, let $a=(x_i,m,n), b=(y_i,p,q)$. That S/σ is cancellative entails showing that

$$a\sigma u\sigma = b\sigma u\sigma \Rightarrow a\sigma = b\sigma$$
 (for right cancellative)

$$u\sigma \ a\sigma = u\sigma \ b\sigma \Rightarrow a\sigma = b\sigma$$
 (for left cancellative)

 $\forall u = (z_k, r, c) \in S$. So, we have that

$$a\sigma u\sigma = (x_i, m, n)\sigma (z_k, r, c)\sigma = (y_j, p, q)\sigma (z_k, r, c)\sigma$$

= $b\sigma u\sigma$.

The rest of the proof follows from a routine calculation.

For the remainder of this section the group of integers under addition will be denoted by Z.

We now describe the nature of S/σ in the case where θ is the identity mapping.

Theorem 3.8. Let $S = GBR^*(T, \theta)$ be a *-simple type A I-semigroup in which θ is the identity mapping. Define a multiplication on the set $T \times \mathbb{Z}$ by the rule that

$$(x_i, md + i)(y_i, nd + i) = (x_iy_i, (md + i) + (nd + i))$$

for $x_i, y_i \in T$, $m, n \in \mathbb{Z}$. Then $S/\sigma \cong T \times \mathbb{Z}$.

Proof. Define a map $\varphi: S \to T \times \mathbb{Z}$ by the rule that $(x_i, m, n)\varphi = (x_i y_i, (md + i) - (nd + i))$.

Evidently, φ is well defined. It is known that $T \times \mathbb{Z}$ is a cancellative monoid with identity (1,0).

Now let (x_i, m, n) and (y_i, p, q) be any two elements of S. Then

$$\begin{split} & \left((x_i, m, n) (y_j, p, q) \right) \varphi = \begin{cases} \left(x_i \cdot f_{n-p, p}^{-1} \cdot y_j \theta^{n-p} \cdot f_{n-p, q}, m, n+q-p \right) & \text{if } n \geq p \\ & \left(f_{p-n, n}^{-1} \cdot x_i \theta^{p-n} \cdot f_{p-n, n} \cdot y_j, m+p-n, q \right) & \text{if } n \leq p \end{cases} \\ & = \begin{cases} \left(x_i \cdot f_{n-p, p}^{-1} \cdot y_j \theta^{n-p} \cdot f_{n-p, q}, m, n+q-p \right) \varphi & \text{if } n \geq p \\ & \left(f_{p-n, n}^{-1} \cdot x_i \theta^{p-n} \cdot f_{p-n, n} \cdot y_j, m+p-n, q \right) \varphi & \text{if } n \leq p \end{cases} \\ & = \begin{cases} \left(x_i \cdot y_j \cdot md + i - (n+q-p)d + i \right) & \text{if } n \geq p \\ \left(x_i \cdot y_j \cdot (m+p-n)d + j - qd + j \right) & \text{if } n \leq p \end{cases} \end{split}$$

$$= \begin{cases} \left(x_{i} \ y_{j}, (m-n)d + i + (p-q)d + i\right) & \text{if } n \geq p \\ \left(x_{i} \ y_{j}, (m-n)d + j + (p-q)d + j\right) & \text{if } n \leq p \end{cases}$$

$$= \left(x_{i} \ y_{j}, (m-n)d + i + (p-q)d + j\right)$$

$$= \left(x_{i}, (m-n)d + i\right)\left(y_{j}, (p-q)d + j\right)$$

$$= \left(x_{i}, (md+i) - (nd+i)\right)\left(y_{j}, (pd+j) - (qd+j)\right)$$

$$= \left(x_{i}, m, n\right)\varphi\left(y_{j}, p, q\right)\varphi.$$

Thus φ is a homomorphism.

Furthermore,

$$(x_i, m, n)\varphi = (y_j, p, q)\varphi$$

if and only if $(x_i, (md+i) - (nd+i)) = (y_j, (pd+j) - (qd+j))$

if and only if (md+i)-(nd+i)=(pd+j)-(qd+j) and $x_i=y_j$

if and only if $(x_i, m, n)\sigma = (y_i, p, q)\sigma$.

That is $\varphi \circ \varphi^{-1} = \sigma$.

References

- 1. Asibong-Ibe, U.I. *-Simple type A ω -semigroups, Semigroup Forum 47 (1993), 135-149.
- 2. Fountain, J.B. A class of right PP monoids, Quart. J. Math. Oxford 2, 28 (1974), 28-44.
- 3. Fountain, J.B. Adequate semigroups. Proc. Edinburgh Math. Soc 22 (1979), 113-125.
- 4. Fountain, J.B. Abundant semigroups, Proc. London. Math. Soc., (3) 44 (1982), 103-129.
- 5. Howie, J.M. Fundamentals of Semigroup Theory, Oxford University Press, Inc. USA, 1995.
- 6. Makanjuola, S. O. Congruences on type A ω-semigroups. D.Phil Thesis, Ahmadu Bello Univer.,1988.
- 7. Ndubuisi, R.U and Asibong-Ibe, U.I. Congruences on *-bisimple type *A I*-semigroup. Journal of Semigroup Theory and Applications, Vol. 2018, Article ID 4 (2018), 1-14.
- 8. Ndubuisi, R.U, Asibong-Ibe, U.I and UdoAkpan, I.U. A class of *-simple type A I-semigroups. Int'l J. Mathematics and its applications, 6(1-E) (2018), 1227-1234.
- 9. Shang, Y. and Wang, L. *-Bisimple type *A I*-semigroups, Southeast Asian Bull. Math. 36 (2012), 535-545.
- 10. Warne, R.J. Some properties of simple *I*-regular semigroup. Compositio Math. Vol 22 (1970), 181-195.