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Abstract

In this paper we give a new proof for the result concerning convergent sequences of functions that give
convergent sequence of distributions in D" and find the analytic representation of the distribution obtained by
their boundary values. Also, we present two examples.

1. Introduction

It is well known that every function f e 'isa regular distribution and its analytic representation is, in fact, the

Cauchy representation

c o1 1
f@)=m < f () ——>.
D=2~ 107”

This function is analytic in the complex plane except on the support of f and it holds
f (x+iy)— f (x—iy) = f (X)
as Y —>0"in D’ sense

2. Main results

We give a new proof to the following theorem.

Theorem 1. Let (fn) be a sequence of functions of L' space which converges to the function f in L. Let

(Pn) be a sequence of analytic functions which converges uniformly to the function P on every compact
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subset of the real line. Then the sequence of distributions (F’n fn) converges to the distribution P f in D’

sense as N — o and P f is analytic representation of the distribution P f .

Proof. Let ¢ € D and let the support of @ € D liesin [—a, a], for a>0. Then

T P, (0 f, Do (t)dt - T P(t) f (t)e(t)dt| =

—o0

[ PO, 0 - Ot + [ [P.() - PO et

Since the sequence (P, (t)) converges uniformly to P(t) on [—a, a], there exists M >0 such that |Pn (t)| and

|P(t)| are less than M. So, we have the following expression

00

[ OO0 | POF OO

—00

<

o0

JIP.®)

f, (@) (t)]j(t)|dt + T

P,(t)—P®)| f )] @(t)[ct.
For arbitrary & > Othere exists N, such that for N> n, it holds

f—f] <=2 and |P.(t) - P(t)| < ——— forall te[-a,a].
I, ”1<2M and [P, (t) ()|<2||f||1 orall te[-a,a]

This, together with the above expression, proves that the sequence of distributions (Pn f, ) converges to the

distribution Pf in D' sense as h — 0.

n

In the following we will prove that P f is analytic representation of the distribution Pf . Since

T [P(x+1y) 12 (X+1y)—P(x—1y) 12 (X=iy)]Jp(x)dx =

—00

T P(x+1y) %(x+iy)¢(x)dx— T P(x—1y) %(x—iy)gp(x)dx,

—00

in the following, we will consider the boundary values of P(x+iy) f(x+iy)and P(x—iy) f(x—iy) as
y—0".

Let @ € D be arbitrary chosen and its support be in [—a, a].
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a) The first integral

[ P(x+iy) £ (x +iy)p(x)dx

—00

may be written in the form

[ POx+iy)p(x) 2; [ ti(;)_ditydx

By Fubini's theorem we get that

[ POx+iy) e inp(d = [ fodt—— [ PEENMg,
2ri 5 t—=Xx—1ly

—00 —00

For the second integral, we have

- J. P(x+|y)(0(X)d _ J- Px+1y)le(x) — ()], . (t)j ID(Xﬂy)d =1, +p(®)l,.
t—x—iy t=x-ly -

—00 —00

Then

I, = T P(X+iy)dx= T P(X+iy)_P(t)dx+T P(t) dx —

Jot=x-ly t—x—iy St—x-ly
_T P(x+iy)—P(t)d P(t)j
X—t+iy X— t+|y

i) Having in mind that X € (—a,a), for the last integral we have

[e¢]

=log(a—-t+iy)—log(-a—t+iy) =

—00

Iny(a—t)*+y® +iarg(a—t+iy)—In/(a+t)* +y*> —iarg(-a—t+iy).

ii) Now we consider

T P(x+iy) - P(t)dx
X—t+iy '

—00

We use Taylor's series of P(z) at the point t and get that

P(x+iy) —P(t) ZW(X—HWH@(X—HW)Z+...
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By Cauchy's formula, we have

(n) — ' P(é/) d
RRP S I

where 7 :|§—t|= R

Let K = rgpax|P(§)| Then we obtain that
€7R

PO (n] < K

Now

© w0

T P(x+iy)—P(t T = POt POt 4
j (Xx+—“t/)+iy()dx Ix t+|y,Z ()(x t+iy) dx _LZ_; .()(x t+iy) dx.

—o0

Since

PU®| . J'K _K

it |7 IR RY

and since we may choose R so that |X—t + iy| <R(x, te[-a,a]and Yy is small enough), we may integrate

term by term and get

TP(X”Y)—P(t)d IZP”“)(X t+iy) ™ dx = ip;j:gt)[(a—t”y)j—(—a—t+iY)j]-

X—t+iy A j=1

So, forl,, and then |, =1, + ¢(t)1,, we get

© (€))] _ )
=3 O atriy) - (ca-t+iy)]-

it )

P(t)[In \/mnarg(a—tﬂy)—ln \/m—iarg(—a—tny)],
|1=—T POx+Y)p() —o®], PPN (a—t)> +y* +iarg@a—t+iy)—InJ(@a+t)’ +y*

X—t+iy
) ) © P(J)(t) - .
—|arg(—a—t+|y)]—go(t)Z ] [(a—t+iy)! —(—a—t+iy)'].

—00

Finally,

[ PO+ T in)p(d = [ fOdt==1,,
27l

—0 -0
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b) Now we consider

[ POx=iy) f (x—iy)p(x)dx.
In the similar way, we obtain that
[ POx=iy) f (x=iy)p(x)dx = | F()dt -3,
c c 2ri
where

3, - [ PO =20k gy ffa—ty7+ v+

—00

Now

» pli) _ _
iarg(a—t—iy)—Iny/(a+t)*+y’ —iarg(—a—t—iy)]—go(t)zPT(_t)[(a—t—iy)J —(~a-t—iy)']
LY
we compute the limits of |, and J, as y —>0".

o0

lim1,=-| P(X)[(”X(f)t_ POl oty P()[IN(a—t) +i-0-In(a-+1)

0 (i) . .
—i-z]—qo(t)ZPTgt)[(a—t)J (at)]

and
o0

limJ, =~ PO =My, o typ)[in(a—t)+i-0—In(a+1)

y—0" X—t

+i-z]—¢(t)i¥[(a—t)i—(—a—t)l‘].
Finally we have
im T[P(x+iy) F (X-+iy) = P(x—iy) f (X=iy)lp(x)dx =
1% . . 1%, f
o jw f@(lim 1, - lim 3,)dt =~ jw 27i t(OPe(t)dt = f()PR)p)dt.

—00

We note that
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Iirgl+ T P(x+1iy) %(x+iy)¢(x)dx =

if f(t)dt(—T POLe() =]y L T f(OPM[N(@—t) - In(@+t)]e(t)dt —
27i *, 2 X—t 27i 2,

1 © 1 0 ) P(J)(t) i ol j

> L f(t)P(t)(p(t)dt—ﬁ jw f(t);W[(a—t) +(=1) " (a+1) Jp(t)dt

where the number a >0 depends of the function ¢ € D, exists. Indeed, the function

() - | P00l

—00

is continuous and

@) <|

¢ [1PO) | dx.

Hence the double integral exists.

Also,

0

j f (t)P(t)[In(a—t) — In(a+1)]e(t)dt

—00

exists because (@) = p(—a) = 0 ,and, therefore,
limin(a-1)e(t) = limin(a -1)[e(t) -¢(a)] =0,
and
lim In(a-1)o(t) = lim In(a—-1)[p(t) - p(a)] = 0.
Thus P(t)[In(a—t) —In(a+t)Je(t) is bounded on the interval [-a,a], and consequently the integral exists.

For the existence of the last integral, we use the Cauchy’s formula

ey ! P(<)
PO(M)=" J Tl

where 7, |cf —t| =R .Since tesupppc [—a, a] , we may choose R so that d(&, [—a, a]) =r >1.Then

jIKR

r]+l :

PO <
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Forevery t e [—a, a]
(a-t) +(-1) " (a+1)’| <|(2a)’ +(2a)’|

and we have

® (N
P (t)‘\(a—t)l'+(—1)J'+1(a+t)i\

25

= jIKR 2(2a)’
<  a— - .
25

If we choose 2a < I, then it follows that the limits exists for every ¢ € D . So,

P(x+1iy) f (x+1y) and P(x—iy) 12 (x—1y)

converge in D' sense.
X? X"
+—+...+— . ltis well known that the sequence

X
Example 1. Let (P,) be the sequence of functions P, :l+ﬁ o
! ! n!

(P,) converges uniformly to the function €* on any compact set. From the above theorem it follows that for

any sequence of functions f_ of L that converges to a function f in L', the sequence (f,P,) convergesin
D’ to " f(X) and its analytic representation is the function €’ ]: (2)
We finish with a solution of the problem given in ([1], pg.106), which is of this kind.
Example 2. let f be a function of class C*(0) and f (t) = O(|t|a) for some a <0. Then
lim 1:(x+iy) =F(x),
y—0"
where F(X) is a continuous function on [ .

Solution.

1 T f (t)dt
27l 2 t—x—1ly

f(x+iy) =

Since for any fixed X,
f (1) ot
= ol)
t—x—iy

we conclude that the integral exists for every X €l . Furthermore,
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1 T f(dt 1 f(t)dt N 1 f(t)dt L+l
271 Y t=x—ly 27 g t-x-iy 27 g t-x-iy T
1_1_ faszl-I HU—“mm+1_ H@_m.
27l s t=X=ly 27l 5 5 t=X=ly 27l s T=X=ly

Since X—90 <t <X+ we have

27il, = TMdt + £ ()[log(S —iy) — log(=5 —iy)].
t—x—iy

X=0

We may apply the Lebesgue dominated convergence theorem as Y — 0", so we get

X+6

27i lim 1, = j Mauizzf(x).

0+
y= X—8

Definitely we have

1 PEm-f(x, 1
F(x)_zﬂixj e (0,

=J

It is easy to verify that the function F(X) is continuous on [ , since the function

is continuous for X #t and h(x) = f'(X)on [J.
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