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ON POMPEIU-CEBYSEV TYPE INEQUALITIES FOR
POSITIVE LINEAR MAPS OF SELFADJOINT OPERATORS IN
INNER PRODUCT SPACES

MOHAMMAD W. ALOMARI

ABSTRACT. In this work, generalizations of some inequalities for continuous h-
synchronous (h-asynchronous) functions of linear bounded selfadjoint operators
under positive linear maps in Hilbert spaces are proved.

1. INTRODUCTION

Let B(H) be the Banach algebra of all bounded linear operators defined on
a complex Hilbert space (H;(-,-)) with the identity operator 1y in B(H). Let
A € B(H) be a selfadjoint linear operator on (H; (-, -)). Let C (sp (A)) be the set
of all continuous functions defined on the spectrum of A (sp (A)) and let C* (A)
be the C*-algebra generated by A and the identity operator 1.
Let us define the map G : C'(sp (4)) — C* (A) with the following properties
([5), p-3):
(1) G(af + Bg) = aG (f) + BG (g), for all scalars «, S.
(2) G(f9) =G (f)G(g9)and G (f) = G (f)"; where f denotes to the conjugate
of f and G (f)* denotes to the Hermitian of G (f).
3) [IG (NIF= A1l = Sup)!f(t)l-

tesp(
(4) G (fo) = 1y and g(/}l) = A, where fo(t) = 1 and f;(t) = t for all
t €sp(A).

Accordingly, we define the continuous functional calculus for a selfadjoint operator

A by
fA) =G (f)forall feC(sp(A)).

If both f and g are real valued functions on sp(A) then the following important
property holds:

f(t) >g(t) for all t € sp(A) implies f(A) > g(A), (1.1)

in the operator order of B(H).
In [1] and formally in [2], the author of this paper generalized the concept of
monotonicity as follows:
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Definition 1.1. A real valued function f defined on [a, b] is said to be increasing
(decreasing) with respect to a positive function h : [a,b] — R, or simply h-
increasing (h-decreasing) if and only if

h(z) f(E) =h(t) f(x) 2 (<) 0,
whenever ¢ > z for every z,t € [a,b]. In special case if h(x) = 1 we refer to the

original monotonicity. Accordingly, for 0 < a < b we say that f is t"-increasing
(t"-decreasing) for r € R if and only if

r<t=a"f(@t)—tf(r)>(L)0
for every x,t € [a,b].
Example 1.2. Let 0 < a < b and define f : [a,b] — R given by
(1) f(s) = 1, then f is t"-decreasing for all » > 0 and t¢"-increasing for all

r <0.

(2) f(s) = s, then f is t"-decreasing for all » > 1 and t¢"-increasing for all
r <1

(3) f(s) =s71, then f is t"-decreasing for all r > —1 and ¢"-increasing for all
r<-—1.

Remark 1.3. Every h-increasing function is increasing. The converse need not be
true. For more details see [2].

The concept of synchronization has a wide range of usage in several areas of
mathematics. Simply, two functions f,g : [a,b] — R are called synchronous
(asynchronous) if and only if the inequality

(f @) = f (@) (g(t) —g(x)) = ()0,
holds for all z,t € [a, b].

In [2], Alomari generalized the concept of synchronization of functions of real
variables. Indeed, we have

Definition 1.4. The real valued functions f, g : [a,b] — R are called synchronous
(asynchronous) with respect to a non-negative function A : [a,b] — R, or simply
h-synchronous (h-asynchronous) if and only if

(h(y) f(z) =h(x)f ) (h(y)g(x)—h(x)gy) = (<) 0 (1.2)
for all z,y € [a,b].
In other words if both f and ¢ are either h-increasing or h-decreasing then
(h(y) f(x) = h(z) f ) (h(y)g(x) = h(x)g(y)) = 0.

While, if one of the function is h-increasing and the other is h-decreasing then

(h(y) f(x) —h(x) f(y) (h(y)g(x) —h(z)g(y)) <O.

In special case if h(x) = 1 we refer to the original synchronization. Accordingly,
for 0 < a < b we say that f and g are t"-synchronous (¢"-asynchronous) for r € R
if and only if

(@"f (t) = t"f (x)) («"g (t) = g (x)) = (£) O

for every x,t € [a,b].
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Remark 1.5. In Definition (1.4), if f = g then f and g are always h-synchronous
regardless of h-monotonicity of f (or g). In other words, a function f is always
h-synchronous with itself.

Example 1.6. Let 0 < a < b and define f, g : [a,b] — R given by

(1) f(s) =1=g(s), then f and g are t"-synchronous for all r € R.

(2) f(s) =1and g(s) = s, then f is t"-synchronous for all r € (—o0, 0)U(1, 00)
and t"-asynchronous for all 0 < r < 1.

(3) f(s) =1 and g(s) = s~!, then f is t"-synchronous for all r € (—o0, —1) U
(0,00) and t"-asynchronous for all —1 < r < 0.

(4) f(s) =sand g(s) = s~!, then f is t"-synchronous for all r € (—oo, —1) U
(1,00) and t"-asynchronous for all —1 < r < 1.

In [3], Dragomir studied the Cebysev functional

for any selfadjoint operator A € B(H) and x € H with [jz| = 1.

In [3], proved the following result concerning continuous synchronous (asyn-
chronous) functions of selfadjoint linear operators in Hilbert spaces.

Theorem 1.7. Let A be a selfadjoint operator with sp (A) C [y, ] for some real
numbers v, I with v < T'. If f,g : [7,T] = R are continuous and synchronous
(asynchronous) on [y,T], then

(f(A)g(A)z,z) = (<) (g (A)z, ) (f (A) z,2) (1.4)
for any x € H with ||z|| = 1.
In [2], Alomari generalized Theorem 1.7 for continuous h-synchronous (h-

asynchronous) functions of selfadjoint linear operators in Hilbert spaces by in-
troduciing the Pompeiu—Cebysev functional such as:

P (f,9.h; A z) = (h* (A) 2, 2) (f (A) g (A) 2, z)
— (h(A) g (A)z, ) (h(A) f(A)z,z) (1.5)

for z € H with ||z| = 1. This naturally, generalizes the Cebysev functional (1.3).
Moreover, he proved the following essential result:

Theorem 1.8. Let A be a selfadjoint operator with sp (A) C [y,T] for some real
numbers v, ' with v < T'. Let h : [y,I'] = Ry be a non-negative and continuous
function. If f,g: [v,T] = R are continuous and both f and g are h-synchronous
(h-asynchronous) on [, T], then

(h* (A)z,2) (f (A) g (A) z,2) = () (h(A) g (A) 2, 2) (h(A) f(A)z,2)  (L.6)
for any x € H with ||z| = 1.

For more related results, we refer the reader to [4], [6] and [7].

In this work, some inequalities for continuous h-synchronous (h-asynchronous)
functions of linear bounded selfadjoint operators under positive linear maps in
Hilbert spaces of the Pompeiu—Cebysev functional (1.5) are proved. The proof
Techniques are similar to that ones used in [4].



4 M. W. ALOMARI

2. MAIN RESULTS
Let us start with the following result regarding the positivity of P (f, g, h; A, x).

Theorem 2.1. Let A be a selfadjoint operator with sp (A) C [y, ] for some real
numbers v, ' with v < T'. Let h : [y,I'] = R, be a non-negative and continuous
function. If f,g: [v,T] = R are continuous and both f and g are h-synchronous
(h-asynchronous) on [, T], then

(6 (P*(B) y,y) - (@ (f(A) g (A) z,z)
+ (o (W (A) z,2) - (6 (f (B)g(B))y,y)
> (o (h(A) f(A)z,z) - (6 (h(B)g(B))y,y)
+{p (h(A)g(A)z,z)- (6 (h(B) f(B)y,y) (21)
for each x,y € H with ||z|| = ||y|]| = 1.

for each v € H with ||z = 1.
Proof. Since f and g are h-synchronous then
(h(s) f (&) =h(t)f(s)) (h(s)g(t)—h(t)g(s)) =0,
and this is allow us to write
2 (s) f(t) g (t) + 1* (8) f (s) g (s)
2 h(s)h(t)f(t)g(s)+h(s)h(t)g(t)[f(s) (23)
for all ¢,s € [a,b]. We fix s € [a,b] and apply the functional calculus; property
(1.1) for inequality (2.3) for the operator A, then we have for each x € H with
|z|| = 1, that
h* () 1 - f (A) g (A) +h*(A) - f(5) g (s) 1w
> h(A)f(A)-h(s)g(s)ly+h(A)g(A) h(s)f(s)ln,

and since ¢ is normalized positive linear map we get
W (s)1u - (f (A) g (A) + ¢ (h*(A)) - [ (5) g (5) 1u
> (h(A) f(A) h(s)g(s)lu+ @ (h(A)g(A)) h(s)f(s)lu,
and this is equivalent to write
W (s) 1u - (o (f (A) g (A) 2, 2) + (¢ (h* (A)) @, 2) - [ (5) g (5) 1

> (p(h(A) f(A)x,x)-h(s)g(s)lu+ (@ (h(A)g(A)z,x) h(s)f(s) 1(1;4)
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Applying property (1.1) again for inequality (2.4) but for the operator B, then
we have for each y € H with ||y|| = 1, that

h? (B) - (¢ (f(A) g (A)) w,2) + (¢ (h* (A)) w,2) - f(B) g (B)
= (p(h(A) f(A)z,x)-h(B)g(B)+ (p(h(A)g(A))z,z) h(B)f(B),
and since ¢ is normalized positive linear map we get
(o (1*(B)) y,y) - (@ (f (A) g (A)) w,2) + (¢ (h* (A)) z,2) - (¢ (f (B) g (B)) y, y)
> (o (h(A) f(A) z,2)(o(h(B)g(B))y,y)+(p (h(A) g (A) z,x)(¢(h(B) f(B))y,y),

for each z,y € H with ||z|| = ||ly|| = 1, which gives the required results in (2.1).
To obtain (2.2) we set B = A in (2.1). The revers case follows trivially, and this
completes the proof. O

Corollary 2.2. Let A be a selfadjoint operator with sp (A) C [v,T] for some real
numbers v, ' with v < T'. Let h : [y,I'] = Ry be a non-negative and continuous
function. If f,g: [y,I'] = R are continuous and both f and g are synchronous (
asynchronous) on [fy,F], then

(p(f(A)g(A)z,z)+ (o (f(B)g(B))y,y)
> () (e (f(A)z,2) (¢ (9(B)y,y) +{p(g(A)z,z) (o (f(B))y,y)

for each x,y € H with ||z|| = ||y|| = 1. In special case, the following Cebysev
inequality for positive linear maps of selfadjoint operator is valid

(o (f(A) g (A)z,x) + (¢ (f (A) g (A)) z, )
> () (e (f(A) z,2) (p (9 (A) z,2) + (¢ (9 (A)) 2, 2) (p (f (A)) 2, )
for each v € H with ||z|| = 1.

Proof. Setting h(t) = 1 in both (2.1) and (2.2). Also, in (2.2) take ¢ = p, B=A
and y = . O

Remark 2.3. Setting ¢ = ¢, B= A and y = z in (2.1), we get

(¢ (B (A)) ,2) - (o (f (A) g (A)) z,2)

for each x € H with ||z|| = 1.
The following generalization of Cauchy-Schwarz inequality holds.

Corollary 2.4. Let A be a selfadjoint operator with sp (A) C [v,T] for some real
numbers v, T with v < T. Let h : [y,T] = R, be a non-negative and continuous
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function. If f: [v,T] — R is continuous and h-synchronous on [y,T], then

(& (17 (B) y,y) - (o (f* (A) ) + (o (W (A)) . ) - (o (f* (B)) )
2 2(p (h(A) f(A))z,x) - (¢ (h(B) f(B))y,y) (2.5)
for each x,y € H with ||z|| = ||ly|| = 1. In particular, we have

(o (R (A)) z,2) - (o (F* () @, 2) = (0 (h(A) [ (4)) 2, 2)° (2.6)
for each v € H with ||z|| = 1.

Proof. Setting f = ¢ in both (2.1) and (2.2). Also, in (2.2) take ¢ = ¢, B = A
and y = x, so that the desired results hold. 0

Corollary 2.5. Let A be a selfadjoint operator with sp (A) C [v,I'] for some
real numbers v, I" with 0 < v < T'. If f,g : [v,I] — R are continuous and
t-synchronous (t-asynchronous) on [y,T], then

(0 (B%) y.y) (o (f(A)g(A) z,2) + (¢ (A7) z,2) - (& (f (B) g (B)) . 9)
> (<) (@ (Af (A) z,x) - (¢ (Byg (B))y,w
+(p(Ag(A))z,2) - (¢ (Bf(B))y,y) (2.7)
for each x,y € H with ||z|| = |ly|| = 1.
Proof. Setting h(t) =t in (2.1) we get the desired result. O

Before we state our next remark, we interested to give the following example.

Example 2.6. (1) If f(s) = s and g(s) = s? (s > 0), then f and g are t'-
synchronous for all p, ¢ > r > 0 and t"-asynchronous for all p > r > ¢ > 0.
(2) If f(s) = s and g(s) = log(s) (s > 1), then f is t"-synchronous for all
p < r < 0 and t"-asynchronous for all r < p < 0.
(3) If f(s) = exp(s) = g(s), then f is t"-synchronous for all for all r € R.
Remark 2.7. Using Example 2.6 we can observe the following special cases:
(1) If f(s) =s” and g(s) = s? (s > 0), then f and g are t"-synchronous for
all p,qg > r > 0, so that we have
(0 (B™) y,y) (p (A7) w,2) + (o (A7) @, 2) (& (B"™) ,y)
> (¢ (B) y,y) (0 (A7) w,0) + (¢ (A7) ) (6 (B") y,y) -

Ifp>r>q>0,then f and g are t"-asynchronous and thus the reverse
inequality holds.

(2) If f(s) = s? and g (s) = logs (s > 1), then f and g are t"-synchronous
for all p < r < 0 we have

(¢ (B”) y,y) (¢ (AP log (A)) z, z) + (¢ (AQ”) z,x) (¢ (B"log (B))y,y)
> (¢ (B"log (B)) y,y) (¢ (AP* )w z) + (o (Alog (A)) z,z) (¢ (B™") y,y) .
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If r <p <0, then f and g are t"-asynchronous and thus the reverse in-
equality holds.

(3) If f(s) =exp(s) = g(s), then f and g are t"-synchronous for all r € R,
so that we have
(¢ (B") y,y) (p (exp (24)) z, ) + (¢ (A7) z,2) (¢ (exp (2B)) y. y)
2 (o (AT exp (A)) 2, 7) (6 (B exp (B)) )

Therefore, by choosing an appropriate function h such that the assumptions in
Remark 2.7 are fulfilled then one may generate family of inequalities from (2.1).

Corollary 2.8. Let A be a selfadjoint operator with sp (A) C [v,I] for some

real numbers v,I" with 0 < v < T'. If f : [v,I] — R is continuous and f is
t-synchronous on [y, T, then
(o () z,z) - (o (2 (A) &, 2) > (o (Af (A)) 2, 2)° (2.8)

for each v € H with ||z|| = 1.

Proof. Setting f =g, ¢ = p, B= A and y = z in Corollary 2.5 we get the desired
result. O

Corollary 2.9. Let A be a selfadjoint operator with sp (A) C [v,T'] for some real
numbers vy, I" with v < T". Let h : [y,T] = R be a non-negative continuous. If
f: v, T] = R is continuous and h-synchronous, then

(¢ (h*(B))y,y) - (¢ (f (A) z,z) + (¢ (h* (A)) z, x) -
> (p(h(A) f(A)z,z)- (6 (h(B))
+ (o (h(A)z,z) - ()

for each x € H with ||z|| = 1. In particular, we have

(0 (* (A7) m,2) (o (F (A) w,2) + (¢ (h* (A)) 2,3) - (6 (f (A7) @, )
( (h(A) f(A) z,2) (6 (h (A7) 2, 2)
+ (o (h(A))z,x)- <gz§ (h (A_l) f (A_l)) ZL‘,CL’> (2.10)

Proof. Setting g = 1 in (2.1) we get the first inequality (2.9). The second in-
equality holds by setting B = A~ and y = z in (2.9). OJ

Theorem 2.10. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, with v < T'. Let h : [7,T'] — R be a non-negative continuous.

(0 (f(B))y,y)
Y, Y)
(h(B) f(B))y,y) (2.9)

I\/\/

If f,g : [v,I] — R are continuous and both f and g are h-synchronous (h-
asynchronous) on [y, T, then
(o (h*(B)) y,y) - f(( 1)) 9 (¢ (A) 2, z))
+h2(< ( Jx,x)) - (o (f (B)g(B))y,y)
= (S)(@(h(B)g(B)y.y) f({p(A)z,2)) h((¢(A)z,z))
+ (@ (f (B)h(B))y,y) h({¢ (A)z,x)) g (¢ (A) x,x)) (2.11)
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for any x € K with ||z|| = ||y|| = 1.

Proof. Since y1y < (Az,z) < T'ly then by employing ¢, we get y1x < ¢ (A) <
['lg. So that v < (p (A)z,x) < T for any x € K with ||z|]| = 1. Since f,g are
synchronous

[(h ({p (A) 2, 2)) [ (t) = h (1) f ({¢ (A) 2, 2))]
x[h((p(A)z,2))g(t) = h(t)g(p(A)z,2))] >0 (212)

for any ¢ € [y,I'] for any x € K with ||z|| = 1.
Slmplyfylng the terms we have

() f (e (A) z,2)) g (0 (A) , 7))
+h* (g (A)z,2)) - f (t) g (1)
> h(t)g @) f({p(A)z,z))h({p(A)z, )
+ O RE) (e (A)z,2)) g (@ (A)z,z)). (2.13)

Fix x € K with ||z|| = 1. By utilizing the continuous functional calculus for the
operator B we have by the property (1.1) for inequality (2.13) we have

1 (B) f ({¢ (A) 2, 2)) g ({¢ (A) 7, 7))
+h* ({p(A)z,2)) - f (B) g (B)
> h(B)g(B) f({¢(A)z,z))h({¢(A)z,))
+F (B (B)h((p(A)z,2))g(p(A)z,x)). (2.14)

Taking the map ¢ in the inequality (2.14), we get

¢ (h*(B)) f (¢ (A) z,2)) g (¢ (4) 7))
+h* ({p(A)z,2)) - 6 (f (B) g (B))
> ¢ (h(B)g(B))f (¢ (A)z,x)) h({p(A)z,z))
+o(f(B)h(B))h({¢(A)z,2)) g ({p(A)z,2)). (2.15)

for any bounded linear operator B with sp (B) C [y,I'] and y € H with ||y|| = 1.
So that we can write (2.15) in the form

(¢ (h*(B))y,y) f (¢ ;1)) g ((p (A) z,2))
+h2(< ( )z,x)) - (6 (f(B)g(B)
> (¢ (h(B)g(B)y,y) [ (@ (A)z,z))h( x
+ (o (f(B)h(B)y,y) h({p (A) z, 7)) g ({p (A) 2, 2)) .

for each z,y € K with ||z|| = ||y|| = 1, which proves the inequality in (2.11). The
reverse sense follows similarly, and the proof is completed. O

{
)
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Remark 2.11. Taking ¢ = ¢ in (2.12) we get

(¢ (*(B)) y,y) - f 7)) g (¢ (A) z, 2))
+h2(< ( ) @) (e (f(B)g(B)y,y)
> () (e (h(B)g(B))y,y) [ (¢ (A)z,z)) h({p(A)z, 7))
+ e (f (B)h(B))y,y) h({¢(A) z,2)) g ({¢ (A) z,x)).
Also, by setting B = A in (2.12) we get

{
)

(0 (*(A) y,y) - f (e (A)x,2)) g ({0 (A) z,2))
+ h2 (e (A)z,z)) - (D (f(A) g (A)y.y)
> () (@ (h(A)g(A)y,y) f (e (A)z,2)) h({¢ (A) 2, 7))
+ (o (f(A) R (A) y,y) h (¢ (A)z,2)) g ({p (A) z,2)) .
Corollary 2.12. Let A be a selfadjoint operator with sp (A) C [v,T] for some
real numbers v, T with v < T. Let h : [7,T] = R be a non-negative continuous.
If f:[v,T] = R is continuous and h-synchronous on [y,T], then

(¢ (W*(B))y,y) - 2 (e (A)z,2)) + (& (f*(B)) y.y) - h* ((¢ (A) z,z))
> (<)2(6(h(B) [ (B)y,y) f (<90 (A)z,2)) h (¢ (A)z,z)) (2.16)

for any x € K with ||z|| = ||y|| = 1. In particular, we have

(e (M*(B)y,y) - 2 (e (A) z,z) + (¢ (f*(B)) y,y) - B* ({¢
> (2)2{(p (h(B) f(B))y,y) f (¢ (A)z, 7))

also, we have

(¢ (h*(A) y,y) - 2 ({p(A) z,2)) + (o (f* (A) y,y) - h* (¢ (A) z, 7))
> (2)2(e (h (A)f(A))yJDf((sﬂ(A)%@)h((@(A)%@)-

for any x € K with ||z|| = ||y|| = 1.
Proof. Setting f = g in (2.11), respectively, we get the required results. O
Corollary 2.13. Let A be a selfadjoint operator with sp (A) C [y, ] for some real

numbers v, T with 0 <~ <T. If f: [7,T] = R are continuous andt synchronous
on [v,T], then

(0 (B%) y.y) - £* (e (A) z,2) + (& (f2(B)) y.9) - (o (A) . 2)”
> ()2 ( (Bf (B)y,y) [ ({p(A)z,2)) (¢ (A) z,2) (2.17)
for any x € H with ||z|| = 1.

Proof. Setting h(t) =t in (2.16), respectively, we get the required results. O

Theorem 2.14. Let A be a selfadjoint operator with sp (A) C [y, T'] for some real
numbers v, T with v < T. Let h: [y,T] — Ry be a positive function on [y,T]. If
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f,9: 7, T] — Ry are both positve, convex and h-synchronous on [y,T], then

W ((Az,2)) (f (B)y,y) - (g (B)y,y) + h* ((By,y)) (f (A) z,z) - (g (A) z,z)
> h((Az,z)) h ((By,y)) [f (By,y)) g (Az,z)) + f ((Az,x)) g ((By,y))] (2.18)

for any z,y € H with ||z| = ||y|| = 1.

Proof. Since f, g are h-synchronous and v < (Az,z) < T, v < (By,y) < T for
any x,y € H with ||z|| = ||y|| = 1, we have

(h ({Az, z)) f ((By,y)) — h ((By,y)) | ({(Az, 1))
x (h({Az, z)) g ((By,y)) — h ((By,y)) g ((Az,2))) =2 0 (2.19)

for any t € [a,b] for any x € H with ||z|| = 1.
Employing property (1.1) for inequality (2.19) we have

h* ((Az, 2)) f ((By.y)) 9 ((By.y))
+h* ((By,y)) f ({Az, ) g ((Aw, z))
—h({(Az,2)) h ((By,y)) f ((By,y)) g ((Az, z))
—h((By,y)) h ({Az, z)) | ((Az, x)) g ((By,y)) = 0 (2.20)

for any bounded linear operator B with sp (B) C [y,'] and y € H with ||y|| = 1.
Now, since f and ¢ are convex then we have

W ((Az,2)) (f (B)y,y) - (9 (B)y,y) + h* (By, y)) (f (A) z,z) - (g (A) z, z)
> h? ((Az,x)) f ((By,y)) - g ((By,y)) + h* ((By,y)) f ((Az,z)) - g ((Az, x))
> h((Az,2)) h ((By,y)) [f (By,v)) g ((Az,2)) + f ((Az,2)) g ((By,y))] (2.21)

for each =,y € H with ||z|| = |ly|| = 1. Setting B = A~! and y = z in (2.21) we
get the required result in (2.18). The reverse sense follows similarly. O

Theorem 2.15. Let A be a selfadjoint operator with sp (A) C [, T for some real
numbers v, with v < T'. Let h: [y,T] — Ry be a positive functwn on [y, T]. If
fy9: v, T] — Ry are both positve, convexr and h-synchronous on [vy,T], then

W ((p (A)z,2)) (o (f (B)) y,y) - (¢ (9(B))y, )
+h2 (¢ (B)y,y) (o (f (A) z,2) - (0 (g (A)
>0 ((p (A)z,2)) [ (0 (B)y, ) - 9 (¢ (B)y,y)) (2.22)
+h2 (¢ (B)y, ) [ (o (A)z,x)) - g ({0 (A) 2, )
> h((p(A)z, ) h (6 (B)y,y) x [f (¢ (B)y,y) g (¢ (A)z,2))
+f (¢ (A)z,2)) g ({9 (B) y,y))]

for any x,y € H with ||z|| = |ly|]| = 1.

), )

Proof. Sincey-1y < A, B <T-lgtheny1x < ¢(A) <T'lgandy1x < ¢(B) <
I'-1x. So that for any z,y € H with ||z|| = ||y|]| = 1, we have v < (¢ (A) z,z) < T
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and v < (¢ (B)y,y) <T

(h({p (A)z,2)) f (& (B)y,y) = h (@ (B)y, ) f ({¢ (A) z, 7))
X (h({p(A)z,2)) g (& (B)y,y) =h((&(B)y,y) g (¢ (A) z,2))) 20 (2.23)
for any t € [a,b] for any x € H with ||z|| = 1.
Employing property (1.1) for inequality (2.23) we have
W (e (A)w, ) f (6 (B)y,9) g ({6 (B)yy)
+h* (0 (B)y.y) f (¢ (A) z,2)) g (¢ (A) 2, 7))
—h(p(A)z,2)) h (¢ (B)y,y) f (6 (B)y,y) g (¢ (A) z,x))
—h(((B)y,y) h({p(A)z,2) f (¢ (A)z,2)) g ({6 (B)y,y)) 2 0. (2.24)

Now, since f and g are postive convex functions then we have

h? ((p (A) z,2)) (o (f (B) y, ) - (¢ (9 (B))y,y)

+h* (0 (B)y. ) (e (f (A) z,2) - (0 (9 (A)) 2, 2)
>0 ((p (A) 2, 2)) f (& (B)y, ) - 9 (& (B) y,v))
+02((0(B)y.y) [ (9 (A) z,2)) - g ({0 (A) 2, 7))
> h({p(A)z, >) ({0 (B)y,y) x [f (@ (B)y, ) g (¢ (A)z,x))
+f (e (A)z,2)) g (¢ (B)y,y))]
for each x,y € H with ||z|| = |ly|| = 1, which proves the required result in (2.22).
The reverse sense follows similarly. 0
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