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Abstract. In this work, generalizations of some inequalities for continuous h-
synchronous (h-asynchronous) functions of linear bounded selfadjoint operators
under positive linear maps in Hilbert spaces are proved.

1. Introduction

Let B (H) be the Banach algebra of all bounded linear operators defined on
a complex Hilbert space (H; 〈·, ·〉) with the identity operator 1H in B (H). Let
A ∈ B (H) be a selfadjoint linear operator on (H; 〈·, ·〉). Let C (sp (A)) be the set
of all continuous functions defined on the spectrum of A (sp (A)) and let C∗ (A)
be the C∗-algebra generated by A and the identity operator 1H .

Let us define the map G : C (sp (A)) → C∗ (A) with the following properties
([5], p.3):

(1) G (αf + βg) = αG (f) + βG (g), for all scalars α, β.
(2) G (fg) = G (f)G (g) and G

(
f
)

= G (f)∗; where f denotes to the conjugate
of f and G (f)∗ denotes to the Hermitian of G (f).

(3) ‖G (f)‖ = ‖f‖ = sup
t∈sp(A)

|f (t)|.

(4) G (f0) = 1H and G (f1) = A, where f0 (t) = 1 and f1 (t) = t for all
t ∈ sp (A).

Accordingly, we define the continuous functional calculus for a selfadjoint operator
A by

f (A) = G (f) for all f ∈ C (sp (A)) .

If both f and g are real valued functions on sp(A) then the following important
property holds:

f (t) ≥ g (t) for all t ∈ sp (A) implies f (A) ≥ g (A) , (1.1)

in the operator order of B(H).
In [1] and formally in [2], the author of this paper generalized the concept of

monotonicity as follows:
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Definition 1.1. A real valued function f defined on [a, b] is said to be increasing
(decreasing) with respect to a positive function h : [a, b] → R+ or simply h-
increasing (h-decreasing) if and only if

h (x) f (t)− h (t) f (x) ≥ (≤) 0,

whenever t ≥ x for every x, t ∈ [a, b]. In special case if h(x) = 1 we refer to the
original monotonicity. Accordingly, for 0 < a < b we say that f is tr-increasing
(tr-decreasing) for r ∈ R if and only if

x ≤ t =⇒ xrf (t)− trf (x) ≥ (≤) 0

for every x, t ∈ [a, b].

Example 1.2. Let 0 < a < b and define f : [a, b]→ R given by

(1) f(s) = 1, then f is tr-decreasing for all r > 0 and tr-increasing for all
r < 0.

(2) f(s) = s, then f is tr-decreasing for all r > 1 and tr-increasing for all
r < 1.

(3) f(s) = s−1, then f is tr-decreasing for all r > −1 and tr-increasing for all
r < −1.

Remark 1.3. Every h-increasing function is increasing. The converse need not be
true. For more details see [2].

The concept of synchronization has a wide range of usage in several areas of
mathematics. Simply, two functions f, g : [a, b] → R are called synchronous
(asynchronous) if and only if the inequality

(f (t)− f (x)) (g (t)− g (x)) ≥ (≤) 0,

holds for all x, t ∈ [a, b].
In [2], Alomari generalized the concept of synchronization of functions of real

variables. Indeed, we have

Definition 1.4. The real valued functions f, g : [a, b]→ R are called synchronous
(asynchronous) with respect to a non-negative function h : [a, b]→ R+ or simply
h-synchronous (h-asynchronous) if and only if

(h (y) f (x)− h (x) f (y)) (h (y) g (x)− h (x) g (y)) ≥ (≤) 0 (1.2)

for all x, y ∈ [a, b].
In other words if both f and g are either h-increasing or h-decreasing then

(h (y) f (x)− h (x) f (y)) (h (y) g (x)− h (x) g (y)) ≥ 0.

While, if one of the function is h-increasing and the other is h-decreasing then

(h (y) f (x)− h (x) f (y)) (h (y) g (x)− h (x) g (y)) ≤ 0.

In special case if h(x) = 1 we refer to the original synchronization. Accordingly,
for 0 < a < b we say that f and g are tr-synchronous (tr-asynchronous) for r ∈ R
if and only if

(xrf (t)− trf (x)) (xrg (t)− trg (x)) ≥ (≤) 0

for every x, t ∈ [a, b].
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Remark 1.5. In Definition (1.4), if f = g then f and g are always h-synchronous
regardless of h-monotonicity of f (or g). In other words, a function f is always
h-synchronous with itself.

Example 1.6. Let 0 < a < b and define f, g : [a, b]→ R given by

(1) f(s) = 1 = g(s), then f and g are tr-synchronous for all r ∈ R.
(2) f(s) = 1 and g(s) = s, then f is tr-synchronous for all r ∈ (−∞, 0)∪(1,∞)

and tr-asynchronous for all 0 < r < 1.
(3) f(s) = 1 and g(s) = s−1, then f is tr-synchronous for all r ∈ (−∞,−1) ∪

(0,∞) and tr-asynchronous for all −1 < r < 0.
(4) f(s) = s and g(s) = s−1, then f is tr-synchronous for all r ∈ (−∞,−1) ∪

(1,∞) and tr-asynchronous for all −1 < r < 1.

In [3], Dragomir studied the Čebyšev functional

C (f, g;A, x) := 〈f (A) g (A)x, x〉 − 〈g (A)x, x〉 〈f (A)x, x〉 , (1.3)

for any selfadjoint operator A ∈ B(H) and x ∈ H with ‖x‖ = 1.
In [3], proved the following result concerning continuous synchronous (asyn-

chronous) functions of selfadjoint linear operators in Hilbert spaces.

Theorem 1.7. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. If f, g : [γ,Γ] → R are continuous and synchronous
(asynchronous) on [γ,Γ], then

〈f (A) g (A)x, x〉 ≥ (≤) 〈g (A)x, x〉 〈f (A)x, x〉 (1.4)

for any x ∈ H with ‖x‖ = 1.

In [2], Alomari generalized Theorem 1.7 for continuous h-synchronous (h-
asynchronous) functions of selfadjoint linear operators in Hilbert spaces by in-
troduciing the Pompeiu–Čebyšev functional such as:

P (f, g, h;A, x) :=
〈
h2 (A)x, x

〉
〈f (A) g (A)x, x〉
− 〈h (A) g (A)x, x〉 〈h (A) f (A)x, x〉 (1.5)

for x ∈ H with ‖x‖ = 1. This naturally, generalizes the Čebyšev functional (1.3).
Moreover, he proved the following essential result:

Theorem 1.8. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R+ be a non-negative and continuous
function. If f, g : [γ,Γ]→ R are continuous and both f and g are h-synchronous
(h-asynchronous) on [γ,Γ], then〈

h2 (A)x, x
〉
〈f (A) g (A)x, x〉 ≥ (≤) 〈h (A) g (A)x, x〉 〈h (A) f (A)x, x〉 (1.6)

for any x ∈ H with ‖x‖ = 1.

For more related results, we refer the reader to [4], [6] and [7].

In this work, some inequalities for continuous h-synchronous (h-asynchronous)
functions of linear bounded selfadjoint operators under positive linear maps in
Hilbert spaces of the Pompeiu–Čebyšev functional (1.5) are proved. The proof
Techniques are similar to that ones used in [4].
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2. Main results

Let us start with the following result regarding the positivity of P (f, g, h;A, x).

Theorem 2.1. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R+ be a non-negative and continuous
function. If f, g : [γ,Γ]→ R are continuous and both f and g are h-synchronous
(h-asynchronous) on [γ,Γ], then

〈
φ
(
h2 (B)

)
y, y

〉
· 〈ϕ (f (A) g (A))x, x〉
+
〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈φ (f (B) g (B)) y, y〉

≥ 〈ϕ (h (A) f (A))x, x〉 · 〈φ (h (B) g (B)) y, y〉
+ 〈ϕ (h (A) g (A))x, x〉 · 〈φ (h (B) f (B)) y, y〉 (2.1)

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.

〈
φ
(
h2 (A)

)
y, y

〉
· 〈ϕ (f (A) g (A))x, x〉

+
〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈φ (f (A) g (A)) y, y〉

≥ (≤) 〈ϕ (h (A) f (A))x, x〉 · 〈φ (h (A) g (A)) y, y〉
+ 〈ϕ (h (A) g (A))x, x〉 · 〈φ (h (A) f (A)) y, y〉 (2.2)

for each x ∈ H with ‖x = 1.

Proof. Since f and g are h-synchronous then

(h (s) f (t)− h (t) f (s)) (h (s) g (t)− h (t) g (s)) ≥ 0,

and this is allow us to write

h2 (s) f (t) g (t) + h2 (t) f (s) g (s)

≥ h (s)h (t) f (t) g (s) + h (s)h (t) g (t) f (s) (2.3)

for all t, s ∈ [a, b]. We fix s ∈ [a, b] and apply the functional calculus; property
(1.1) for inequality (2.3) for the operator A, then we have for each x ∈ H with
‖x‖ = 1, that

h2 (s) 1H · f (A) g (A) + h2 (A) · f (s) g (s) 1H

≥ h (A) f (A) · h (s) g (s) 1H + h (A) g (A) · h (s) f (s) 1H ,

and since ϕ is normalized positive linear map we get

h2 (s) 1H · ϕ (f (A) g (A)) + ϕ
(
h2 (A)

)
· f (s) g (s) 1H

≥ ϕ (h (A) f (A)) · h (s) g (s) 1H + ϕ (h (A) g (A)) · h (s) f (s) 1H ,

and this is equivalent to write

h2 (s) 1H · 〈ϕ (f (A) g (A))x, x〉+
〈
ϕ
(
h2 (A)

)
x, x

〉
· f (s) g (s) 1H

≥ 〈ϕ (h (A) f (A))x, x〉 · h (s) g (s) 1H + 〈ϕ (h (A) g (A))x, x〉 · h (s) f (s) 1H ,
(2.4)
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Applying property (1.1) again for inequality (2.4) but for the operator B, then
we have for each y ∈ H with ‖y‖ = 1, that

h2 (B) · 〈ϕ (f (A) g (A))x, x〉+
〈
ϕ
(
h2 (A)

)
x, x

〉
· f (B) g (B)

≥ 〈ϕ (h (A) f (A))x, x〉 · h (B) g (B) + 〈ϕ (h (A) g (A))x, x〉 · h (B) f (B) ,

and since φ is normalized positive linear map we get〈
φ
(
h2 (B)

)
y, y

〉
· 〈ϕ (f (A) g (A))x, x〉+

〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈φ (f (B) g (B)) y, y〉

≥ 〈ϕ (h (A) f (A))x, x〉·〈φ (h (B) g (B)) y, y〉+〈ϕ (h (A) g (A))x, x〉·〈φ (h (B) f (B)) y, y〉 ,

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1, which gives the required results in (2.1).
To obtain (2.2) we set B = A in (2.1). The revers case follows trivially, and this
completes the proof. �

Corollary 2.2. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R+ be a non-negative and continuous
function. If f, g : [γ,Γ]→ R are continuous and both f and g are synchronous (
asynchronous) on [γ,Γ], then

〈ϕ (f (A) g (A))x, x〉+ 〈φ (f (B) g (B)) y, y〉
≥ (≤) 〈ϕ (f (A))x, x〉 〈φ (g (B)) y, y〉+ 〈ϕ (g (A))x, x〉 〈φ (f (B)) y, y〉

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1. In special case, the following Čebyšev
inequality for positive linear maps of selfadjoint operator is valid

〈ϕ (f (A) g (A))x, x〉+ 〈ϕ (f (A) g (A))x, x〉
≥ (≤) 〈ϕ (f (A))x, x〉 〈ϕ (g (A))x, x〉+ 〈ϕ (g (A))x, x〉 〈ϕ (f (A))x, x〉

for each x ∈ H with ‖x‖ = 1.

Proof. Setting h(t) = 1 in both (2.1) and (2.2). Also, in (2.2) take φ = ϕ, B = A
and y = x. �

Remark 2.3. Setting φ = ϕ, B = A and y = x in (2.1), we get〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈ϕ (f (A) g (A))x, x〉
+
〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈ϕ (f (A) g (A))x, x〉

≥ (≤) 〈ϕ (h (A) f (A))x, x〉 · 〈ϕ (h (A) g (A))x, x〉
+ 〈ϕ (h (A) g (A))x, x〉 · 〈ϕ (h (A) f (A))x, x〉

for each x ∈ H with ‖x‖ = 1.

The following generalization of Cauchy-Schwarz inequality holds.

Corollary 2.4. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R+ be a non-negative and continuous
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function. If f : [γ,Γ]→ R is continuous and h-synchronous on [γ,Γ], then〈
φ
(
h2 (B)

)
y, y

〉
·
〈
ϕ
(
f 2 (A)

)
x, x

〉
+
〈
ϕ
(
h2 (A)

)
x, x

〉
·
〈
φ
(
f 2 (B)

)
y, y

〉
≥ 2 〈ϕ (h (A) f (A))x, x〉 · 〈φ (h (B) f (B)) y, y〉 (2.5)

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1. In particular, we have〈
ϕ
(
h2 (A)

)
x, x

〉
·
〈
ϕ
(
f 2 (A)

)
x, x

〉
≥ 〈ϕ (h (A) f (A))x, x〉2 (2.6)

for each x ∈ H with ‖x‖ = 1.

Proof. Setting f = g in both (2.1) and (2.2). Also, in (2.2) take φ = ϕ, B = A
and y = x, so that the desired results hold. �

Corollary 2.5. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some
real numbers γ,Γ with 0 < γ < Γ. If f, g : [γ,Γ] → R are continuous and
t-synchronous (t-asynchronous) on [γ,Γ], then

〈
φ
(
B2

)
y, y

〉
· 〈ϕ (f (A) g (A))x, x〉+

〈
ϕ
(
A2

)
x, x

〉
· 〈φ (f (B) g (B)) y, y〉

≥ (≤) 〈ϕ (Af (A))x, x〉 · 〈φ (Bg (B)) y, y〉
+ 〈ϕ (Ag (A))x, x〉 · 〈φ (Bf (B)) y, y〉 (2.7)

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. Setting h(t) = t in (2.1) we get the desired result. �

Before we state our next remark, we interested to give the following example.

Example 2.6. (1) If f(s) = sp and g(s) = sq (s > 0), then f and g are tr-
synchronous for all p, q > r > 0 and tr-asynchronous for all p > r > q > 0.

(2) If f(s) = sp and g(s) = log(s) (s > 1), then f is tr-synchronous for all
p < r < 0 and tr-asynchronous for all r < p < 0.

(3) If f(s) = exp(s) = g(s), then f is tr-synchronous for all for all r ∈ R.

Remark 2.7. Using Example 2.6 we can observe the following special cases:

(1) If f (s) = sp and g (s) = sq (s > 0), then f and g are tr-synchronous for
all p, q > r > 0, so that we have〈

φ
(
B2r

)
y, y

〉 〈
ϕ
(
Ap+q

)
x, x

〉
+
〈
ϕ
(
A2r

)
x, x

〉 〈
φ
(
Bp+q

)
y, y

〉
≥

〈
ϕ
(
Bq+r

)
y, y

〉 〈
φ
(
Ap+r

)
x, x

〉
+
〈
ϕ
(
Aq+r

)
x, x

〉 〈
φ
(
Bp+r

)
y, y

〉
.

If p > r > q > 0, then f and g are tr-asynchronous and thus the reverse
inequality holds.

(2) If f (s) = sp and g (s) = log s (s > 1), then f and g are tr-synchronous
for all p < r < 0 we have〈

φ
(
B2r

)
y, y

〉
〈ϕ (Ap log (A))x, x〉+

〈
ϕ
(
A2r

)
x, x

〉
〈φ (Bp log (B)) y, y〉

≥ 〈ϕ (Br log (B)) y, y〉
〈
φ
(
Ap+r

)
x, x

〉
+ 〈ϕ (A log (A))x, x〉

〈
φ
(
Bp+r

)
y, y

〉
.
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If r < p < 0, then f and g are tr-asynchronous and thus the reverse in-
equality holds.

(3) If f (s) = exp (s) = g (s), then f and g are tr-synchronous for all r ∈ R,
so that we have〈

φ
(
B2r

)
y, y

〉
〈ϕ (exp (2A))x, x〉+

〈
ϕ
(
A2r

)
x, x

〉
〈φ (exp (2B)) y, y〉

≥ 2 〈ϕ (Ar exp (A))x, x〉 〈φ (Br exp (B)) y, y〉 .

Therefore, by choosing an appropriate function h such that the assumptions in
Remark 2.7 are fulfilled then one may generate family of inequalities from (2.1).

Corollary 2.8. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some
real numbers γ,Γ with 0 < γ < Γ. If f : [γ,Γ] → R is continuous and f is
t-synchronous on [γ,Γ], then〈

ϕ
(
A2

)
x, x

〉
·
〈
ϕ
(
f 2 (A)

)
x, x

〉
≥ 〈ϕ (Af (A))x, x〉2 (2.8)

for each x ∈ H with ‖x‖ = 1.

Proof. Setting f = g, φ = ϕ, B = A and y = x in Corollary 2.5 we get the desired
result. �

Corollary 2.9. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R be a non-negative continuous. If
f : [γ,Γ]→ R is continuous and h-synchronous, then〈

φ
(
h2 (B)

)
y, y

〉
· 〈ϕ (f (A))x, x〉+

〈
ϕ
(
h2 (A)

)
x, x

〉
· 〈φ (f (B)) y, y〉

≥ 〈ϕ (h (A) f (A))x, x〉 · 〈φ (h (B)) y, y〉
+ 〈ϕ (h (A))x, x〉 · 〈φ (h (B) f (B)) y, y〉 (2.9)

for each x ∈ H with ‖x‖ = 1. In particular, we have〈
φ
(
h2

(
A−1

))
x, x

〉
· 〈ϕ (f (A))x, x〉+

〈
ϕ
(
h2 (A)

)
x, x

〉
·
〈
φ
(
f
(
A−1

))
x, x

〉
≥ 〈ϕ (h (A) f (A))x, x〉 ·

〈
φ
(
h
(
A−1

))
x, x

〉
+ 〈ϕ (h (A))x, x〉 ·

〈
φ
(
h
(
A−1

)
f
(
A−1

))
x, x

〉
(2.10)

Proof. Setting g = 1 in (2.1) we get the first inequality (2.9). The second in-
equality holds by setting B = A−1 and y = x in (2.9). �

Theorem 2.10. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some
real numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R be a non-negative continuous.
If f, g : [γ,Γ] → R are continuous and both f and g are h-synchronous (h-
asynchronous) on [γ,Γ], then〈

φ
(
h2 (B)

)
y, y

〉
· f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)

+ h2 (〈ϕ (A)x, x〉) · 〈φ (f (B) g (B)) y, y〉
≥ (≤) 〈φ (h (B) g (B)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)

+ 〈φ (f (B)h (B)) y, y〉h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) (2.11)
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for any x ∈ K with ‖x‖ = ‖y‖ = 1.

Proof. Since γ1H ≤ 〈Ax, x〉 ≤ Γ1H then by employing ϕ, we get γ1K ≤ ϕ (A) ≤
Γ1K . So that γ ≤ 〈ϕ (A)x, x〉 ≤ Γ for any x ∈ K with ‖x‖ = 1. Since f, g are
synchronous

[(h (〈ϕ (A)x, x〉) f (t)− h (t) f (〈ϕ (A)x, x〉)]
× [h (〈ϕ (A)x, x〉) g (t)− h (t) g (〈ϕ (A)x, x〉)] ≥ 0 (2.12)

for any t ∈ [γ,Γ] for any x ∈ K with ‖x‖ = 1.
Simplyfying the terms we have

h2 (t) f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)
+ h2 (〈ϕ (A)x, x〉) · f (t) g (t)

≥ h (t) g (t) f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)
+ f (t)h (t)h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) . (2.13)

Fix x ∈ K with ‖x‖ = 1. By utilizing the continuous functional calculus for the
operator B we have by the property (1.1) for inequality (2.13) we have

h2 (B) f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)
+ h2 (〈ϕ (A)x, x〉) · f (B) g (B)

≥ h (B) g (B) f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)
+ f (B)h (B)h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) . (2.14)

Taking the map φ in the inequality (2.14), we get

φ
(
h2 (B)

)
f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)

+ h2 (〈ϕ (A)x, x〉) · φ (f (B) g (B))

≥ φ (h (B) g (B)) f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)
+ φ (f (B)h (B))h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) . (2.15)

for any bounded linear operator B with sp (B) ⊆ [γ,Γ] and y ∈ H with ‖y‖ = 1.
So that we can write (2.15) in the form〈
φ
(
h2 (B)

)
y, y

〉
f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)

+ h2 (〈ϕ (A)x, x〉) · 〈φ (f (B) g (B)) y, y〉
≥ 〈φ (h (B) g (B)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)

+ 〈φ (f (B)h (B)) y, y〉h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) .

for each x, y ∈ K with ‖x‖ = ‖y‖ = 1, which proves the inequality in (2.11). The
reverse sense follows similarly, and the proof is completed. �
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Remark 2.11. Taking φ = ϕ in (2.12) we get〈
ϕ
(
h2 (B)

)
y, y

〉
· f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)
+ h2 (〈ϕ (A)x, x〉) · 〈ϕ (f (B) g (B)) y, y〉 ·

≥ (≤) 〈ϕ (h (B) g (B)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)
+ 〈ϕ (f (B)h (B)) y, y〉h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) .

Also, by setting B = A in (2.12) we get〈
φ
(
h2 (A)

)
y, y

〉
· f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)

+ h2 (〈ϕ (A)x, x〉) · 〈φ (f (A) g (A)) y, y〉
≥ (≤) 〈φ (h (A) g (A)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉)

+ 〈φ (f (A)h (A)) y, y〉h (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉) .

Corollary 2.12. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some
real numbers γ,Γ with γ < Γ. Let h : [γ,Γ] → R be a non-negative continuous.
If f : [γ,Γ]→ R is continuous and h-synchronous on [γ,Γ], then〈

φ
(
h2 (B)

)
y, y

〉
· f 2 (〈ϕ (A)x, x〉) +

〈
φ
(
f 2 (B)

)
y, y

〉
· h2 (〈ϕ (A)x, x〉)

≥ (≤)2 〈φ (h (B) f (B)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉) (2.16)

for any x ∈ K with ‖x‖ = ‖y‖ = 1. In particular, we have〈
ϕ
(
h2 (B)

)
y, y

〉
· f 2 (〈ϕ (A)x, x〉) +

〈
ϕ
(
f 2 (B)

)
y, y

〉
· h2 (〈ϕ (A)x, x〉)

≥ (≤)2 〈ϕ (h (B) f (B)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉) ,

also, we have〈
φ
(
h2 (A)

)
y, y

〉
· f 2 (〈ϕ (A)x, x〉) +

〈
φ
(
f 2 (A)

)
y, y

〉
· h2 (〈ϕ (A)x, x〉)

≥ (≤)2 〈φ (h (A) f (A)) y, y〉 f (〈ϕ (A)x, x〉)h (〈ϕ (A)x, x〉) .

for any x ∈ K with ‖x‖ = ‖y‖ = 1.

Proof. Setting f = g in (2.11), respectively, we get the required results. �

Corollary 2.13. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with 0 < γ < Γ. If f : [γ,Γ]→ R are continuous and t-synchronous
on [γ,Γ], then〈

φ
(
B2

)
y, y

〉
· f 2 (〈ϕ (A)x, x〉) +

〈
φ
(
f 2 (B)

)
y, y

〉
· 〈ϕ (A)x, x〉2

≥ (≤)2 〈φ (Bf (B)) y, y〉 f (〈ϕ (A)x, x〉) 〈ϕ (A)x, x〉 (2.17)

for any x ∈ H with ‖x‖ = 1.

Proof. Setting h(t) = t in (2.16), respectively, we get the required results. �

Theorem 2.14. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ]→ R+ be a positive function on [γ,Γ]. If
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f, g : [γ,Γ]→ R+ are both positve, convex and h-synchronous on [γ,Γ], then

h2 (〈Ax, x〉) 〈f (B) y, y〉 · 〈g (B) y, y〉+ h2 (〈By, y〉) 〈f (A)x, x〉 · 〈g (A)x, x〉
≥ h (〈Ax, x〉)h (〈By, y〉) [f (〈By, y〉) g (〈Ax, x〉) + f (〈Ax, x〉) g (〈By, y〉)] (2.18)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. Since f, g are h-synchronous and γ ≤ 〈Ax, x〉 ≤ Γ, γ ≤ 〈By, y〉 ≤ Γ for
any x, y ∈ H with ‖x‖ = ‖y‖ = 1, we have

(h (〈Ax, x〉) f (〈By, y〉)− h (〈By, y〉) f (〈Ax, x〉))
× (h (〈Ax, x〉) g (〈By, y〉)− h (〈By, y〉) g (〈Ax, x〉)) ≥ 0 (2.19)

for any t ∈ [a, b] for any x ∈ H with ‖x‖ = 1.
Employing property (1.1) for inequality (2.19) we have

h2 (〈Ax, x〉) f (〈By, y〉) g (〈By, y〉)
+ h2 (〈By, y〉) f (〈Ax, x〉) g (〈Ax, x〉)

− h (〈Ax, x〉)h (〈By, y〉) f (〈By, y〉) g (〈Ax, x〉)
− h (〈By, y〉)h (〈Ax, x〉) f (〈Ax, x〉) g (〈By, y〉) ≥ 0 (2.20)

for any bounded linear operator B with sp (B) ⊆ [γ,Γ] and y ∈ H with ‖y‖ = 1.
Now, since f and g are convex then we have

h2 (〈Ax, x〉) 〈f (B) y, y〉 · 〈g (B) y, y〉+ h2 (〈By, y〉) 〈f (A)x, x〉 · 〈g (A)x, x〉
≥ h2 (〈Ax, x〉) f (〈By, y〉) · g (〈By, y〉) + h2 (〈By, y〉) f (〈Ax, x〉) · g (〈Ax, x〉)
≥ h (〈Ax, x〉)h (〈By, y〉) [f (〈By, y〉) g (〈Ax, x〉) + f (〈Ax, x〉) g (〈By, y〉)] (2.21)

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1. Setting B = A−1 and y = x in (2.21) we
get the required result in (2.18). The reverse sense follows similarly. �

Theorem 2.15. Let A be a selfadjoint operator with sp (A) ⊂ [γ,Γ] for some real
numbers γ,Γ with γ < Γ. Let h : [γ,Γ]→ R+ be a positive function on [γ,Γ]. If
f, g : [γ,Γ]→ R+ are both positve, convex and h-synchronous on [γ,Γ], then

h2 (〈ϕ (A)x, x〉) 〈φ (f (B)) y, y〉 · 〈φ (g (B)) y, y〉
+ h2 (〈φ (B) y, y〉) 〈ϕ (f (A))x, x〉 · 〈ϕ (g (A))x, x〉

≥ h2 (〈ϕ (A)x, x〉) f (〈φ (B) y, y〉) · g (〈φ (B) y, y〉) (2.22)

+ h2 (〈φ (B) y, y〉) f (〈ϕ (A)x, x〉) · g (〈ϕ (A)x, x〉)
≥ h (〈ϕ (A)x, x〉)h (〈φ (B) y, y〉)× [f (〈φ (B) y, y〉) g (〈ϕ (A)x, x〉)

+f (〈ϕ (A)x, x〉) g (〈φ (B) y, y〉)]

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. Since γ·1H ≤ A,B ≤ Γ·1H then γ·1K ≤ ϕ (A) ≤ Γ·1K and γ·1K ≤ φ (B) ≤
Γ·1K . So that for any x, y ∈ H with ‖x‖ = ‖y‖ = 1, we have γ ≤ 〈ϕ (A)x, x〉 ≤ Γ
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and γ ≤ 〈φ (B) y, y〉 ≤ Γ

(h (〈ϕ (A)x, x〉) f (〈φ (B) y, y〉)− h (〈φ (B) y, y〉) f (〈ϕ (A)x, x〉))
× (h (〈ϕ (A)x, x〉) g (〈φ (B) y, y〉)− h (〈φ (B) y, y〉) g (〈ϕ (A)x, x〉)) ≥ 0 (2.23)

for any t ∈ [a, b] for any x ∈ H with ‖x‖ = 1.
Employing property (1.1) for inequality (2.23) we have

h2 (〈ϕ (A)x, x〉) f (〈φ (B) y, y〉) g (〈φ (B) y, y〉)
+ h2 (〈φ (B) y, y〉) f (〈ϕ (A)x, x〉) g (〈ϕ (A)x, x〉)

− h (〈ϕ (A)x, x〉)h (〈φ (B) y, y〉) f (〈φ (B) y, y〉) g (〈ϕ (A)x, x〉)
− h (〈φ (B) y, y〉)h (〈ϕ (A)x, x〉) f (〈ϕ (A)x, x〉) g (〈φ (B) y, y〉) ≥ 0. (2.24)

Now, since f and g are postive convex functions then we have

h2 (〈ϕ (A)x, x〉) 〈φ (f (B)) y, y〉 · 〈φ (g (B)) y, y〉
+ h2 (〈φ (B) y, y〉) 〈ϕ (f (A))x, x〉 · 〈ϕ (g (A))x, x〉

≥ h2 (〈ϕ (A)x, x〉) f (〈φ (B) y, y〉) · g (〈φ (B) y, y〉)
+ h2 (〈φ (B) y, y〉) f (〈ϕ (A)x, x〉) · g (〈ϕ (A)x, x〉)

≥ h (〈ϕ (A)x, x〉)h (〈φ (B) y, y〉)× [f (〈φ (B) y, y〉) g (〈ϕ (A)x, x〉)
+f (〈ϕ (A)x, x〉) g (〈φ (B) y, y〉)]

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1, which proves the required result in (2.22).
The reverse sense follows similarly. �
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