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Abstract

Let G be a permutation group on a set Ω with no fixed points
in Ω and let m be a positive integer. If no element of G moves any
subset of Ω by more than m points (that is, if |Γg \ Γ| ≤ m for every
Γ ⊆ Ω and g ∈ G), and the lengths two of orbits is p, and the rest
of orbits have lengths equal to 3. Then the number t of G-orbits in
Ω is at most b1

2(3m − 2) + 5
2pc. Moreover, we classifiy all groups for

t = b1
2(3m − 2) + 5

2pc is hold.(For x ∈ R, bxc denotes the greatest
integer less than or equal to x.)
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1 Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m
be a positive integer. If for a subset Γ of Ω the size |Γg \Γ| is bounded, for g ∈ G ,
we define the movement of Γ as move(Γ) = maxg∈G|Γg \Γ|. If move(Γ) ≤ m for all
Γ ⊆ Ω,then G is said to have bounded movement and the movement of G is define
as the maximum of move(Γ) over all subsets Γ, that is,

m := move(G) := sup{|Γg \ Γ||Γ ⊆ Ω, g ∈ G}.
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This notion was introduced in [3]. By [3,Theorem 1],if G has bounded movement
m,then Ω is finite. Moreover both the number of G-orbits in Ω and the length
of each G-orbit are bounded above by linear functions of m.In particular it was
shown that the number of G-orbits is at most 2m-1.In this paper we will improve
this to 1

2(3m− 2) + 5
2p , if the lengths two of orbits is p, and the rest of orbits have

lengths equal to 3. If m=1, then t = 1
p , |Ω| = 2 and G is Z2 or S2. So in this

paper we suppose that m greater than 1. We present here a classification of all
groups for which the bound 1

2(3m− 2)+ 5
2p is attained. We shall say that an orbit

of permutation group is nontrivial if its length is greater than 1.The main result
is the following theorem.
Theorem 1.1. Let m be a positive integer and suppose that G is a permutation
group on a set Ω such that G has no fixed points in Ω, and G has bounded move-
ment equal to m . If the lengths two of orbits is p, and the rest of orbits have
lengths equal to 3. Then the number t of G-orbits in Ω is at most 1

2(3m− 2) + 5
2p .

And also if t = 1
2(3m − 1) + 1

p , then m is product of p in power of 3, and G is
order pm, all G-orbits have length 3, and the pointwise stabilizers of the G-orbits
are precisely the 1

2(3m− 2) + 5
2p distinct subgroups of G of index 3 .

Note that an orbit of a permutation group is non trivial if its length is greater
than 1. The groups described below are examples of permutation groups with
bounded movement equal to m which have exactly 1

2(3m−2)+ 5
2p nontrivial orbits.

2 Examples and Preliminaries

Let 1 6= g ∈ G and suppose that g in its disjoint cycle
representations has t nontrivial cycles of lengths l1, ..., lt, say. We might represent
g as
g = (a1a2...al1)(b1b2...bl2

)...(z1z2...zlt). Let Γ(g) denote a subset of Ω consisting
bli/2c points from the ith cycle , for each i, chosen in such a way that Γ(g)g ⋂

Γ(g)
= Ø. For example ,we could choose
Γ(g) = {a2, a4, ..., ak1 , b2, b4, ..., bk2 , ..., z2, z4, ..., zkt}, where ki = li − 1 if li is odd
and ki = li if li is even . Note that Γ(g)is not uniquency determined as it depends
on the way each cycle is written . For any set Γ(g) consists of every point of very
cycle of g. From the definition of Γ(g) we see that

|Γ(g)g \ Γ(g)| = |Γ(g)| =
t∑

i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg \ Γ| for an
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arbitrary subset Γ of Ω.
Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Ω and
suppose that Γ ⊆ Ω . Then for each g ∈ G, |Γg \ Γ| ≤

∑t
i=1bli/2c, where li is

the length of the ith cycle of g and t is the number of nontrivial cycles of g in its
disjoint cycle representation . This upper bound is attained for Γ = Γ(g) defined
above .
Now we will show that there certainly is an infinite family of 3-groups for which
the maximum bound obtained in Theorem 1.1 holds .
Example 2.2 . Let r be a positive integer , let G:=Z2

pZ
r−2
3 , let t := 1

2
(3m−2)+

5
2p

, and let the lengths two of orbits is p, and the rest of orbits have lengths
equal to 3, and H1, ..., Ht be an enumeration of the subgroups of index 3 in
G. Define Ωi to be the coset space of Hi in G and Ω := Ω1

⋃
...

⋃
Ωt. If

g ∈ G \ 1 then g lies in 1
2
(p2.3r−1 − 1) + 5

2p
of the groups Hi and therefore

acts on Ω as a permutation with 1
2
(p2.3r−1 − 2) + 3

2p
= m − 1 fixed points

and 3r−3 disjoint 3-cycles . Taking one point from each of these 3-cycles to
form a set Γ we see that m(G) ≥ 3r−3,and it is not hard to prove that in fact
m(G) = 3r−3 . Thus n = 2t = (p2.3r−1 − 2) + 5

p
=. This proves bound of

G− orbits of Theorem 1.1 . It follows that G has bounded movement equal
to m, and G has 1

2
(3m− 2) + 5

2p
nontrivial orbits in Ω .

When m > 1 the classification in Theorem 1.1 follows immediately from the
following theorem about subsets with movement m.
Definition Let G be a permutation group on a set Ω with orbits Ωi, for
i ∈ I. We shall say that a subset Γ ⊆ Ω cuts across each G-orbit if Γi :=
Γ ∩ Ωi /∈ {Φ, Ωi}, for every i ∈ I.
Theorem 2.3. Let G ≤ Sym(Ω) be a permutation group with t orbits for
positive integer t, such that the lengths two of orbits is p, and the rest of
orbits have lengths equal to 3. Moreover suppose that Γ ⊆ Ω such that move
(Γ) = m > 1, and Γ cuts across each G-orbit. Then t ≤ 1

2
(3m− 2) + 5

2p
and

moreover, if t = 1
2
(3m− 2) + 5

2p
, then:

(1) G is an 3-group and all G-orbits of G has size 3 ;
(2) If the rank of the group G is r then r ≥ 2, t = (1

2
(p2.3r−1 − 2) + 5

2p
) and

m = p(3r−3);
(3)If one of the G-orbits is 3, then The t different G-orbits are (isomorphic
to) the coset spaces of the (1

2
(p2.3r−1 − 2) + 5

2p
) different subgroups of index

3 in G.
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3 Proof of Theorem 2.3.

Proof: Let Ω1, . . . , Ωt be t orbits of G of lengths n1, . . . , nt. Choose αi ∈ Ω
and let Hi := Gαi

, so that |G : Hi| = ni. For g ∈ G, let Γ(g) = {αi|αg
i 6= αi}

be every second point of every cycle of g and let γ(g) := |Γ(g)| . Since
Γ(g)∩Γ(g)g = ∅ it follows that γ(g) ≤ m for all g ∈ G. Let Ω̄ := Ω1∪. . .∪Ωt,
and let Ḡ and H̄1, . . . , H̄t denote the finite permutation groups on Ω̄ induced
by G and H1, . . . , Ht respectively. Then ni = |Ḡ1 : H̄i|.

For g ∈ G, let ḡ ∈ Ḡ denote the permutation of Ω̄ induced by g. Then as
γ(1G) = 0, we have

∑
ḡ∈Ḡ γ(g) < m|Ḡ|.

Now, Counting the pairs (ḡ, i) such that ḡ ∈ Ḡ and αg
i 6= αi gives∑

ḡ∈Ḡ

γ(g) =
∑

i

|{ḡ ∈ Ḡ|αg
i 6= αi}| =

∑
i

|{ḡ ∈ Ḡ|g /∈ Hi}| =
∑

i

(|Ḡ|−|H̄i|) = |Ḡ|
∑

i

(1− 1

ni

).

It follows that
∑

i(1 − 1
ni

) < m. Since ni ≥ 3, p2 for each i, it follows

that
∑

i(1− 1
ni

) ≥ 2(p−1)
p

+ 2
3
(t− 2) and hence 2(p−1)

p
+ 2

3
(t− 2) < m, that is,

t ≤ 1
2
(3m− 2) + 5

2p
.

Consequently G has at most 1
2
(3m − 2) + 5

2p
orbits in Ω. Now Let

m be a positive integer greater than 1. Suppose that G ≤ Sym(Ω) with
orbitsΩ1, Ω2, ..., Ωt, where t=1

2
(3m− 1) + 1

p
. Suppose further that Γ ⊆ Ω has

move (Γ) = m and that cuts across each of the G-orbits Ωi. For each i set
ni = |Ωi| and Γi = Γ ∩ Ωi. Note that 0 < |Γi| < ni.

Claim 3.1 If Theorem 2.3 holds for the special case in which |Γi| = 1 for
i = 1, ..., (1

2
(3m− 2) + 5

2p
), then it holds in general .

Proof :Suppose that Theorem 2.3 holds for the case where each |Γi| = 1.
For i = 1, ..., t, define

∑
i := {Γg

i |g ∈ G}, and note that |∑i | ≥ 3 since Γ cuts
across Ωi. Set Σ = ∪i≥1

∑
i. Then G induces a natural action on Σ for which

the G-orbits are Σ1, ..., Σt . Let GΣ denote the permutation group induced
by G on Σ , and let K denote the kernel of this action.

We claim that the t-element subset ΓΣ = {Γ1, ..., Γt} ⊆ Σ has movement
equal to m relative to GΣ, and that ΓΣ cuts across each ΓΣ-orbit Σi. For
each g ∈ G, |Γg − Γ| ≤ m and hence |Γg

Σ − ΓΣ| ≤ m. Thus move (ΓΣ) ≤ m.
Also, Since |Σi| ≥ 3 and ΓΣ ∩Σi Consists of the single element Γi of Σi , the
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set ΓΣ cuts across each of the 1
2
(3m− 2) + 5

2p
orbits Σi. However, it follows

that the number of GΣ- orbits is at most 1
2
(3.move(ΓΣ)− 2) + 5

2p
, and hence

move (ΓΣ) = m.
Thus the hypotheses of theorem 2.3 hold for the subset ΓΣ ⊆ Σ relative

to GΣ, and ΓΣ meets each GΣ-orbit in exactly one point. By our assumption
it follows that t = 1

2
(p23r−1−2) 5

2p
= 1

2
(3m−2)+ 5

2p
for some r > 1, and that

GΣ = Zr
3 and each |Σi| = 3. Further, the subgroups Hi of G fixing Γi setwise

range over the 1
2
(p23r−1− 2)+ 5

2p
distinct subgroups which have index 3 in G

and which contain K. In particular, for each i, Hi is normal in G and hence
the Hi-orbits in Ωi are blocks of imprimitivity for G, and their number is at
most |G : H| = 3. Since Hi fixes Γi setwise it follows that Γi is an Hi -orbit
and ni = 3|Γi|.

Let g ∈ G \ K. Then in its action on Σ , g moves exactly m of the Γi.
Since the Γi are blocks of imprimitivity for G, each Γg

i is equal to either Γi

or Ωi − Γi. It follows that |Γg \ G| is equal to the sum of the sizes of the
m subsets Γi moved by g. However, since move (Γ) = m, each of these m
subsets Γi must have size 1. Since for each i we may choose an element g
which moves Γi , we deduce that each of the Γi has size 1, and that K is the
identify subgroup. It follows that theorem 2.3 hold for G . Thus the claim
is proved .

From now on we may and shall assume that each |Γi| = 1. Let Γi = {Ωi}.
Further we may assume that n1 ≤ n2 ≤ ... ≤ nt. For g ∈ G let c(g) de-
note the number of integers I such that ωg

i = ωi. Note that since move
(Γ) = m, we have c(g) > t−m = 1

2
(3m− 2) + 5

2p
−m = m−2

2
+ 5

2p
and also

c(1G) = t > m−2
2

+ 5
2p

.

Lemma 3.2. If two of the orbits of G has length equal to p, then the rest
orbits of G has size 3.

Proof : Let X denote the number of pairs (g,i) such that g ∈ G,
1 ≤ i ≤ t , and ωg

i = ωi. Then X =
∑

g∈G c(g), and by our observations,
X > |G|.(m−2

2
+ 5

2p
). On the other hand, for each i, the number of elements

of G which fix ωi is |Gωi
| = |G|

ni
, and hence X = |G|∑t

i=1 n−1
i If all the ni ≥ 3,

and one of ni is equal to p, then X ≤ |G|.(2
p
+ t−1

3
) = |G|(2

p
+ 3m−2

6
+ 2

6p
+ 2

3
) ≤

|G|.(m−2
2

+ 17
6p

) (since m ≥ 3 ) which is a contradiction. Hence n=3.
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A similar argument to this enables us to show that except one of ni the
rest of ni is ni = 3, and hence that G is an 3− group.
Lemma 3.3. The group G = Z2

p .Z
r
3 for some r ≥ 2. Moreover for each

ni = 3, except one , the stabilizers Gωi
(2 ≤ i ≤ t) are pair wise distinct

subgroups of index 3 in G, and for each g 6= 1, c(g) = (m−2
2

+ 17
6p

).
Proof: By Lemma 3.2, except one of ni the rest of ni is ni = 3. Thus
H := Gωi

is a subgroup of index 3. This time we compute the number Y
of pairs (g, i) such that g ∈ G \ H, 2 ≤ i ≤ t , and ωg

i = ωi. For each such
g, ωg

1 6= ω1 and hence there are c(g) of these pairs with first entry g. Thus
Y =

∑
g∈G\H c(g) ≥ |G\H|(m−1

2
+ 5

2p
) = |G|(m−1

6
+ 5

6p
).

On the other hand, for each i ≥ 2, the number of elements of G, which
fix ωi is |Gωi

\H|. If H = Gωi
then |Gωi

\H| = 0, while if Gωi
6= H, then

|Gωi
\H| =

|Gωi |
3

= |G|
3ni

≤ |G|
9

. Hence

Y =
∑t

i=2 |Gωi
\H| ≤] |G|

3

∑t
i=2

1
ni
≤ |G|

3
(2

p
+ t−2

3
)

= |G|
3

(6+p(t−2)
3p

) < |G|(m−2
2

+ 17
6p

)

It follows that equality holds in both of the displayed approximations for
Y . This means in particular that each ni = 2, Whence G = Zp.Z

r
3 for some

r. Further, for each i ≥ 3, Gωi
6= H and so r ≥ 2. Arguing in the same way

with H replaced by Gωi
, for some i ≥ 2, we see that Gωi

6= Gωj
if j 6= i, and

also if g ∈ Gωi
then c(g) = (m−2

2
+ 17

6p
). Thus the stabilizers Gωi

(1 ≤ i ≤ t) are

pairwise distinct , and if g ≤ 1 then c(g) = (m−2
2

+ 17
6p

). Finally we determine
m.
Lemma 3.4.. m = p(3r−2)
Proof: We use the information in lemma3.3 to determine precise the quantity
X =

∑
g∈G c(g) : X = t+(|G|−1).(1

2
(m−2)+ 5

2p
) = 1

2
(3m−2)+ 5

2p
+(p2.3r−2−

1)(1
2
(m− 2) + 5

2p).
On the other hand, from the proof of lemma 2.1,

X = |G|
t∑

i=1

n−1
i = |G|.(2

p
+

t− 2)

3
) = p2.3r−2.(

2

p
+

3m− 2

6
+

5

6p
− 2

3
).

Thus implies that m = p(3r−3).
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.
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