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Abstract
We prove the existence of non trivial twisted sums involving the pth James
space Jp(1 ≤ p <∞), the Johnson-Lindenstrauss space JL, the James tree space
JT , the Tsirelson’s space T and the Argyros and Deliyanni space AD. We also
present non trivial twisted sums involving their duals and biduals. We show
that there are strictly singular quasi-linear maps from the spaces T ,T ∗,AD and
JT into C[0,1]. We discuss the Pelczynski’s property(u) for the twisted sums
involving these spaces which extends a pthJames-Schreier spaces Vp(1 < p <∞)
or J2.
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Introduction

A quasi-Banach space X is said to be a twisted sum of two Banach spaces
Y and U if it contains a subspace A isomorphic to Y and the quotient X/A
is isomorphic to U . Identifying A with Y we have the following short exact
sequence

0 −→ Y −→ X −→U −→ 0

Two exact sequences 0 −→ Y −→ X1 −→ U −→ 0 and 0 −→ Y −→ X2 −→
U −→ 0 are equivalent if there is a bounded linear operator T making the
diagram

0 −→ Y −→ X1 −→U −→ 0

‖ T ↓ ‖
0 −→ Y −→ X2 −→U −→ 0

commutative. The three-lemma and the open mapping theorem imply that T
must be an isomorphism [10, 1.5]. An exact sequence 0 −→ Y −→ X −→U −→ 0
is said to split andX is said to be trivial if it is equivalent to the trivial sequence
0 −→ Y −→ Y ⊕U −→U −→ 0.

A quasi-linear map F :U → Y where U and Y are Banach spaces is a homo-
geneous map such that

‖F(u + z)−F(u)−F(z)‖ ≤ k(‖u‖+ ‖z‖)

1

Journal of Advances in Mathematics Vol 15  (2018) ISSN:  2347-1921                                  https://cirworld.com/index.php/jam



for some constant k and all u,z ∈ U . For a quasi-linear map F : U → Y , there
corresponds a twisted sum Y ⊕F U by endowing the product space Y ×U with
the quasi-norm

∥∥∥(y,z)
∥∥∥ =

∥∥∥y −F(z)
∥∥∥+ ‖z‖. The subspace {(y,0) : y ∈ Y } of Y ⊕F U

is isometric to Y and the corresponding quotient (Y ⊕F U )/Y is isomorphic to
U . Conversely, for every twisted sum of Y and U there is a quasi-linear map
F :U → Y such that X is equivalent to Y ⊕F U [10,1.5]. Two quasi-linear maps
F and G of a Banach space U into a Banach space Y are said to be equivalent
if the corresponding twisted sumsY ⊕F U and Y ⊕G U are equivalent. If the
quasi-linear map F : U −→ Y , acting between two Banach spaces U and Y , is
zero-linear, that is F satisfies∥∥∥∥F (

Σni=1ui
)
−Σni=1F (ui)

∥∥∥∥ ≤ k (Σni=1 ‖ui‖
)
.

for some constant k, where u1,u2, ...un are finitely many elements of U , then
the twisted sum Y ⊕F U is locally convex [10, 1.6.e]. We denote by Ext (U,Y )
the space of all equivalence classes of locally convex twisted sums of Y and U .
Thus Ext (U,Y ) = 0 means that all locally convex twisted sums of Y and U are
equivalent to the direct sum Y ⊕U .

Given a family E of finite dimensional Banach spaces, a Banach space X
is said to contain E uniformly complemented if there exists a constant c such
that for every E ∈ E, there is a c-complemented subspace A of X which is c-
isomorphic to E. It is clear that X contains E uniformly complemented if and
only if its second dual X∗∗does. A Banach space X is said to be λ-locally E (or
locally E) if there exists a constant λ > 1 such that every finite dimensional
subspace A of X is contained in a finite dimensional subspace B of X such
that

dBM (B,E) = inf{‖T ‖
∥∥∥T −1

∥∥∥ ;T : X −→ Y is an isomorphism of X ontoY } < λ

for some E ∈ E [6].
We say that a Banach space X is λ-colocallyE (or colocallyE) if there exists a

constant λ > 1 such that every finite dimensional quotient A of X is a quotient
of another finite dimensional quotient B of X satisfying dBM (B,E) < λ for some
E ∈ E [17].

The locality of a family is a very useful tool to determine the existence of
nontrivial twisted sums of certain Banach spaces, in fact, Cabello and Castillo
proved

Theorem 1 [6,T heorem2] Let E be a family of finite dimensional Banach spaces
and letW be a Banach space containing E uniformly complemented. If Y is a Banach
space complemented in its bidual such that Ext (W,Y ) = 0, then Ext (Z,Y ) = 0 for
every Banach space Z locally E.

Jebreen et all proved the corresponding version for the colocallity of Banach
spaces as follows
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Theorem 2 [18,T heorem1.7] Let E be a family of finite dimensional Banach spaces
and let W be a Banach space containing E uniformly complemented. If Y is a Ba-
nach space such that Ext (Y ,W ) = 0, then Ext (Y ,Z) = 0 for every Banach space Z
complemented in its bidual and colocally E.

The triviality of all twisted sums of two Banach spaces is inherited by their
complemented subspaces.

Proposition 3 [5,Lemma3], [17, P roposition2.3] Let X, A1 and A2 be Banach
spaces such that X = A1 ⊕A2. Then for any Banach space U

(i) Ext (U,X) = 0 if and only if Ext (U,Ai) = 0 for i = 1,2.
(ii) Ext (X,U ) = 0 if and only if Ext (Ai ,U ) = 0 for i = 1,2.

Throughout this paper K denotes the scalar field; either K = R or K = C

and c00 denotes the vector space of all finitely supported sequences in K, that
is c00 := {(αn) : αn ∈ K, n ∈N and ∃N ∈N : n = 0,∀n > N }.

2. Twisted sums with James spaces.

In 1951, Robert C. James provided the first example of a non-reflexive Ba-
nach space isomorphic to its second dual, called the James space J2 [15 ]. Edel-
stein and Mityagin were the first to observe that it can be generalized to an
arbitrary p > 1 as they defined

‖x‖Jp = sup


 k∑
i=1

∣∣∣∣anj − anj+1

∣∣∣∣p
1
p

: k,n1,n2, ...,nk+1 ∈N,n1 < n2 < ... < nk+1


and the Banach space

{
x = (xn)n∈N ∈ c0 : ‖x‖Jp <∞

}
is called the pth James Space

Jp. It can be seen that the completion of c00 with respect to this norm is Jp
[12]. Moreover, Edelstein and Mityagin showed that James’ proof of the quasi-
reflexivity of J2, the original James space, can be carried out to Jp for every p > 1
[12]. The proof can not, however, work for p = 1 because J1 is isometrically
isomorphic to `1. Bird et all [4,2.3] proved that Jp contains a complemented
copy of `p, for 1 < p <∞.

Proposition 4 (i) Ext(Jp, `1) , 0, that is Ext(Jp, J1) , 0,1 < p <∞.
(ii) Ext(Jp, Jq) , 0,1 < p,q <∞.

Proof. (i) Note that c0 is finitely represented in Jp [3, Theorem 1.1], that is
for each ε > 0, and each finite-dimensional subspace E of c0, there exists a
subspace F of Jp, depending on E such that there is an isomorphism T on E

onto F satisfying ‖T ‖
∥∥∥T −1

∥∥∥ < 1 + ε [3]. Hence Jp contains {`n∞}∞n=1 uniformly
complemented. Since Ext(c0, `1) , 0 [6, Theorem 5.1], then the result can be
deduced by Theorem 1.
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(ii) For 1 < p < ∞ , Jp contains a complemented copy of `p [4,2.3], and `p
contains

{
lnp
}

uniformly complemented [23, II.5.9], then Jp contains
{
lnp
}

uni-

formly complemented. Hence Ext
(
`p, `q

)
, 0, where 1 < p,q < ∞ [7, Section

5], implies that Ext
(
Jp, `q

)
, 0 by Theorem 1 and Ext

(
`p, Jq

)
, 0 by Theorem 2.

Therefore Ext
(
Jp, Jq

)
, 0 by Proposition 3.

The Schreier space S1 was first considered by Schreier in 1930 [26], in order
to provide an example of a weakly null sequence without Cesaro summable
subsequence. A variation of this idea gave rise to the construction of the
Schreier spaces [2], [8]. Bird and Laustsen generalized the concept of a Schreier
space from one Schreier space, corresponding to the `1-norm, to a whole fam-
ily, one for each p ≥ 2 , corresponding to the `p-norms as follows:

‖x‖Zp = sup
A

(
Σj∈A

∣∣∣xj ∣∣∣p) 1
p

where x = (xn)n∈N and the supremum is taken over all admissible subsets of
N, which are defined as the finite subsets A = {n1,n2, ...,nk} of N such that
k ≤ n1 < n2 < ... < nk . The subspace

{
x = (xn)n∈N ∈ c0 : ‖x‖Zp <∞

}
of K

N is a

Banach space called the unrestricted pth Schreier Space Zp. The completion of
c00 with respect to‖x‖Zp is the restricted pth Schreier Space Sp [4,3.2,3.6].

In 2010, Bird and Laustsen create a new family of Banach spaces, the James–
Schreier spaces, by amalgamating the two important classical Banach spaces:
James’ quasi-reflexive Banach space and Schreier’s Banach space and they proved
that these spaces are counterexamples to the Banach–Saks property and that
most of the results about the James space as a Banach algebra carry over to the
new spaces; see [4] for details. For 1 ≤ p <∞, they defined the following norm:

‖x‖Wp
= sup

A

 k∑
i=1

∣∣∣∣xnj − xnj+1

∣∣∣∣p
1
p

where the supremum is taken over all permissible subsets of N, which are
defined as the finite subsets A = {n1,n2, ...,nk+1} of N such that k ≤ n1 < n2 <
... < nk+1. The subspace Zp =

{
x = (xn)n∈N ∈ c0 : ‖x‖Wp

<∞
}

of K
N is a Banach

space called the unrestricted pth James-Schreier Space Wp. The completion of
c00 with respect to‖x‖Wp

is the restricted pthJames-Schreier Space Vp [4,4.2,4.8].

Proposition 5 Let U ∈
{
`q,Sq,Vq,Zq,Wq,V

∗∗
q ,1 < q <∞

}
. Then

(i) Ext(Jp,U ) , 0,1 < p <∞.
(ii) Ext(U,Jp) , 0,1 < p <∞.

Proof. Since Ext(`p,U ) , 0, and Ext(U,`p) , 0,1 < p < ∞, where U is either
`q,Sq ,Vq ,Zq, Wq, or V ∗∗q by [19, Proposition 2.4], and `p is complemented in Jp
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then Ext(Jp,U ) , 0 and Ext(U,Jp) , 0 by Proposition 3.
The original James space J2 has an additional twisted sums due to Ext(U,`2) ,

0, where U is either c0,S1,V1,Z1,W1orV ∗∗1 [19, Proposition 2.3] which gives

Proposition 6 Ext (U,J2) , 0 where U ∈
{
c0,S1,V1,Z1,W1,V

∗∗
1

}
.

3. Twisted sums of the Tsirelson’s space and the AD space.
A Banach space X is said to be asymptotic `p, 1 ≤ p ≤ ∞ with respect to

a basis (ei)∞i=1, if there exists a constant C ≥ 1 (the asymptotic constant), such
that (xi)

n
i=1 is C-equivalent to the unit vector basis of `np , i.e. for any n-tuple of

scalars a = (a
1
, ..., a

N
),

1
c
‖a‖p ≤

∥∥∥Σni=1aixi
∥∥∥ ≤ c ‖a‖p

In 1974, Tsirelson [27] constructed the first example of a reflexive Banach
space with unconditional basis that is asymptotically `∞ but has no embedded
copy of c0 or `p (1 ≤ p <∞). He constructed a convex, weakly compact subset
V of c0 with the following properties:

(i) For all n ∈N,en ∈ V ,
(ii) Iff = (fn) ∈ V and g = (gn) is such that |gn| ≤ |fn| for all n ∈N, then g ∈ V ,
(iii) If f1,···, fn ∈ V are such that n ≤ f1 <···< fn, then 1

2 (f1+···+fn) ∈ V ,
(iv) For all x ∈ V there exists n ∈N such that 2Pn(x) ∈ V .
Tsirelson’s space is the linear span of the set V with the norm that makes V

be the unit ball. Figiel and Johnson [14] constructed the conjugate of Tsirelson
example, known as the T space. It is defined as the closure of the finitely
supported sequences with the norm ‖x‖T := lim‖x‖m, where the norms ‖x‖mare
defined inductively:

‖x‖0 = ‖x‖c0 ,‖x‖m+1 = {max‖x‖m ,
1
2

max[
n∑
j=1

∥∥∥Ejx∥∥∥m]}

and the inner max is taken over all choices of consecutive finite sets {Ej }nj=1, n ≤
E1 < E2 < ... < En [14]. The original Tsirelson space is denoted in the literature
by T ∗.

Recall that {ln∞} ⊆ c0, for each n ∈N, hence c0 is locally {ln∞} .

Proposition 7 Ext (T ∗,U ) , 0, where U ∈
{
`q,Sq,Zq,Wq,Vq,V

∗∗
q , Jq,q = 1,2

}
.

Proof. Since T ∗ is asymptotically `∞ then T ∗ contains {ln∞} uniformly comple-
mented. Hence Ext (c0, `1) , 0 [7, Theorem 5.1], and Ext (c0, `2) , 0 [6, 4.2] im-
ply Ext (T ∗, `1) , 0, and Ext (T ∗, `2) , 0 by Theorem 1. ForU ∈

{
`q,Sq,Zq,Wq,Vq,V

∗∗
q , Jq,q = 1,2

}
,

U contains
{
`nq

}
uniformly complemented Theorem 2.

Argyros and Deliyanni constructed two examples of asymptotic `1 Banach
spaces, both are of the type of Tsirelson’s [1]. The second, we shall denote it by
AD, does not contain any unconditional basic sequence.
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Proposition 8 (i) Ext (U,T ) , 0, and Ext (U,AD) , 0 whereU ∈
{
c0,Sp,Vp,Zp,Wp,V

∗∗
p ,1 ≤ p <∞

}
.

(ii) Ext (T ∗,T ) , 0, and Ext (T ∗,AD) , 0

Proof. (i) By [19, Proposition 2.2], Ext (U,`1) , 0 whereU ∈
{
c0,Sp,Vp,Zp,Wp,V

∗∗
p ,1 ≤ p <∞

}
.

Since T and AD are asymptotically `1, then T and AD contain
{
`n1

}
uniformly

complemented. The result follows by Theorem 2.
(ii) Since Ext (T ∗, `1) , 0 by the previous proposition, and since the spaces T

and AD contain
{
`n1

}
uniformly complemented, the result follows by Theorem

2.

4. Twisted sums of the Johnson-Lindenstrauss space.

Johnson and Lindenstrauss [20] constructed a nontrivial twisted sum of c0
and a Hilbert space (necessarily non-separable), called the Johnson-Lindenstrauss
space JL. It is defined to be the completion of the linear span of c0 ∪ {χi : i ∈ I}
in `∞ with respect to the norm:∥∥∥∥y = x+Σkj=1ai(j)χi(j)

∥∥∥∥ = max
{∥∥∥y∥∥∥∞ ,∥∥∥(ai)i∈I

∥∥∥
`2(I)

}
x ∈ c0 , ai(j) are scalars, and χi is the characteristic function of Ai , {Ai}i∈I is
an almost disjoint uncountable family of infinite subsets of N. They proved
that JL/c0 is isomorphic to some `2 (I) and since `1 is projective, the dual se-
quence 0 −→ `2 (I) −→ JL∗ −→ `1 −→ 0 of the exact sequence 0 −→ c0 −→ JL −→
`2 (I) −→ 0 splits. That is, JL∗ = `1 ⊕ `2 (I).

Proposition 9 (i) Ext(JL∗,U ) , 0, where U ∈
{
`1,S1,Z1,W1,V1,V

∗∗
1 ,T ,AD

}
.

(ii) Ext(U,JL∗) , 0, where U ∈
{
T ∗, c0,Sp,Zp,Wp,Vp,V

∗∗
p ,1 ≤ p <∞

}
.

Proof. (i) Since JL∗ = `1 ⊕ `2 (I) and `2 is complemented in `2 (I) , then `2 is
complemented in JL∗. By [6, 4.3] Ext (`2, `1) , 0, hence Ext (JL∗, `1) , 0, which
leads to Ext(JL∗,T ) , 0, Ext(JL∗,AD) , 0, Ext (JL∗,S1) , 0 and Ext (JL∗,Z1) , 0
by Theorem 2. By proposition 3, the result follows.

(ii) Since `1 is complemented in JL∗, then the result can be concluded using
Ext (c0, `1) , 0 and a similar argument to that used in (i).

In [17, Theorem 2.2] it has been proved that for any Banach spaces U and
Y ,Ext(Y ,U ∗) = 0 if and only if Ext(U,Y ∗) = 0. Therefore it is immediate that

Corollary 10 Ext(JL,U ∗) , 0, where U ∈
{
T ∗, c0,Sp,Zp,Wp,Vp,V

∗∗
p ,1 ≤ p <∞

}
.

5. Twisted sums of the James tree space.

The James tree space JT was introduced by James in [15]. It was the first
example of a separable dual Banach space that contains no copy of `1 though
it has a non separable dual. Moreover, James proved that JT does not contain
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a subspace isomorphic to c0 or `1. The space JT is defined to be the completion
of the space of finite sequences over the dyadic tree ∆ with respect to the norm

‖x‖ = sup
n∈N

sup
S1,....Sn

[
Σni=1

(
Σα∈Si xα

)2
]1/2

where the supremum is taken over all finite sets of pair wise disjoint segments
of ∆.

Proposition 11 (i) Ext(JT ,U ) , 0, where U ∈
{
`1,S1,Z1,W1,V1,V

∗∗
1 ,T ,AD,JL

∗
}
.

(ii) Ext(JT ,U ) , 0, where U ∈
{
`2,S2,Z2,W2, orV2,V

∗∗
2 , JL

∗
}
.

Proof. (i) Fetter de Buen [13, 2.b.8, 3.a.7] proved that c0 is finitely repre-
sented in the James space J . Since JT contains J , then JT contains {`n∞}∞n=1 uni-
formly which implies that it contains {`n∞}∞n=1 uniformly complemented. Since
Ext (c0, `1) , 0, then by Theorem 1 we have Ext (JT ,`1) , 0. Applying Theorem
2 gives Ext (JT ,T ) , 0,Ext (JT ,AD) , 0,Ext (JT ,S1) , 0 and Ext (JT ,Z1) , 0. The
result follows by Proposition 3.

(ii) The proof is by using Ext (c0, `2) , 0 and applying Theorems 1, 2, and
Proposition 3.

Proposition 12 Ext(U,B) , 0, where B is the predual of JT , and Ext (U,JT ∗) , 0,
where U ∈

{
`p,Sp,Zp,Wp,Vp,V

∗∗
p ,1 ≤ p <∞

}
.

Proof. The predual B of JT contains
{
`n1

}∞
n=1

uniformly complemented [18,
Lemma 2.4], and hence so does JT ∗. It has been proved in [19, Proposition 2.2]
that Ext(U,`1) , 0, where U is either `p,Sp ,Vp ,Zp, Wp, or V ∗∗p , so by Theorem
2 we get the result.

6. Singular Twisted sums with C(K) spaces.

A continuous linear operator T : E→ F between two Banach spaces is called
strictly singular if it fails to be invertible on any infinite dimensional closed
subspace of E. We say that a quasi-linear map F : U → Y is strictly singular
if it has no trivial restriction to any infinite dimensional subspace of U . A
quasi-linear map F : U → Y is strictly singular if and only if the quotient map
Q : Y ⊕FU →U is a strictly singular operator, that is the restriction ofQ to any
infinite dimensional subspace of Y ⊕FU is not an isomorphism [11, Lemma 1].
In this case we say that the twisted sum Y ⊕F U is singular.

Theorem 13 There are singular twisted sums U⊕FC[0,1],whereU ∈ {T ,T ∗,AD,JT }.

Proof. For every U ∈ {T ,T ∗,AD,JT } , U is separable and have no copy of `1,
hence there is an exact sequence

0→ C [0,1]
j
→ X

Q
→U → 0
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with Q strictly singular [7, 2.3]. Hence the corresponding quasi-linear maps
F :U → C[0,1] is strictly singular.

Recall that if N ∈ N, the space C(ωN ) is isomorphic to c0, and so, by
Sobczyk’s Theorem, for any separable Banach spaceU , we have Ext(U,C(ωN )) =
0. The extension constant πN (U ) is the least constant such that if

0→ C(ωN )
j
→ X

Q
→U → 0

is an exact sequence and ε > 0, then there is a linear operator P : X → C(ωN )
with P j = iC(ωN ) and ‖P ‖ ≤ πN (U ) + ε [7, Section 3]. It is proved that πN (U ) ≤
2N + 1, for every N ∈N [7, Theorem 3.1].

Theorem 14 Ext(T ,C(ωω)) = 0.

Proof. Recall that T ∗ is a separable Banach space with summable Szlenk index
[21, Proposition 6.7]. Hence Ext(T ,C(ωω)) = 0 by [7, 4.4], which implies that
Sup

N
πN (U ) <∞ by [7,4.1].

7. Pelczynski’s property (u).

Two infinite-dimensional Banach spaces X and Y are totally incomparable
if no closed, infinite-dimensional subspace of X is isomorphic to a subspace of
Y . Since

{
Jp,Sq

}
and

{
Jp,Vq

}
are totally incomparable for p,q ≥ 1 [3,5.9]; we

can deduce immediately that any twisted sum that extends Jp can not be iso-
morphic to Sq or Vq, p,q ≥ 1. But we can know more about the twisted sums of
certain spaces using Pełczynski’s property (u). A Banach space X has Pełczyn-
ski’s property (u) if for every weak Cauchy sequence (xn)n∈N in X, there is a
sequence (yn)n∈N in X such that for every bounded functional on X we have

∞∑
n=1

∣∣∣〈yn, f 〉∣∣∣ <∞ and
〈
xn −

n∑
i=1

yj , f

〉
→ 0 as n→∞

We will show that for any Banach space U , every twisted sum that extends
J2 or the pth-James–Schreier space Vp (p > 1) does not have the Pełczynski’s
property (u). For this purpose we need the Pełczynski’s Theorem:

Theorem 15 (22) (i) Every Banach space with an unconditional basis has Pełczyn-
ski’s property (u).

(ii) Every closed subspace of a Banach space with Pełczynski’s property (u) has
Pełczynski’s

property (u).
(iii) The James space J2 does not have Pełczynski’s property (u).

Theorem 16 The twisted sum that extends Vp (p > 1) or J2 does not have the

Pełczynski’s property (u), and hence has no unconditional basis.
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Proof. Let X ∈ Ext
(
U,Vp

)
, then Vp is isomorphic to a closed subspace of X.

Since Vp does not have the Pełczynski’s property (u) [4, Theorem 6.3] then X
does not have Pełczynski’s property (u), by (ii) of Pelczynski theorem. Hence X
has no unconditional basis. The case for X ∈ Ext (U,j2) can be proved similarly
by using (iii) of the previous theorem.
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