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Abstract

We prove the existence of non trivial twisted sums involving the p" James
space J,(1 < p < o0), the Johnson-Lindenstrauss space JL, the James tree space
JT, the Tsirelson’s space T and the Argyros and Deliyanni space AD. We also
present non trivial twisted sums involving their duals and biduals. We show
that there are strictly singular quasi-linear maps from the spaces T, T*, AD and
JT into C[0,1]. We discuss the Pelczynski’s property(u) for the twisted sums
inv}olving these spaces which extends a pt'James-Schreier spaces V(1 <p<oo)
or Jp.
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Introduction

A quasi-Banach space X is said to be a twisted sum of two Banach spaces
Y and U if it contains a subspace A isomorphic to Y and the quotient X/A
is isomorphic to U. Identifying A with Y we have the following short exact
sequence

0—Y—>X—>U-—0

Two exact sequences 0 — Y — Xy — U —0 and 0 - Y — X, —
U — 0 are equivalent if there is a bounded linear operator T making the
diagram

0—Y— X3 - U—0

Tl

0—Y—>X,—U—0

commutative. The three-lemma and the open mapping theorem imply that T
must be an isomorphism [10, 1.5]. An exact sequence0 —Y — X — U — 0
is said to split and X is said to be trivial if it is equivalent to the trivial sequence
0—Y —>YeU—>U—0O.

A quasi-linear map F: U — Y where U and Y are Banach spaces is a homo-
geneous map such that

|F (4 +2) = F(u) = F(2)|| < k(llull + IzIl)
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for some constant k and all u,z € U. For a quasi-linear map F : U — Y, there
corresponds a twisted sum Y & U by endowing the product space Y x U with
the quasi-norm ||(y, z)” = ”y —F(z)” +||z||- The subspace {(y,0):y € Y}of Y& U
is isometric to Y and the corresponding quotient (Y @& U)/Y is isomorphic to
U. Conversely, for every twisted sum of Y and U there is a quasi-linear map
F:U — Y such that X is equivalent to Y & U [10,1.5]. Two quasi-linear maps
F and G of a Banach space U into a Banach space Y are said to be equivalent
if the corresponding twisted sumsY @&p U and Y &g U are equivalent. If the
quasi-linear map F : U — Y, acting between two Banach spaces U and Y, is
zero-linear, that is F satisfies

HF(E?:M:‘)—E?:IF(W)H < k(2P i)

for some constant k, where uy,u,,...u,, are finitely many elements of U, then
the twisted sum Y &f U is locally convex [10, 1.6.e]. We denote by Ext(U,Y)
the space of all equivalence classes of locally convex twisted sums of Y and U.
Thus Ext (U, Y) = 0 means that all locally convex twisted sums of Y and U are
equivalent to the direct sum Y@ U.

Given a family £ of finite dimensional Banach spaces, a Banach space X
is said to contain £ uniformly complemented if there exists a constant ¢ such
that for every E € £, there is a c-complemented subspace A of X which is c-
isomorphic to E. It is clear that X contains £ uniformly complemented if and
only if its second dual X*does. A Banach space X is said to be A-locally £ (or
locally £) if there exists a constant A > 1 such that every finite dimensional
subspace A of X is contained in a finite dimensional subspace B of X such
that

dgy (B, E) = inf{|| T|||| T~

;T : X — Y is an isomorphism of X ontoY} < A

for some E € £ [6].

We say that a Banach space X is A-colocally€ (or colocally€) if there exists a
constant A > 1 such that every finite dimensional quotient A of X is a quotient
of another finite dimensional quotient B of X satisfying dgy, (B, E) < A for some
Ee&[17].

The locality of a family is a very useful tool to determine the existence of
nontrivial twisted sums of certain Banach spaces, in fact, Cabello and Castillo
proved

Theorem 1 [6, Theorem?2] Let £ be a family of finite dimensional Banach spaces
and let W be a Banach space containing € uniformly complemented. If Y is a Banach
space complemented in its bidual such that Ext(W,Y) =0, then Ext(Z,Y) =0 for
every Banach space Z locally .

Jebreen et all proved the corresponding version for the colocallity of Banach
spaces as follows



Theorem 2 [18, Theorem1.7] Let € be a family of finite dimensional Banach spaces
and let W be a Banach space containing £ uniformly complemented. If Y is a Ba-
nach space such that Ext(Y, W) =0, then Ext(Y,Z) = 0 for every Banach space Z
complemented in its bidual and colocally E.

The triviality of all twisted sums of two Banach spaces is inherited by their
complemented subspaces.

Proposition 3 [5,Lemma3],[17, Proposition2.3] Let X, Ay and A, be Banach
spaces such that X = A; @ A,. Then for any Banach space U

(i) Ext(U,X)=0ifandonlyif Ext(U,A;)=0fori=1,2.

(ii) Ext(X,U)=0if and only if Ext(A;,U)=0fori=1,2.

Throughout this paper K denotes the scalar field; either K=R or K=C
and ¢y denotes the vector space of all finitely supported sequences in K, that
iscgp:={(ay):a, €K, neNand AN eIN:n=0,Yn> N}.

2. Twisted sums with James spaces.

In 1951, Robert C. James provided the first example of a non-reflexive Ba-
nach space isomorphic to its second dual, called the James space J, [15 ]. Edel-
stein and Mityagin were the first to observe that it can be generalized to an
arbitrary p > 1 as they defined

k P

p

||x||]p =sup ( E n; = Ay, ] tkony,ng, .y €N,y <np <. < gy
i=1

and the Banach space {x = (Xp)peN € €0 ||x||]p < oo} is called the pth James Space
Jp- It can be seen that the completion of cgo with respect to this norm is J,
[12]. Moreover, Edelstein and Mityagin showed that James’ proof of the quasi-
reflexivity of ], the original James space, can be carried out to ], for every p > 1
[12]. The proof can not, however, work for p = 1 because J; is isometrically
isomorphic to ¢;. Bird et all [4,2.3] proved that ], contains a complemented
copy of £, for 1 <p < co.

Proposition 4 (i) Ext(],,{1) # 0, that is Ext(],,]J1) # 0,1 <p < co.
(ii) Ext(Jp,Jq) 2 0,1 <p,q < 0.

Proof. (i) Note that ¢ is finitely represented in J, [3, Theorem 1.1], that is
for each € > 0, and each finite-dimensional subspace E of ¢y, there exists a
subspace F of J,, depending on E such that there is an isomorphism T on E
onto F satisfying ||T||”T‘1|| < 1+e€ [3]. Hence ], contains {£5},2; uniformly
complemented. Since Ext(cg,¢;) # 0 [6, Theorem 5.1], then the result can be
deduced by Theorem 1.



(ii) For 1 < p < o0, ], contains a complemented copy of ¢, [4,2.3], and ¢,
contains {l;‘} uniformly complemented [23, I11.5.9], then Jp contains {ll’}} uni-
formly complemented. Hence Ext(fp,fq) # 0, where 1 < p,q < oo [7, Section
5], implies that Ext(]p,ﬁq) # 0 by Theorem 1 and Ext (fp,]q) # 0 by Theorem 2.

Therefore Ext(]p,]q) # 0 by Proposition 3. m

The Schreier space S, was first considered by Schreier in 1930 [26], in order
to provide an example of a weakly null sequence without Cesaro summable
subsequence. A variation of this idea gave rise to the construction of the
Schreier spaces [2], [8]. Bird and Laustsen generalized the concept of a Schreier
space from one Schreier space, corresponding to the ¢;-norm, to a whole fam-
ily, one for each p > 2, corresponding to the £,-norms as follows:

==

Ielz, = sup (Zjealxi|”)

where x = (x,),cn and the supremum is taken over all admissible subsets of
IN, which are defined as the finite subsets A = {ny,n,,...,n;} of N such that
k < ny < ny < .. < ng. The subspace {x: (%n) e € Co ||x||Zp < oo} of KN is a
Banach space called the unrestricted pt" Schreier Space Z,. The completion of
coo with respect t0||x||Zp is the restricted pth Schreier Space Sp [4,3.2,3.6].

In 2010, Bird and Laustsen create a new family of Banach spaces, the James—
Schreier spaces, by amalgamating the two important classical Banach spaces:
James’ quasi-reflexive Banach space and Schreier’s Banach space and they proved
that these spaces are counterexamples to the Banach—Saks property and that
most of the results about the James space as a Banach algebra carry over to the
new spaces; see [4] for details. For 1 < p < oo, they defined the following norm:

1
k o)
||x||Wp = Slj‘p Z xl’l/' _xnjﬂ

i=1

where the supremum is taken over all permissible subsets of IN, which are
defined as the finite subsets A = {ny,ny,...,n;,1} of N such that k <n; <n, <
... < ngy1. The subspace Z, = {x = (X1)eN € Co ||x||Wp < oo} of KN is a Banach
space called the unrestricted pth James-Schreier Space W,. The completion of
cog wWith respect to||x||wp is the restricted pth]ames—Schreier Space V), [4,4.2,4.8].
Proposition 5 Let U e{ﬁq,Sq, Vq,Zq, o Vq**,l <g< oo}. Then

(i) Ext(J,,U)# 0,1 <p < oo.

(i) Ext(U,J,) #0,1 <p < oo.

Proof. Since Ext({y, U) # 0, and Ext(U,{}) # 0,1 < p < oo, where U is either

Zq, Sq . Vq Zy Wy, o1 Vq** by [19, Proposition 2.4], and €p is complemented in Ip



then Ext(],, U) # 0 and Ext(U, J,,) # 0 by Proposition 3. m
The original James space ], has an additional twisted sums due to Ext(U,¢;) =
0, where U is either ¢y, S1, V1, Zy, WyorV;*[19, Proposition 2.3] which gives

Proposition 6 Ext(U,J,) # 0 where U € {CO,SI, Vi, 21, Wy, Vf*}.

3. Twisted sums of the Tsirelson’s space and the AD space.

A Banach space X is said to be asymptotic €,, 1 < p < oo with respect to
a basis (e;);2,, if there exists a constant C > 1 (the asymptotic constant), such
that (x;)i_, is C-equivalent to the unit vector basis of £}, i.e. for any n-tuple of
scalars a = (al,...,aN),

1
~llall, <[y aixi]| < cllall,

In 1974, Tsirelson [27] constructed the first example of a reflexive Banach
space with unconditional basis that is asymptotically £, but has no embedded
copy of ¢y or £, (1 <p <oo). He constructed a convex, weakly compact subset
V of ¢y with the following properties:

(i) Forallne N,e, eV,

(ii) Iff = (f,) € V and g = (g,,) is such that |g,| <|f,|forallne N, thenge V,

(iii) If f1,, f,, € V are such that n < f; <---< f,,, then %(f1+---+fn) eV,

(iv) For all x € V there exists n € N such that 2P,(x) e V.

Tsirelson’s space is the linear span of the set V with the norm that makes V
be the unit ball. Figiel and Johnson [14] constructed the conjugate of Tsirelson
example, known as the T space. It is defined as the closure of the finitely
supported sequences with the norm ||x||y := lim ||x||,,,, where the norms ||x||,,,are
defined inductively:

1 n
Iello = llelle, +Iellyar = fmaxlcl,,, 5 max[ ) [[Ejx],, ]
j=1
and the inner max is taken over all choices of consecutive finite sets {Ej};l:p n<
E| <E; <... < E, [14]. The original Tsirelson space is denoted in the literature
by T".
Recall that {IZ.} C ¢, for each n € IN, hence ¢ is locally {I}.

Proposition 7 Ext(T*,U) =0, where U € {fq, Sq,Zq, Wq, Vq, Vq**,]q,q =1, 2}.

Proof. Since T* is asymptotically €., then T* contains {I,} uniformly comple-
mented. Hence Ext(co,¢;) # 0 [7, Theorem 5.1], and Ext(cg,€5) = 0 [6, 4.2] im-

ply Ext (T",¢;) # 0, and Ext (T",{,) # 0 by Theorem 1. For U € {€,, S, Z,, Wy, V,, V™, I, 0 = 1,2},
U contains {Kg}uniformly complemented Theorem 2. m
Argyros and Deliyanni constructed two examples of asymptotic £; Banach

spaces, both are of the type of Tsirelson’s [1]. The second, we shall denote it by
AD, does not contain any unconditional basic sequence.



Proposition 8 (i) Ext(U,T) =0, and Ext(U,AD) = 0 where U € {CO,SP, Vi, Zp, Wy, V', 1 <p < oo}.
(ii) Ext(T*,T) = 0, and Ext(T*,AD) =0

prp
Since T and AD are asymptotically ¢;, then T and AD contain {6?} uniformly
complemented. The result follows by Theorem 2.
(ii) Since Ext(T*,¢;) = 0 by the previous proposition, and since the spaces T

Proof. (i) By [19, Proposition 2.2], Ext (U, {;) # 0 where U € {CO,S Vi, Zp, Wy, V;*,l <p< oo}.

and AD contain {611} uniformly complemented, the result follows by Theorem
2. m

4. Twisted sums of the Johnson-Lindenstrauss space.

Johnson and Lindenstrauss [20] constructed a nontrivial twisted sum of ¢
and a Hilbert space (necessarily non-separable), called the Johnson-Lindenstrauss
space JL. It is defined to be the completion of the linear span of ¢y U {x; : i € I}
in £, with respect to the norm:

(“i)ieI“eQ(I)}

X € cg, aj(j) are scalars, and x; is the characteristic function of A;, {A;}i¢ is
an almost disjoint uncountable family of infinite subsets of IN. They proved
that JL/cy is isomorphic to some ¢, (I) and since ¢; is projective, the dual se-
quence 0 — ¢, (I) — JL* — £; —> 0 of the exact sequence 0 — ¢y — JL —
{5 (I) — 0 splits. Thatis, JL* =€, @, (I).

||y =x+ Eleﬂimximn = maX{HV”oof

Proposition 9 (i) Ext(JL*,U) # 0, where U € {fl,Sl,Zl, Wy, Vi, Vi, T,AD}.
(ii) Ext(U,JL*) = 0, where U € {T”, €0sSpr Zps Wy, V), V5, 1 <p < oo}.

Proof. (i) Since JL* = ¢; @ {,(I) and ¢, is complemented in ¢, (I), then ¢, is
complemented in JL*. By [6, 4.3] Ext({,,{;) # 0, hence Ext(JL*,¢;) = 0, which
leads to Ext(JL*,T) # 0, Ext(JL*,AD) # 0, Ext(JL*,S1) # 0 and Ext(JL*,Z;) # 0
by Theorem 2. By proposition 3, the result follows.

(ii) Since ¢; is complemented in JL*, then the result can be concluded using
Ext(cg,¢1) # 0 and a similar argument to that used in (i). m

In [17, Theorem 2.2] it has been proved that for any Banach spaces U and
Y,Ext(Y,U”) = 0 if and only if Ext(U, Y") = 0. Therefore it is immediate that

Corollary 10 Ext(JL,U*)# 0, where U € {T*, €0sSpr Zps Wy, V), V5, 1 <p < oo}.
5. Twisted sums of the James tree space.
The James tree space JT was introduced by James in [15]. It was the first

example of a separable dual Banach space that contains no copy of ¢; though
it has a non separable dual. Moreover, James proved that /T does not contain



a subspace isomorphic to ¢y or £;. The space J T is defined to be the completion
of the space of finite sequences over the dyadic tree A with respect to the norm

} 57172
Il =sup sup [Z2) (Taes, %)’ |
neN §q,....S,

where the supremum is taken over all finite sets of pair wise disjoint segments
of A.

Proposition 11 (i) Ext(JT,U) = 0, where U € {61,51,21, Wy, Vi, Vi, T,AD,]L*}.
(ii) Ext(JT,U) = 0, where U € {ez, Sy, 22, Wy, 01V, V7, ]L*}.

Proof. (i) Fetter de Buen [13, 2.b.8, 3.a.7] proved that ¢y is finitely repre-
sented in the James space J. Since T contains J, then JT contains {¢,},; uni-
formly which implies that it contains {¢2},”; uniformly complemented. Since
Ext(cy,€1) # 0, then by Theorem 1 we have Ext(JT,¢;) # 0. Applying Theorem
2 gives Ext(JT,T)#= 0,Ext(JT,AD) = 0,Ext(JT,S;) = 0and Ext(JT,Z,) # 0. The
result follows by Proposition 3.

(ii) The proof is by using Ext(cg,¢,) # 0 and applying Theorems 1, 2, and
Proposition 3. ®

Proposition 12 Ext(U,B) = 0, where B3 is the predual of JT, and Ext(U,JT") #0,
where U €{€,,Sp,Z,, Wy, V,,, V3", 1 < p < o0}

Proof. The predual B of JT contains {Kf}oo_l uniformly complemented [18,

n=
Lemma 2.4], and hence so does JT*. It has been proved in [19, Proposition 2.2]
that Ext(U, ;) # 0, where U is either Zp,Sp ,Vp ,Zp, Wp, or Vp**, so by Theorem
2 we get the result. m

6. Singular Twisted sums with C(K) spaces.

A continuous linear operator T : E — F between two Banach spaces is called
strictly singular if it fails to be invertible on any infinite dimensional closed
subspace of E. We say that a quasi-linear map F: U — Y is strictly singular
if it has no trivial restriction to any infinite dimensional subspace of U. A
quasi-linear map F : U — Y is strictly singular if and only if the quotient map
Q:Y®rU — U isastrictly singular operator, that is the restriction of Q to any
infinite dimensional subspace of Y @ U is not an isomorphism [11, Lemma 1].
In this case we say that the twisted sum Y @&p U is singular.

Theorem 13 There are singular twisted sums U®pC[0,1], where U € {T, T*,AD,JT}.

Proof. For every U € {T,T",AD,]JT}, U is separable and have no copy of ¢;,
hence there is an exact sequence

0-C0,1]5x3 U0



with Q strictly singular [7, 2.3]. Hence the corresponding quasi-linear maps
F:U — C[0,1] is strictly singular. m

Recall that if N € IN, the space C(wN) is isomorphic to ¢y, and so, by
Sobczyk’s Theorem, for any separable Banach space U, we have Ext(U, C(w")) =
0. The extension constant 7ty (U) is the least constant such that if

0o CceMLxBuso

is an exact sequence and ¢ > 0, then there is a linear operator P : X — C(w!)
with Pj =ic(,~) and ||P|| < iy (U) + € [7, Section 3]. It is proved that rtyn(U) <
2N +1, for every N € N [7, Theorem 3.1].

Theorem 14 Ext(T,C(w®))=0.

Proof. Recall that T" is a separable Banach space with summable Szlenk index
[21, Proposition 6.7]. Hence Ext(T,C(w®)) = 0 by [7, 4.4], which implies that
Sup,mn(U) <coby [7,4.1]. m

7. Pelczynski’s property (u).

Two infinite-dimensional Banach spaces X and Y are totally incomparable
if no closed, infinite-dimensional subspace of X is isomorphic to a subspace of
Y. Since {]p,Sq} and {]p, Vq} are totally incomparable for p,q > 1 [3,5.9]; we
can deduce immediately that any twisted sum that extends J, can not be iso-
morphic to S, or V, p,q > 1. But we can know more about the twisted sums of
certain spaces using Pelczynski’s property (u#). A Banach space X has Petczyn-
ski’s property (u) if for every weak Cauchy sequence (x,),cn in X, there is a
sequence (V)N in X such that for every bounded functional on X we have

(o9

Zl(yn,f))<ooand <x,,— yj,f>—>0asn—>oo
i=1

n=1

We will show that for any Banach space U, every twisted sum that extends
J, or the p'"-James-Schreier space V, (p > 1) does not have the Pelczynski’s
property (u). For this purpose we need the Petczynski’s Theorem:

Theorem 15 (22) (i) Every Banach space with an unconditional basis has Pelczyn-
ski’s property (u).

(ii) Every closed subspace of a Banach space with Petczynski’s property (u) has
Pelczynski’s

property (u).

(iii) The James space ], does not have Pelczynski’s property (u).

Theorem 16 The twisted sum that extends V,(p>1) or J, does not have the

Petczynski’s property (u), and hence has no unconditional basis.



Proof. Let X € Ext(U, Vp), then V), is isomorphic to a closed subspace of X.
Since V), does not have the Pelczynski’s property (u) [4, Theorem 6.3] then X
does not have Petczynski’s property (u), by (ii) of Pelczynski theorem. Hence X
has no unconditional basis. The case for X € Ext (U, j,) can be proved similarly
by using (iii) of the previous theorem. m
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