On Twisted Sums of Sequence Spaces.

Haifa Bin Jebreen
Mathematics department, College of Science, King Saud University. hjebreen@ksu.edu.sa

Abstract

We prove the existence of non trivial twisted sums involving the $\mathrm{p}^{\text {th }}$ James space $J_{p}(1 \leq p<\infty)$, the Johnson-Lindenstrauss space $J L$, the James tree space $J T$, the Tsirelson's space T and the Argyros and Deliyanni space $A D$. We also present non trivial twisted sums involving their duals and biduals. We show that there are strictly singular quasi-linear maps from the spaces $T, T^{*}, A D$ and $J T$ into $C[0,1]$. We discuss the Pelczynski's property (u) for the twisted sums involving these spaces which extends a $\mathrm{p}^{\text {th }}$ James-Schreier spaces $V_{p}(1<p<\infty)$ or J_{2}.

Keywords: Twisted sums, James spaces, Tsirlson's spaces, strictly singular.
Subject Classification: 46B03; 46B20; 46B45.

Introduction

A quasi-Banach space X is said to be a twisted sum of two Banach spaces Y and U if it contains a subspace A isomorphic to Y and the quotient X / A is isomorphic to U. Identifying A with Y we have the following short exact sequence

$$
0 \longrightarrow Y \longrightarrow X \longrightarrow U \longrightarrow 0
$$

Two exact sequences $0 \longrightarrow Y \longrightarrow X_{1} \longrightarrow U \longrightarrow 0$ and $0 \longrightarrow Y \longrightarrow X_{2} \longrightarrow$ $U \longrightarrow 0$ are equivalent if there is a bounded linear operator T making the diagram

$$
\begin{gathered}
0 \longrightarrow Y \longrightarrow X_{1} \longrightarrow U \longrightarrow 0 \\
\|\quad T \downarrow \quad\| \\
0 \longrightarrow Y \longrightarrow X_{2} \longrightarrow U \longrightarrow 0
\end{gathered}
$$

commutative. The three-lemma and the open mapping theorem imply that T must be an isomorphism [10, 1.5]. An exact sequence $0 \longrightarrow Y \longrightarrow X \longrightarrow U \longrightarrow 0$ is said to split and X is said to be trivial if it is equivalent to the trivial sequence $0 \longrightarrow Y \longrightarrow Y \oplus U \longrightarrow U \longrightarrow 0$.

A quasi-linear map $F: U \rightarrow Y$ where U and Y are Banach spaces is a homogeneous map such that

$$
\|F(u+z)-F(u)-F(z)\| \leq k(\|u\|+\|z\|)
$$

for some constant k and all $u, z \in U$. For a quasi-linear map $F: U \rightarrow Y$, there corresponds a twisted sum $Y \oplus_{F} U$ by endowing the product space $Y \times U$ with the quasi-norm $\|(y, z)\|=\|y-F(z)\|+\|z\|$. The subspace $\{(y, 0): y \in Y\}$ of $Y \oplus_{F} U$ is isometric to Y and the corresponding quotient $\left(Y \oplus_{F} U\right) / Y$ is isomorphic to U. Conversely, for every twisted sum of Y and U there is a quasi-linear map $F: U \rightarrow Y$ such that X is equivalent to $Y \oplus_{F} U[10,1.5]$. Two quasi-linear maps F and G of a Banach space U into a Banach space Y are said to be equivalent if the corresponding twisted sums $Y \oplus_{F} U$ and $Y \oplus_{G} U$ are equivalent. If the quasi-linear map $F: U \longrightarrow Y$, acting between two Banach spaces U and Y, is zero-linear, that is F satisfies

$$
\left\|F\left(\sum_{i=1}^{n} u_{i}\right)-\sum_{i=1}^{n} F\left(u_{i}\right)\right\| \leq k\left(\sum_{i=1}^{n}\left\|u_{i}\right\|\right) .
$$

for some constant k, where $u_{1}, u_{2}, \ldots u_{n}$ are finitely many elements of U, then the twisted sum $Y \oplus_{F} U$ is locally convex [10, 1.6.e]. We denote by Ext (U, Y) the space of all equivalence classes of locally convex twisted sums of Y and U. Thus Ext $(U, Y)=0$ means that all locally convex twisted sums of Y and U are equivalent to the direct sum $Y \oplus U$.

Given a family \mathcal{E} of finite dimensional Banach spaces, a Banach space X is said to contain \mathcal{E} uniformly complemented if there exists a constant c such that for every $E \in \mathcal{E}$, there is a c-complemented subspace A of X which is c isomorphic to E. It is clear that X contains \mathcal{E} uniformly complemented if and only if its second dual $X^{* *}$ does. A Banach space X is said to be λ-locally \mathcal{E} (or locally \mathcal{E}) if there exists a constant $\lambda>1$ such that every finite dimensional subspace A of X is contained in a finite dimensional subspace B of X such that

$$
d_{B M}(B, E)=\inf \left\{\|T\|\left\|T^{-1}\right\| ; T: X \longrightarrow Y \text { is an isomorphism of } X \text { onto } Y\right\}<\lambda
$$

for some $E \in \mathcal{E}$ [6].
We say that a Banach space X is λ-colocally \mathcal{E} (or colocally \mathcal{E}) if there exists a constant $\lambda>1$ such that every finite dimensional quotient A of X is a quotient of another finite dimensional quotient B of X satisfying $d_{B M}(B, E)<\lambda$ for some $E \in \mathcal{E}$ [17].

The locality of a family is a very useful tool to determine the existence of nontrivial twisted sums of certain Banach spaces, in fact, Cabello and Castillo proved

Theorem 1 [6,Theorem2] Let \mathcal{E} be a family of finite dimensional Banach spaces and let W be a Banach space containing \mathcal{E} uniformly complemented. If Y is a Banach space complemented in its bidual such that $\operatorname{Ext}(W, Y)=0$, then $\operatorname{Ext}(Z, Y)=0$ for every Banach space Z locally \mathcal{E}.

Jebreen et all proved the corresponding version for the colocallity of Banach spaces as follows

Theorem 2 [18, Theorem1.7] Let \mathcal{E} be a family of finite dimensional Banach spaces and let W be a Banach space containing \mathcal{E} uniformly complemented. If Y is a Banach space such that $\operatorname{Ext}(Y, W)=0$, then $\operatorname{Ext}(Y, Z)=0$ for every Banach space Z complemented in its bidual and colocally \mathcal{E}.

The triviality of all twisted sums of two Banach spaces is inherited by their complemented subspaces.

Proposition 3 [5,Lemma3], [17, Proposition2.3] Let X, A_{1} and A_{2} be Banach spaces such that $X=A_{1} \oplus A_{2}$. Then for any Banach space U
(i) $\operatorname{Ext}(U, X)=0$ if and only if $\operatorname{Ext}\left(U, A_{i}\right)=0$ for $i=1,2$.
(ii) $\operatorname{Ext}(X, U)=0$ if and only if $\operatorname{Ext}\left(A_{i}, U\right)=0$ for $i=1,2$.

Throughout this paper \mathbb{K} denotes the scalar field; either $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$ and c_{00} denotes the vector space of all finitely supported sequences in \mathbb{K}, that is $c_{00}:=\left\{\left(\alpha_{n}\right): \alpha_{n} \in K, n \in N\right.$ and $\left.\exists N \in \mathbb{N}: n=0, \forall n>N\right\}$.

2. Twisted sums with James spaces.

In 1951, Robert C. James provided the first example of a non-reflexive Banach space isomorphic to its second dual, called the James space $J_{2}[15]$. Edelstein and Mityagin were the first to observe that it can be generalized to an arbitrary $p>1$ as they defined

$$
\|x\|_{J_{p}}=\sup \left\{\left(\sum_{i=1}^{k}\left|a_{n_{j}}-a_{n_{j+1}}\right|^{p}\right)^{\frac{1}{p}}: k, n_{1}, n_{2}, \ldots, n_{k+1} \in \mathbb{N}, n_{1}<n_{2}<\ldots<n_{k+1}\right\}
$$

and the Banach space $\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}:\|x\|_{J_{p}}<\infty\right\}$ is called the $\mathrm{p}^{\text {th }}$ James Space J_{p}. It can be seen that the completion of c_{00} with respect to this norm is J_{p} [12]. Moreover, Edelstein and Mityagin showed that James' proof of the quasireflexivity of J_{2}, the original James space, can be carried out to J_{p} for every $p>1$ [12]. The proof can not, however, work for $p=1$ because J_{1} is isometrically isomorphic to ℓ_{1}. Bird et all $\left[4,2.3\right.$] proved that J_{p} contains a complemented copy of ℓ_{p}, for $1<p<\infty$.

Proposition 4 (i) $\operatorname{Ext}\left(J_{p}, \ell_{1}\right) \neq 0$, that is $\operatorname{Ext}\left(J_{p}, J_{1}\right) \neq 0,1<p<\infty$.
(ii) $\operatorname{Ext}\left(J_{p}, J_{q}\right) \neq 0,1<p, q<\infty$.

Proof. (i) Note that c_{0} is finitely represented in J_{p} [3, Theorem 1.1], that is for each $\epsilon>0$, and each finite-dimensional subspace E of c_{0}, there exists a subspace F of J_{p}, depending on E such that there is an isomorphism T on E onto F satisfying $\|T\|\left\|T^{-1}\right\|<1+\epsilon$ [3]. Hence J_{p} contains $\left\{\ell_{\infty}^{n}\right\}_{n=1}^{\infty}$ uniformly complemented. Since $\operatorname{Ext}\left(c_{0}, \ell_{1}\right) \neq 0$ [6, Theorem 5.1], then the result can be deduced by Theorem 1.
(ii) For $1<p<\infty, J_{p}$ contains a complemented copy of $\ell_{p}[4,2.3]$, and ℓ_{p} contains $\left\{l_{p}^{n}\right\}$ uniformly complemented [23, II.5.9], then J_{p} contains $\left\{l_{p}^{n}\right\}$ uniformly complemented. Hence $\operatorname{Ext}\left(\ell_{p}, \ell_{q}\right) \neq 0$, where $1<p, q<\infty$ [7, Section 5], implies that $\operatorname{Ext}\left(J_{p}, \ell_{q}\right) \neq 0$ by Theorem 1 and $\operatorname{Ext}\left(\ell_{p}, J_{q}\right) \neq 0$ by Theorem 2. Therefore $\operatorname{Ext}\left(J_{p}, J_{q}\right) \neq 0$ by Proposition 3 .

The Schreier space S_{1} was first considered by Schreier in 1930 [26], in order to provide an example of a weakly null sequence without Cesaro summable subsequence. A variation of this idea gave rise to the construction of the Schreier spaces [2], [8]. Bird and Laustsen generalized the concept of a Schreier space from one Schreier space, corresponding to the ℓ_{1}-norm, to a whole family, one for each $p \geq 2$, corresponding to the ℓ_{p}-norms as follows:

$$
\|x\|_{Z_{p}}=\sup _{A}\left(\sum_{j \in A}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

where $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ and the supremum is taken over all admissible subsets of \mathbb{N}, which are defined as the finite subsets $A=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ of N such that $k \leq n_{1}<n_{2}<\ldots<n_{k}$. The subspace $\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}:\|x\|_{Z_{p}}<\infty\right\}$ of $\mathbb{K}^{\mathbb{N}}$ is a Banach space called the unrestricted $\mathrm{p}^{\text {th }}$ Schreier Space Z_{p}. The completion of c_{00} with respect to $\|x\|_{Z_{p}}$ is the restricted $\mathrm{p}^{\text {th }}$ Schreier Space $S_{p}[4,3.2,3.6]$.

In 2010, Bird and Laustsen create a new family of Banach spaces, the JamesSchreier spaces, by amalgamating the two important classical Banach spaces: James' quasi-reflexive Banach space and Schreier's Banach space and they proved that these spaces are counterexamples to the Banach-Saks property and that most of the results about the James space as a Banach algebra carry over to the new spaces; see [4] for details. For $1 \leq p<\infty$, they defined the following norm:

$$
\|x\|_{W_{p}}=\sup _{A}\left(\sum_{i=1}^{k}\left|x_{n_{j}}-x_{n_{j+1}}\right|^{p}\right)^{\frac{1}{p}}
$$

where the supremum is taken over all permissible subsets of \mathbb{N}, which are defined as the finite subsets $A=\left\{n_{1}, n_{2}, \ldots, n_{k+1}\right\}$ of N such that $k \leq n_{1}<n_{2}<$ $\ldots<n_{k+1}$. The subspace $Z_{p}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}:\|x\|_{W_{p}}<\infty\right\}$ of $\mathbb{K}^{\mathbb{N}}$ is a Banach space called the unrestricted $\mathrm{p}^{\text {th }}$ James-Schreier Space W_{p}. The completion of c_{00} with respect to $\|x\|_{W_{p}}$ is the restricted $\mathrm{p}^{\text {th }}$ James-Schreier Space $V_{p}[4,4.2,4.8]$.

Proposition 5 Let $U \in\left\{\ell_{q}, S_{q}, V_{q}, Z_{q}, W_{q}, V_{q}^{* *}, 1<q<\infty\right\}$. Then
(i) $\operatorname{Ext}\left(J_{p}, U\right) \neq 0,1<p<\infty$.
(ii) $\operatorname{Ext}\left(U, J_{p}\right) \neq 0,1<p<\infty$.

Proof. Since $\operatorname{Ext}\left(\ell_{p}, U\right) \neq 0$, and $\operatorname{Ext}\left(U, \ell_{p}\right) \neq 0,1<p<\infty$, where U is either $\ell_{q}, S_{q}, V_{q}, Z_{q}, W_{q}$, or $V_{q}^{* *}$ by [19, Proposition 2.4], and ℓ_{p} is complemented in J_{p}
then $\operatorname{Ext}\left(J_{p}, U\right) \neq 0$ and $\operatorname{Ext}\left(U, J_{p}\right) \neq 0$ by Proposition 3.
The original James space J_{2} has an additional twisted sums due to $\operatorname{Ext}\left(U, \ell_{2}\right) \neq$ 0 , where U is either $c_{0}, S_{1}, V_{1}, Z_{1}, W_{1}$ or $V_{1}^{* *}[19$, Proposition 2.3] which gives

Proposition $6 \operatorname{Ext}\left(U, J_{2}\right) \neq 0$ where $U \in\left\{c_{0}, S_{1}, V_{1}, Z_{1}, W_{1}, V_{1}^{* *}\right\}$.

3. Twisted sums of the Tsirelson's space and the AD space.

A Banach space X is said to be asymptotic $\ell_{p}, 1 \leq p \leq \infty$ with respect to a basis $\left(e_{i}\right)_{i=1}^{\infty}$, if there exists a constant $C \geq 1$ (the asymptotic constant), such that $\left(x_{i}\right)_{i=1}^{n}$ is C-equivalent to the unit vector basis of ℓ_{p}^{n}, i.e. for any n-tuple of scalars $a=\left(a_{1}, \ldots, a_{N}\right)$,

$$
\frac{1}{c}\|a\|_{p} \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \leq c\|a\|_{p}
$$

In 1974, Tsirelson [27] constructed the first example of a reflexive Banach space with unconditional basis that is asymptotically ℓ_{∞} but has no embedded copy of c_{0} or $\ell_{p}(1 \leq p<\infty)$. He constructed a convex, weakly compact subset V of c_{0} with the following properties:
(i) For all $n \in N, e_{n} \in V$,
(ii) If $f=\left(f_{n}\right) \in V$ and $g=\left(g_{n}\right)$ is such that $\left|g_{n}\right| \leq\left|f_{n}\right|$ for all $n \in N$, then $g \in V$,
(iii) If $f_{1}, \cdots, f_{n} \in V$ are such that $n \leq f_{1}<\cdots<f_{n}$, then $\frac{1}{2}\left(f_{1}+\cdots+f_{n}\right) \in V$,
(iv) For all $x \in V$ there exists $n \in N$ such that $2 P_{n}(x) \in V$.

Tsirelson's space is the linear span of the set V with the norm that makes V be the unit ball. Figiel and Johnson [14] constructed the conjugate of Tsirelson example, known as the T space. It is defined as the closure of the finitely supported sequences with the norm $\|x\|_{T}:=\lim \|x\|_{m}$, where the norms $\|x\|_{m}$ are defined inductively:

$$
\|x\|_{0}=\|x\|_{c_{0}},\|x\|_{m+1}=\left\{\max \|x\|_{m}, \frac{1}{2} \max \left[\sum_{j=1}^{n}\left\|E_{j} x\right\|_{m}\right]\right\}
$$

and the inner max is taken over all choices of consecutive finite sets $\left\{E_{j}\right\}_{j=1}^{n}, n \leq$ $E_{1}<E_{2}<\ldots<E_{n}[14]$. The original Tsirelson space is denoted in the literature by T^{*}.

Recall that $\left\{l_{\infty}^{n}\right\} \subseteq c_{0}$, for each $n \in \mathbb{N}$, hence c_{0} is locally $\left\{l_{\infty}^{n}\right\}$.
Proposition $7 \operatorname{Ext}\left(T^{*}, U\right) \neq 0$, where $U \in\left\{\ell_{q}, S_{q}, Z_{q}, W_{q}, V_{q}, V_{q}^{* *}, J_{q}, q=1,2\right\}$.
Proof. Since T^{*} is asymptotically ℓ_{∞} then T^{*} contains $\left\{l_{\infty}^{n}\right\}$ uniformly complemented. Hence $\operatorname{Ext}\left(c_{0}, \ell_{1}\right) \neq 0$ [7, Theorem 5.1], and $\operatorname{Ext}\left(c_{0}, \ell_{2}\right) \neq 0[6,4.2] \mathrm{im}-$ ply $\operatorname{Ext}\left(T^{*}, \ell_{1}\right) \neq 0$, and $\operatorname{Ext}\left(T^{*}, \ell_{2}\right) \neq 0$ by Theorem 1. For $U \in\left\{\ell_{q}, S_{q}, Z_{q}, W_{q}, V_{q}, V_{q}^{* *}, J_{q}, q=1,2\right\}$, U contains $\left\{\ell_{q}^{n}\right\}$ uniformly complemented Theorem 2.

Argyros and Deliyanni constructed two examples of asymptotic ℓ_{1} Banach spaces, both are of the type of Tsirelson's [1]. The second, we shall denote it by $A D$, does not contain any unconditional basic sequence.

Proposition 8 (i) Ext $(U, T) \neq 0$, and $\operatorname{Ext}(U, A D) \neq 0$ where $U \in\left\{c_{0}, S_{p}, V_{p}, Z_{p}, W_{p}, V_{p}^{* *}, 1 \leq p<\infty\right\}$. (ii) $\operatorname{Ext}\left(T^{*}, T\right) \neq 0$, and $\operatorname{Ext}\left(T^{*}, A D\right) \neq 0$

Proof. (i) By [19, Proposition 2.2], $\operatorname{Ext}\left(U, \ell_{1}\right) \neq 0$ where $U \in\left\{c_{0}, S_{p}, V_{p}, Z_{p}, W_{p}, V_{p}^{* *}, 1 \leq p<\infty\right\}$. Since T and $A D$ are asymptotically ℓ_{1}, then T and $A D$ contain $\left\{\ell_{1}^{n}\right\}$ uniformly complemented. The result follows by Theorem 2.
(ii) Since $\operatorname{Ext}\left(T^{*}, \ell_{1}\right) \neq 0$ by the previous proposition, and since the spaces T and $A D$ contain $\left\{\ell_{1}^{n}\right\}$ uniformly complemented, the result follows by Theorem 2.

4. Twisted sums of the Johnson-Lindenstrauss space.

Johnson and Lindenstrauss [20] constructed a nontrivial twisted sum of c_{0} and a Hilbert space (necessarily non-separable), called the Johnson-Lindenstrauss space $J L$. It is defined to be the completion of the linear span of $c_{0} \cup\left\{\chi_{i}: i \in I\right\}$ in ℓ_{∞} with respect to the norm:

$$
\left\|y=x+\sum_{j=1}^{k} a_{i(j)} \chi_{i(j)}\right\|=\max \left\{\|y\|_{\infty},\left\|\left(a_{i}\right)_{i \in I}\right\|_{\ell_{2}(I)}\right\}
$$

$x \in c_{0}, a_{i(j)}$ are scalars, and χ_{i} is the characteristic function of $A_{i},\left\{A_{i}\right\}_{i \in I}$ is an almost disjoint uncountable family of infinite subsets of \mathbb{N}. They proved that $J L / c_{0}$ is isomorphic to some $\ell_{2}(I)$ and since ℓ_{1} is projective, the dual sequence $0 \longrightarrow \ell_{2}(I) \longrightarrow J L^{*} \longrightarrow \ell_{1} \longrightarrow 0$ of the exact sequence $0 \longrightarrow c_{0} \longrightarrow J L \longrightarrow$ $\ell_{2}(I) \longrightarrow 0$ splits. That is, $J L^{*}=\ell_{1} \oplus \ell_{2}(I)$.

Proposition 9 (i) Ext $\left(J L^{*}, U\right) \neq 0$, where $U \in\left\{\ell_{1}, S_{1}, Z_{1}, W_{1}, V_{1}, V_{1}^{* *}, T, A D\right\}$.
(ii) $\operatorname{Ext}\left(U, J L^{*}\right) \neq 0$, where $U \in\left\{T^{*}, c_{0}, S_{p}, Z_{p}, W_{p}, V_{p}, V_{p}^{* *}, 1 \leq p<\infty\right\}$.

Proof. (i) Since $J L^{*}=\ell_{1} \oplus \ell_{2}(I)$ and ℓ_{2} is complemented in $\ell_{2}(I)$, then ℓ_{2} is complemented in $J L^{*}$. By $[6,4.3] \operatorname{Ext}\left(\ell_{2}, \ell_{1}\right) \neq 0$, hence $\operatorname{Ext}\left(J L^{*}, \ell_{1}\right) \neq 0$, which leads to $\operatorname{Ext}\left(J L^{*}, T\right) \neq 0, \operatorname{Ext}\left(J L^{*}, A D\right) \neq 0, \operatorname{Ext}\left(J L^{*}, S_{1}\right) \neq 0$ and $\operatorname{Ext}\left(J L^{*}, Z_{1}\right) \neq 0$ by Theorem 2. By proposition 3, the result follows.
(ii) Since ℓ_{1} is complemented in $J L^{*}$, then the result can be concluded using $\operatorname{Ext}\left(c_{0}, \ell_{1}\right) \neq 0$ and a similar argument to that used in (i).

In [17, Theorem 2.2] it has been proved that for any Banach spaces U and $Y, \operatorname{Ext}\left(Y, U^{*}\right)=0$ if and only if $\operatorname{Ext}\left(U, Y^{*}\right)=0$. Therefore it is immediate that

Corollary $10 \operatorname{Ext}\left(J L, U^{*}\right) \neq 0$, where $U \in\left\{T^{*}, c_{0}, S_{p}, Z_{p}, W_{p}, V_{p}, V_{p}^{* *}, 1 \leq p<\infty\right\}$.

5. Twisted sums of the James tree space.

The James tree space JT was introduced by James in [15]. It was the first example of a separable dual Banach space that contains no copy of ℓ_{1} though it has a non separable dual. Moreover, James proved that JT does not contain
a subspace isomorphic to c_{0} or ℓ_{1}. The space $J T$ is defined to be the completion of the space of finite sequences over the dyadic tree Δ with respect to the norm

$$
\|x\|=\sup _{n \in N} \sup _{S_{1}, \ldots . S_{n}}\left[\sum_{i=1}^{n}\left(\sum_{\alpha \in S_{i}} x_{\alpha}\right)^{2}\right]^{1 / 2}
$$

where the supremum is taken over all finite sets of pair wise disjoint segments of Δ.

Proposition 11 (i) $\operatorname{Ext}(J T, U) \neq 0$, where $U \in\left\{\ell_{1}, S_{1}, Z_{1}, W_{1}, V_{1}, V_{1}^{* *}, T, A D, J L^{*}\right\}$.
(ii) $\operatorname{Ext}(J T, U) \neq 0$, where $U \in\left\{\ell_{2}, S_{2}, Z_{2}, W_{2}\right.$, or $\left.V_{2}, V_{2}^{* *}, J L^{*}\right\}$.

Proof. (i) Fetter de Buen [13, 2.b.8, 3.a.7] proved that c_{0} is finitely represented in the James space J. Since JT contains J, then JT contains $\left\{\ell_{\infty}^{n}\right\}_{n=1}^{\infty}$ uniformly which implies that it contains $\left\{\ell_{\infty}^{n}\right\}_{n=1}^{\infty}$ uniformly complemented. Since $\operatorname{Ext}\left(c_{0}, \ell_{1}\right) \neq 0$, then by Theorem 1 we have $\operatorname{Ext}\left(J T, \ell_{1}\right) \neq 0$. Applying Theorem 2 gives $\operatorname{Ext}(J T, T) \neq 0, \operatorname{Ext}(J T, A D) \neq 0, \operatorname{Ext}\left(J T, S_{1}\right) \neq 0$ and $\operatorname{Ext}\left(J T, Z_{1}\right) \neq 0$. The result follows by Proposition 3.
(ii) The proof is by using $\operatorname{Ext}\left(c_{0}, \ell_{2}\right) \neq 0$ and applying Theorems 1,2 , and Proposition 3.

Proposition $12 \operatorname{Ext}(U, \mathcal{B}) \neq 0$, where \mathcal{B} is the predual of $J T$, and $\operatorname{Ext}\left(U, J T^{*}\right) \neq 0$, where $U \in\left\{\ell_{p}, S_{p}, Z_{p}, W_{p}, V_{p}, V_{p}^{* *}, 1 \leq p<\infty\right\}$.

Proof. The predual B of $J T$ contains $\left\{\ell_{1}^{n}\right\}_{n=1}^{\infty}$ uniformly complemented [18, Lemma 2.4], and hence so does $J T^{*}$. It has been proved in [19, Proposition 2.2] that $\operatorname{Ext}\left(U, \ell_{1}\right) \neq 0$, where U is either $\ell_{p}, S_{p}, V_{p}, Z_{p}, W_{p}$, or $V_{p}^{* *}$, so by Theorem 2 we get the result.

6. Singular Twisted sums with $C(K)$ spaces.

A continuous linear operator $T: E \rightarrow F$ between two Banach spaces is called strictly singular if it fails to be invertible on any infinite dimensional closed subspace of E. We say that a quasi-linear map $F: U \rightarrow Y$ is strictly singular if it has no trivial restriction to any infinite dimensional subspace of U. A quasi-linear map $F: U \rightarrow Y$ is strictly singular if and only if the quotient map $Q: Y \oplus_{F} U \rightarrow U$ is a strictly singular operator, that is the restriction of Q to any infinite dimensional subspace of $Y \oplus_{F} U$ is not an isomorphism [11, Lemma 1]. In this case we say that the twisted sum $Y \oplus_{F} U$ is singular.

Theorem 13 There are singular twisted sums $U \oplus_{F} C[0,1]$, where $U \in\left\{T, T^{*}, A D, J T\right\}$.
Proof. For every $U \in\left\{T, T^{*}, A D, J T\right\}, U$ is separable and have no copy of ℓ_{1}, hence there is an exact sequence

$$
0 \rightarrow C[0,1] \xrightarrow{j} X \xrightarrow{Q} U \rightarrow 0
$$

with Q strictly singular [7, 2.3]. Hence the corresponding quasi-linear maps $F: U \rightarrow C[0,1]$ is strictly singular.

Recall that if $N \in \mathbb{N}$, the space $C\left(\omega^{N}\right)$ is isomorphic to c_{0}, and so, by Sobczyk's Theorem, for any separable Banach space U, we have $\operatorname{Ext}\left(U, C\left(\omega^{N}\right)\right)=$ 0 . The extension constant $\pi_{N}(U)$ is the least constant such that if

$$
0 \rightarrow C\left(\omega^{N}\right) \xrightarrow{j} X \xrightarrow{Q} U \rightarrow 0
$$

is an exact sequence and $\varepsilon>0$, then there is a linear operator $P: X \rightarrow C\left(\omega^{N}\right)$ with $P j=i_{C\left(\omega^{N}\right)}$ and $\|P\| \leq \pi_{N}(U)+\varepsilon\left[7\right.$, Section 3]. It is proved that $\pi_{N}(U) \leq$ $2 N+1$, for every $N \in \mathbb{N}[7$, Theorem 3.1].

Theorem $14 \operatorname{Ext}\left(T, C\left(\omega^{\omega}\right)\right)=0$.
Proof. Recall that T^{*} is a separable Banach space with summable Szlenk index [21, Proposition 6.7]. Hence $\operatorname{Ext}\left(T, C\left(\omega^{\omega}\right)\right)=0$ by [7, 4.4], which implies that Sup $\pi_{N}(U)<\infty$ by $[7,4.1]$.

7. Pelczynski's property (u).

Two infinite-dimensional Banach spaces X and Y are totally incomparable if no closed, infinite-dimensional subspace of X is isomorphic to a subspace of Y. Since $\left\{J_{p}, S_{q}\right\}$ and $\left\{J_{p}, V_{q}\right\}$ are totally incomparable for $p, q \geq 1$ [3,5.9]; we can deduce immediately that any twisted sum that extends J_{p} can not be isomorphic to S_{q} or $V_{q}, p, q \geq 1$. But we can know more about the twisted sums of certain spaces using Pełczynski's property (u). A Banach space X has Pełczynski's property (u) if for every weak Cauchy sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, there is a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X such that for every bounded functional on X we have

$$
\sum_{n=1}^{\infty}\left|\left\langle y_{n}, f\right\rangle\right|<\infty \text { and }\left\langle x_{n}-\sum_{i=1}^{n} y_{j}, f\right\rangle \rightarrow 0 \text { as } n \rightarrow \infty
$$

We will show that for any Banach space U, every twisted sum that extends J_{2} or the $p^{\text {th }}$-James-Schreier space $V_{p}(p>1)$ does not have the Pełczynski's property (u). For this purpose we need the Pełczynski's Theorem:

Theorem 15 (22) (i) Every Banach space with an unconditional basis has Pełczynski's property (u).
(ii) Every closed subspace of a Banach space with Pełczynski's property (u) has Pełczynski's
property (u).
(iii) The James space J_{2} does not have Pełczynski's property (u).

Theorem 16 The twisted sum that extends $V_{p}(p>1)$ or J_{2} does not have the
Pełczynski's property (u), and hence has no unconditional basis.

Proof. Let $X \in \operatorname{Ext}\left(U, V_{p}\right)$, then V_{p} is isomorphic to a closed subspace of X. Since V_{p} does not have the Pełczynski's property (u) [4, Theorem 6.3] then X does not have Pełczynski's property (u), by (ii) of Pelczynski theorem. Hence X has no unconditional basis. The case for $X \in \operatorname{Ext}\left(U, j_{2}\right)$ can be proved similarly by using (iii) of the previous theorem.

Data Availability

The readers who are interested may contact the author for more informations.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] S.A. Argyros and I. Deliyanni, Examples of Asymptotic ℓ_{1} Banach spaces, Journal of Functional Analysis 159(1)(1997), 43-109.
[2] B. Beauzamy and J. T. Lapreste, Modèles étalés des espaces de Banach, Publications du Département de mathématiques (Lyon), no. 4A (1983) 1199, .
[3] A. Bird, G. Jameson and N. J. Laustsen, The Giesy-James theorem for general index p , with an application to operator ideals on the $\mathrm{p}^{\text {th }}$ James space, J. Operator Theory 70 (2013), 291-307.
[4] A. Bird and N. Laustsen, An amalgamation of the Banach spaces associated with James and Schreier, Part I : Banach-space structure, Banach Center Publications, 91 (2010) 45-76.
[5] F. Cabello Sanchez and J.M. Castillo, Duality and twisted sums of Banach spaces, J.Funct. Anal. 175 (2000) 1-16.
[6] F. Cabello Sanchez and J. M. Castillo, Uniform boundedness and twisted sums of Banach spaces, Houston J. Math. 30 (2) (2004) 523-536.
[7] F. Cabello Sanchez, J. M. Castillo, N. J. Kalton and D. T. Yost, Twisted sums with $C(K)$ spaces, Trans. Amer. Math. Soc. 355 (11) (2003) 4523-4541.
[8] P. G. Casazza and T. J. Shura, Tsirelson's space, Lecture Notes in Mathematics, vol. 1363 (1989), Springer-Verlag, Berlin.
[9] J. M. Castillo, Nonseparable $C(K)$-spaces can be twisted when K is a finite height compact, Topology and its Applications 198 (2016) 107-116.
[10] J. M. Castillo and M. Gonzalez, Three-space Problems in Banach Space Theory, Springer Lecture Notes in Mathematics 1667(1997).
[11] J. M. Castillo and Y. M. Salguero, Strictly singular quasi-linear maps, Nonlinear Analysis 49 (2001) 897 - 903.
[12] Edelstein and Mityagin, Homotopy type of linear groups of two classes of Banach spaces, Functional Anal. Appl. 4 (1970), 221-231.
[13] H. Fetter, B. Gamboa de Buen, The James forest, London Mathematical Society Lecture Note Series. 236. Cambridge: Cambridge University Press (1997).
[14] T.Figiel and W. B.Johnson, A uniformly convex Banach space which contains no ℓ_{p}. Compositio Mathematica, Volume 29 (1974) no. 2, pp. 179190.
[15] R. C. James, A non-reflexive Banach space isometric with its second conjugate space. Proc. Nat. Acad. Sci. U. S. A. 37, (1951). 174-177.
[16] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
[17] F. Jamjoom and H. Jebreen, On Twisted Sums Of Banach Spaces, Far East Journal of Mathematical Sciences (FJMS), 26(1) (2007)169-184.
[18] H. Jebreen, F. Jamjoom and D. Yost, Colocality and Twisted Sums, J. Math. Analy. \& App. 323 (2) (2006) 864-875.
[19] H. Jebreen, Proceedings of the 7th International Conference on Applied Analysis and Mathematical Modeling, ICAAMM18, Istanbul-Turkey.
[20] W.B. Johnson, and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces Israel J. Math. 17 (1974), 219-230.
[21] H. Knaust, E. Odell and T. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999), no. 1, 173-199.
[22] J. Lindenstrauss and C. Stegall: Examples of separable spaces which do not contain 1 and whose duals are nonseparable, Studia Math. 54, (1975) 81-105.
[23] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. Bull. Amer. Math. Soc. 81 (1975), no. 1.
[24] R. E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics Vol. 183 (1998), Springer Verlag.
[25] A. Pełczynski, A connection between weakly unconditional convergence and weakly completeness of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 251-253.
[26] J. Schreier, Ein Gegenbeispiel zur theorie der schwachen konvergenz, Studia Math., 2, (1930), 58-62.
[27] B.S. Tsirelson, Not every Banach space contains an imbedding of ℓ_{p}, or c_{0}, Functional Analysis and its Applications 8 (1974), no. 2, 138-141.

