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Abstract
In semigroups theory Green’s relations, introduced by J. Green, are a very im-
portant and useful tool for developing the semigroup theory. They characterise
the element of a semigroup or a ring in terms of the principal ideals they gen-
erate.
In contrast to early semigroup theory , where, as we have seen, ideas from
rings were applied to semigroups, Greens relations have also been applied
to rings (Hollings, 2014). In ring theory Greens relations are introduced by
(Petro,2002) In this paper at first we generalize Green’s relations in rings.
After this we notice that there exist an one to one correspondence between the
ideals of a ring and this type of new relations we introduced.Then we compare
them with Green’s relations in rings. At last we define some new relations in
module theory, which mimic Green’s relations in rings, as an attempt to get
tools in studying modules.
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1 Introduction

We give some notions and present some auxiliary result that will be used
throughout the paper. For all unexplained concepts and propositions the reader
may refer to [1],[2],[5].
[3] Let U be a ring and let a ∈ U. The principal left(right) ideal (a)l((a)r ) gen-
erated by a is Ia+Ua(Ia+ aU ), were I denotes the ring of all integers. Green’s
relation L and R in the ring U are denoted by :

aLb⇔ (a)l = (b)l ,
aRb⇔ (a)r = (b)r .

L and R are equivalence relations. La(Ra) denote the equivalence class of
UmodL(modR) containing the element a ∈U .
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[1] Let Y be a non-empty subset of (X,≤) if d is the greatest lower bound or
meet of Y we write

d =
∧
{y : y ∈ Y }

if c is the least upper bound or join we write

c = ∨{y : y ∈ Y }

[7] Let ε,η be equivalence relations on a set X, the join ε∨ η is the smallest
equivalence relation on X containing ε and η.
Since the universal relation ω is an equivalence relation containing ε and η on
X, therefore ε ∨ η exist’s and it is the intersection of all equivalence relations
containing ε and η.
An equivalence relation γ on a grupoid C will be called a right (left) congru-
ence on C if aγb(a,b ∈ C) implies acγbc(caγcb) for every c ∈ C.
By a congruence on C means an equivalence relation on C which is both a right
and a left congruence.

2 Main Results

Let U be a ring and K an ideal in U . We define relations RK,LK as following :

aRKb⇔ a− (zb+ bs),b − (z′a+ as′) ∈ K for any (z,z′) ∈Z2, (s, s′) ∈U2

aLKb⇔ a− (zb+ sb),b − (z′a+ s′a) ∈ K for any (z,z′) ∈Z2, (s, s′) ∈U2

It is easy to verify that the relationsRK,LKare equivalence relations in the ring
U .
For the sake of simplicity we denote the element a − (zb + bs) and a − (zb + sb)
respectively by a− b(z, s) and a− (z, s)b.
The intersectionHK = LK ∩RK of the equivalence relations LK,RK on the ring
U is an equivalence relation on U .

Proposition 2.1 Let I, J be ideals in U then the following propositions are equiva-
lent::

a) RI ≤RJ , b) LI ≤ LJ , c) HI ≤HJ , c) I ⊆ J .

Proof. Let I and J be ideals such that I ⊆ J and aRIb for a,b ∈ U , then there
exist ∃z,z′ ∈ Z s, s′ ∈ U such that a− b(z, s) ∈ I ⊆ J and b − a(z′ , s′) ∈ I ⊆ J , so we
have that aRJ b hence RI ≤RJ .
To prove the converse, let i be an arbitrary element of I . Then it is true that
iRI0. By using the fact that RI ≤ RJ we get that iRJ 0, thus i ∈ J. We can
prove analogously the other cases.

Greens Relations R,L,H in rings are a special case of the above relations. If
K = {0} then we have
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R{0} =R,L{0} = L,H{0} =H

Thus the following proposition hold.

Proposition 2.2 Let K be an arbitrary ideal of the ring U then the following in-
equalities are true.

R =
∧
{ RK |K ideal of U },

L =
∧
{ LK |K ideal of U },

H =
∧
{ HK |K ideal of U }.

Leme 2.1 The Green’s relations RK,LK are such for each a,b, s ∈ U and m ∈ Z we
have

aLKb⇒ a(m,s)LKb(m,s),
aRKb⇒ (m,s)aRK(m,s)b.

Proof. Suppose aLKb then there are z,z′ ∈ Z, y,y′ ∈ U such that a − (z,y)b ∈ K ,
b − (z′ , y′)a ∈ K.
Equalities :

b(m,s)− (z′ , y′)(a(m,s)) =m(b − (z′ , y′)a) + (b − (z′ , y′)a)s ∈ K

are true, the same hold a(m,s)− (z,y)(b(m,s)) ∈ K , so a(m,s)LKb(m,s). The other
implication is proved in on analogues manner.

Leme 2.2 For every ideal K of the ring U the Green’s relations LK and RK com-
mute.

Proof. It suffices to show that LK ◦RK ⊆RK ◦LK.
Let a and b be element of the ring such that aLK ◦RKb, there exist c ∈ U such
that

aLKc and cRKb.

So c − (z1, y1)a ∈ K and b − c(z2, y2) ∈ K .
Let d = a(z2, y2), since aLKc then

a(z2, y2)LKc(z2, y2) (1).

Since bRKc then b − c(z2, y2) ∈ K .
Take b = c(z2, y2) + k for any k ∈ K ,
We get that bLKc(z2, y2).
and by using (1) we have that bLKa(z2, y2).
Now let us show that aRKa(z2, y2). For this we take a(z2, y2)− a(z2, y2) ∈ K (2).
We calculate a− (a(z2, y2))(z′2, y

′
2).The following equalities hold

(a(z2, y2))(z′2, y
′
2) = (((z′1, y

′
1)c+ k′)(z2, y2))(z′2, y

′
2) for any k′ ∈ K

= (z′1, y
′
1)((c(z2, y2))(z′2, y

′
2))

= (z′1, y
′
1)((b − k)(z′2, y

′
2)) for any k ∈ K

= (z′1, y
′
1)(b(z′2, y

′
2)− k(z′2, y

′
2))

= (z′1, y
′
1)(c+ k1) where k1 ∈ K

= (z′1, y
′
1)c+ (z′1, y

′
1)k1 = a+ k2 where k2 ∈ K.

3



Since a− (a(z2, y2))(z′2, y
′
2) = a− (a+ k2) ∈ K , and by (2) we get that aRKa(z2, y2).

Finally we have that aRKa(z2, y2) and bLKa(z2, y2) this means that aRK ◦ LKb,
so LK ◦RK ⊆RK ◦LK. �

We denote D = RK ∨LK. From the above lemma we actually get that D =
RK ◦LK.
We can notice that there exists an one to one correspondence between the re-
lations RK and the ideals of the ring.
This is shown in the following proposition.

Proposition 2.3 There exists an one to one correspondence between the relations
of ”types” RK ,LK ,HK,DK . and the ideals of the ring U .

Proof. Let I , be an arbitrary ideal of the ringU . Now we take into consideration
the relation RI .
Let J be another ideal of U such that I , J which implies that (I − J) , ∅ or
(J − I) , ∅. If (I − J) , ∅ then it exists i ∈ I − J , hence iRJ0 , but we have that iRI0
, so RI ,RJ . We can prove analogously the other Greens relations . �

Proposition 2.4 Let U be a ring, then the following propositions are equivalent.

a) U is a simple ring,
b) R =

∨
{RK |K − ideal,K ,U },

c) L =
∨
{LK |K − ideal,K ,U }.

where R,L are Greens relations in rings.

Proof. If U is a simple ring then its only ideal K , U is {0},so propositons b)
and c) hold.
Conversely, for any K , U from proposition 2 we get that R ≤RK, if R = ∨RK
then R =RK , by using the above corespondence we get that K = {0}. So U is a
simple ring. The same hold for the relation L. �

If K is an ideal it can be verified that the equivalence relation defined as
following, aρKb⇔ a− b ∈ K is less or equal than ther relation RK because

For all k ∈ K,aRK (a+ k) (3)

So we get that that a+K ⊆RaK ,
The following propositon holds.

Proposition 2.5 For any ideal K , we have that ρK ≤ LK ∩RK =HK . Where ρK is
the relation defined above.

Proposition 2.6 Let U be a finite ring and K an ideal in U . Then the cardinal of
K is a divisor of the cardinal of classes of the relation RK

Proof. For all a,b ∈ U such that aRKb we have that a+K ⊆ RaK and b +K ⊆ RbK
hence RaK is a union of the equivalence classes of the relation K .
Since each two classes according relation ρK has the same number of elements
(since the ring is finite) then we get that |K | is a divisor of |RK |.
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Proposition 2.7 The relation RK (LK ) is a left congruence (right congruence) ac-
cording to the multiplicative semigroup of the ring.

The proof is analogous as in the case of Green’s relation in rings [3]

Proposition 2.8 Let K be an ideal of the ring U dhe a,b ∈U then

1-aRKb in U ⇔ aRb in the quotient ring U/K
2-aLKb in U ⇔ aLb in the quotient ring U/K
3-aHKb in U ⇔ aHb in the quotient ring U/K

Symbolically we denoteRK /K =R,LK /K = L,HK /K =HwhereR,L,H are Green’s
relations in ring.

Proof. It is sufficient to prove only the first equivalence because the other cases
can be proved analogously. If aRKb then it exists ((z,z′), (s, s′)) ∈ Z2 ×U2 such
that a − b(z, s)inK and b − a(z′ , s′) ∈ K , which imply that aRb. In a similar way
we can prove also the converse.

Taking into consideration the connection between the ideals of a ring and
the kernel of rings homomorphism the above proposition can be restatedas
following.

Proposition 2.9 If f :U → V is an epimorphism thenRkerf /kerf =R whereR is
Green’s relation in V .
Lkerf /kerf = L

The proof is analogous as in the above proposition.

Definition 2.1 Let M be a right U - module. Then in M we define the relation R
as following

m1Rm2⇔ (m1) = (m2),m1,m2 ∈M

For the left modules we denote the relation by L.
For the element m1,m2 in the definition we say that there exist a1, a2 ∈ U ,
z1, z2 ∈Z such that :

m1 =m2z2 +m2a2, m2 =m1z1 +m1a1.

Or simbolically m2 =m1(z1, a1), m1 =m2(z2, a2).
It can be proved easily that the above relation is an equivalence relations in

M.

Proposition 2.10 LetM be a rightU -module and let a,b ∈U be arbitrary elements
such that aRb. Then maRmb, for all m ∈M

Proof. If aRb then there exist ((z,z′), (s, s′)) ∈ Z2 ×U2 such that a = b(z, s) and
b = a(z′ , s′). Hence we get:
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ma =m(b(z, s)) =mb(z, s)
mb =m(a(z′ , s′)) =ma(z′ , s′)

so maRmb in M.

Proposition 2.11 LetM be a nonzeroU -module. ThenM is irreducible if and only
if |M/R| = 2

Proof. Since M is an irreducible module then for all m , 0 we get that mU =M.
Because MU , 0, so for all m,n , 0,mRn and consequently |M/R| = 2.
For the converse, let N , 0 be submodule ofM, for anym ∈M−{0}, and for any
n ∈ N − {0}, m,n , 0. By using the fact that |M/R| = 2 we conclude that m = n,
so N =M and M is an ireducible module as nontrivial modules.�

Proposition 2.12 Let M be a completely reducible module, then for each two el-
ements m = m1 + .. +mn,m′ = m′1 + .. +m′k such that mRm′ we have that n = k,
and miRm′i where mi are unique representation of m as a sum of elements in an
irreducilble modules.

Proof. Let M =
∑
i∈IMi , where Mi are irreducible modules.

If n > k, we can write m,m′ as m = m1 +m2 + ...mn,m′ = m′1 +m′2 + ...m′n where
some of mi ,m′i can be zero and mi ,m′i can be in the same component Mi ,
Since mRm′ then m =m′(z1, a1) for (z1, a1) ∈Z×U
Since Mi ∩ (

∑
j,i,j∈IMj ) = 0 we get that mi −m′i(z1, a1) = 0 thus m′i =mi(z1, a1).

In a similar way we can prove that m′i =mi(z2, a2) where m′ =m(z2, a2).
Hence miRm′i . For mi , 0 we have that m′i , 0, so n = k �
We let as an open problem the converse although it might not be true.
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