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1. Introduction 

Reliability analysis plays key role in designing of advanced systems such as nuclear weapons control systems, 

power supply systems, software systems, satellite control systems, telecommunication systems. In today’s 

competitive world, it has become important to produce the cost-effective, efficient, user-friendly systems along 

with the criteria of reliability. The complex systems with different failure and repair polices have been considered 

by earlier researchers like Gupta and Agarwal (1984), Dhillon and Yang (1992a, 1992 b, 1993) and Gupta and 

Sharma (1993). Reliability analysis of parallel systems has been extensively studied by Dhillon and Viswanath 

(1991), Kumar et al. (2012) and Agnihotri and Satsangi (1996).  

The common cause failure analysis of a two non-identical unit parallel system with arbitrarily distributed repair 

times has been studied by Dhillon and Anuda (1993a). Sridharan and Mohanavadivu (1997) studied the reliability 

measures such as availability, steady state system availability and mean time to failure (MTTF) for two non-

identical unit parallel system with two types of failure, namely, common cause and human error. 

Agnihotri and Satsangi (1996) computed the reliability of the same system but with the priority of base repair 

and inspection by using the regenerative point technique. Mohamed and Sherbeny (2013) investigated a 

stochastic analysis of two dissimilar unit parallel system with common cause failure, critical human error, non-

critical human error and preventive maintenance. Kadyan et al. (2004), Chander (2005) and Malik et al. (2010) 

are introduced some further studies focusing on the reliability of non-identical unit parallel system. 

An analytical approach to compute the reliability of the system which contains mixed configuration has been 

presented by Ram and Kumar (2015). Ram and Kumar (2015) have emphasized on the importance of repair 

facility by showing that the availability is much higher with respect to reliability for the same time unit. It is a 

well-known fact that the waiting time to repair is an important aspect of reliability analysis. 

Ram et al. (2013) investigated the reliability of a standby system incorporating a waiting time to repair. Singh 

and Gulati (2014) considered a system where the main unit and a standby unit are assumed to go under two 

types of failures: partial failure and complete failure. Singh and Gulati (2014) assumed that if the repair facility is 

not available, the system will have to wait for repair until the repair facility is available. 

Ram and Manglik (2014) studied a complex repairable system having three units in parallel configuration with 

three types of failures, namely, partial failure, catastrophic failure and human failure. In the case of partial failure, 

the system waits for repair and when there is no repairman to repair, it goes to the complete failure mode. It is 

obvious that the use of identical components increases cost, complexity and time to design. The high cost may 

be reduced by using non-identical units in parallel. Home lightning circuit consisting of two non-identical lamps 

is an example of such system. The main advantage of the parallel connection is that if one of the lamp burns 

out then there is no effect on the second one and it keeps operating. 

Preventive maintenance refers to regular, routine maintenance to help keep units up and running, preventing 

any unplanned downtime and expensive costs from unanticipated unite failure. It requires careful planning and 

scheduling of maintenance on unit before there is an actual problem as well as keeping accurate records of past 

inspections and servicing reports. Preventive maintenance involves the systematic inspection of units where 

potential problems are detected and corrected in order to prevent unite failure before it happens. In practice, a 

preventive maintenance schedule may include things such as cleaning, lubrication, oil changes, adjustments, 

repairs, inspecting and replacing parts, and partial or complete overhauls that are regularly scheduled. Therefore, 

Systems with preventive maintenance are more likely to have greater MTTF and their availability is also greater 

that those systems without preventive maintenance. This is our main focus for the proposed system. Comparison 

of reliability characteristics of two systems with preventive maintenance and different modes by El-Said, K. M., 

& El-hamid, R. A. (2008). 

Chopra and Ram (2017) evaluated various reliability of two non-identical unit parallel system with types of 

failures common cause of failure and partial failure incorporating waiting time. In this paper, we investigate 
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the reliability of two non-identical unit’s parallel system with two kinds of failures common cause and partial of 

failures incorporating preventive maintenance and waiting time to repair. The system goes for preventive 

maintenance at random apaches. Supplementary variable technique and Laplace transform have used for 

solution. 

 

 Our results are compared with the previous results to observe the effect of preventive maintenance and 

failure rates on system performance.  

 

2. Nomenclature and system states  

The present system consists of two non-identical units: A and B in parallel configuration. 

𝑡 : Time scale. 

𝑆 : Laplace transform Variable. 

𝑠𝑖 = (𝑖 = 0,1,2,3,4,5,6,7) : Transition states for  (𝑖 = 0,1,2,3,4,5,6,7) 

𝜆𝑎\𝜆𝑏  :                                 Failure rate of units A and B. 

𝜆𝑐𝑐\𝜆𝑐𝑐𝑎\𝜆𝑐𝑐𝑏  :                  Rate of common cause Failure when both Units working/unit A Failed/unit 

B failed. 

𝜆𝑃\𝜆𝑃𝑎\𝜆𝑃𝑏  :                    Rate of partial failure When both units Working/unit A Failed/unit B failed. 

𝑤   :                                  Waiting time to repair 

𝜇3(𝑥)\𝜇5(𝑥)\𝜇6(𝑥)  :          Repair rate for failed states  𝑠3\𝑠5\𝑠6 . 

𝑃𝑖(𝑡) :                                   Probability that the System is in 𝑠𝑖 = (𝑖 = 0,1,2,3,4,5,6,7) state at Time 𝑡 

𝑃𝑖(𝑠)̅̅ ̅̅ ̅̅       :                           Laplace transform of 𝑃𝑖(𝑡) 

𝑃3(𝑥, 𝑡)𝑃5(𝑥, 𝑡)𝑃6(𝑥, 𝑡)  :      Probability density function that the system is in state 𝑠3\𝑠5\𝑠6 At time t 

and has an elapsed repair time 𝑥 

𝑞3(𝑠)̅̅ ̅̅ ̅̅ ̅ \ 𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅\ 𝑞6(𝑠)̅̅ ̅̅ ̅̅ ̅   :        Laplace transform of probability density functions of repair Rates 

𝜇3(𝑥)\𝜇5(𝑥)\𝜇6(𝑥). 

𝜃1 :                                        Rate of time for taking a unit into preventive maintenance. 

𝜃2 :                                        Rate of preventive maintenance time. 

𝐴(𝑡):                                     Function of availability. 

𝑅(𝑡):                                  Function of reliability. 

𝑀𝑇𝑇𝐹:                               Mean time to failure. 

Laplace transform of 𝑃𝑖(𝑡) is: 
𝑃𝑖(𝑠)̅̅ ̅̅ ̅̅ = ∫  𝑒−𝑠𝑡𝑃𝑖(𝑡)

∞

0

𝑑𝑡 
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  3. Model description and assumptions 

In this section, we apply preventive maintenance to a system consisting of two non-identical units in parallel 

configuration with two types of failures: common cause failure and Partial failure.The system will be in operative 

mode if at least one of the unite is functioning property. A common cause failure is defined as any instance 

where multiple unites fail due to a single cause (Dhillon and Viswanath, 1991). The main causes of common 

cause failure are designing deficiencies, operations and maintenance errors, external catastrophe and functional 

deficiency. The partial failure is caused in the system due to partial failure of internal unites.  The different states 

of the system are given in the following: 

 The state description 

 𝒔𝟎 : Good state as both units are working normally. 

 𝒔𝟏: Partially failed state as unit A has failed and unit B is operative. 

 𝒔𝟐 : Partially failed state as unit B has failed and unit A is functional. 

 𝒔𝟑 : Completely failed state due to failure of both units. 

 𝒔𝟒: Partially failed state due to partial failure. 

 𝒔𝟓 : Completely failed state because of the unavailability of repairman. 

𝒔𝟔 : Completely failed state due to common cause failure. 

𝒔𝟕 : Two units under preventive maintenance. 

The system: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) 
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The following assumptions are associated with this mathematical model 

 

(1) The system consists of two non-identical parallel units. 

(2) Initially both units are operative, and the system is in good state. 

(3) The system has three states: good, partially failed and completely failed state. 

(4) The system goes to completely failed state as a result of common cause failure, unavailability of repairman 

and failure of both units. 

(5) In the case of partial failure, system waits for repair. 

(6) The common cause and other failures are statistically independent. 

(7) Common cause failure and partial failure can occur when both units are functioning (𝑠0); furthermore, when 

one unit has failed and the other is working normally (𝑠1/𝑠2). 

(8) All failure rates are constant, while repairs follow general distribution. 

(9) The system is repaired only if it is in completely failed state. 

(10) The repaired system is on a par with new one. 

4. Analysis and discussion 

The present mathematical model in figure (1) is governed by the following set of differential equations 

1)  (
𝜕

𝜕𝑡
+ 𝜆𝑎 + 𝜆𝑏 + 𝜆𝑐𝑐 + 𝜆𝑝 + 𝜃2) 𝑃0(𝑡) = ∫ 𝜇3(𝑥) 𝑃3(𝑥, 𝑡)𝑑𝑥

∞

0
+ ∫ 𝜇5(𝑥) 𝑃5(𝑥, 𝑡)𝑑𝑥

∞

0
+ ∫ 𝜇6 𝑃6(𝑥, 𝑡)𝑑𝑥

∞

0
+ 𝜃1𝑃7(𝑡)                                                                                                                           

 (4.1) 

2)   (
𝜕

𝜕𝑡
+ 𝜆𝑏 + 𝜆𝑝𝑎 + 𝜆𝑐𝑐𝑎) 𝑃1(𝑡) = 𝜆𝑎𝑃0(𝑡)                                                                                              (4.2) 

3)   (
𝜕

𝜕𝑡
+ 𝜆𝑎 + 𝜆𝑝𝑏 + 𝜆𝑐𝑐𝑏) 𝑃2(𝑡) = 𝜆𝑏𝑃0(𝑡)                                                                                              (4.3) 

4)   (
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇3) 𝑃3(𝑥, 𝑡) = 0                                                                                                                     (4.4) 

5)   (
𝜕

𝜕𝑡
+ 𝑤) 𝑃4(𝑡) = 𝜆𝑝𝑃0(𝑡) + 𝜆𝑝𝑎𝑃1(𝑡) + 𝜆𝑝𝑏𝑃2(𝑡)                                                                            (4.5) 

6)   (
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇5) 𝑃5(𝑥, 𝑡) = 0                                                                                                                     (4.6) 

7)   (
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇6) 𝑃6(𝑥, 𝑡) = 0                                                                                                                     (4.7) 

8)   (
𝜕

𝜕𝑡
+ 𝜃1) 𝑃7(𝑡) = 𝜃2𝑃0(𝑡)                                                                                                                       (4.8) 

 

At time 𝑡 = 0 we have: 

 

𝑃0(0) = 1                                                                                                                                                        (4.9)                                                                   

𝑃1(𝑡) = 𝑃2(0) = 𝑃3(0) = 𝑃4(0) = 𝑃5(0) = 𝑃6(0) = 𝑃7(0) = 0                                                            (4.10)                               

 

Boundary conditions are the following:- 

 

𝑃3(0, 𝑡) = 𝜆𝑏𝑃1(𝑡) + 𝜆𝑎𝑃2(𝑡)                                                                                                                    (4.11)                                     

𝑃5(0, 𝑡) = 𝑤 𝑃4(𝑡)                                                                                                                                        (4.12)                                                                       

𝑃6(0, 𝑡) = 𝜆𝑐𝑐𝑃0(𝑡) + 𝜆𝑐𝑐𝑎𝑃1(𝑡) + 𝜆𝑐𝑐𝑏𝑃2(𝑡)                                                                                         (4.13)                                                                           
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Solution of the model 

 

 By taking the Laplace transform of Equations from(4.1)𝑡𝑜 (4.8) and  the boundary conditions , we get  

(𝑠 + 𝜆𝑎 + 𝜆𝑏 + 𝜆𝑐𝑐 + 𝜆𝑝 + 𝜃2)𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ = ∫ 𝜇3(𝑥) 𝑃3(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

∞

0

+ ∫ 𝜇5(𝑥) 𝑃5(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

∞

0

+ ∫ 𝜇6 𝑃6(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

∞

0

+ 𝜃1𝑃7(𝑠)̅̅ ̅̅ ̅̅ ̅ 

                                                                                                                                                              (4.14) 

(𝑠 + 𝜆𝑏 + 𝜆𝑝𝑎 + 𝜆𝑐𝑐𝑎)𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝜆𝑎𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                      (4.15) 

(𝑠 + 𝜆𝑎 + 𝜆𝑝𝑏 + 𝜆𝑐𝑐𝑏)𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝜆𝑏𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                      (4.16) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇3) 𝑃3(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0                                                                                                             (4.17) 

(𝑠 + 𝑤) 𝑃4(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝜆𝑝𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑝𝑎𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑝𝑏𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                   (4.18)   

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇5) 𝑃5(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0                                                                                                             (4.19)     

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇6) 𝑃6(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0                                                                                                             (4.20) 

(𝑠 + 𝜃1) 𝑃7(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝜃2𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅    ,                                                                                                           (4.21)  

 

With Boundary conditions 

𝑃3(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜆𝑏𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑎𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                                                     (4.22)   

𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑤 𝑃4(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                                                                          (4.23) 

𝑃6(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜆𝑐𝑐𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑐𝑐𝑎𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑐𝑐𝑏𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅ .                                                                                        (4.24) 

 

Now let the first integral  of equation (4.14)  is given by   

𝐼 = ∫ 𝜇3(𝑥) 𝑃3(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥
∞

0
                                                                                                                                                                                                                     

In view of equation (4.17)  we  have 

𝑃3(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑃3(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑒−𝑠𝑥𝑒− ∫ 𝜇3  𝑑𝑢 
𝑥

0 𝑑𝑥                                                                                                               (4.25) 

In view of (4.25) the first integral becomes as the following 

 

            𝐼 = 𝑃3(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∫ 𝜇3(𝑥) 𝑒−𝑠𝑥 𝑒− ∫ 𝜇3  𝑑𝑢 
𝑥

0  𝑑𝑥
∞

0
 

              = 𝑃3(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑞3(𝑠), 

where 

𝑞3(𝑠) = ∫ 𝜇3(𝑥) 𝑒−𝑠𝑥 𝑒− ∫ 𝜇3  𝑑𝑢 
𝑥

0  𝑑𝑥
∞

0
                                                                     

By using the boundary condition (4.22), the first integral  of equation (4.14) becomes 

𝐼 = [𝜆𝑏𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝜆𝑎𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅] 𝑞3(𝑠)̅̅ ̅̅ ̅̅ ̅   (4.26) 

From equation(4.15) and (4.16) , we obtain   

𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ =
𝜆𝑎

𝑠+𝐵1
 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅     ,                                                                                                                                   (4.27) 

where       𝐵1 = 𝜆𝑏 + 𝜆𝑝𝑎 + 𝜆𝑐𝑐𝑎   ,                                                                                                                       

and  

𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅ =
𝜆𝑏

𝑠+𝐵2
𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                                                                          (4.28) 

where:          𝐵2 = 𝜆𝑎 + 𝜆𝑝𝑏 + 𝜆𝑐𝑐𝑏    . 

   Using (4.27) and (4.28) in (4.26) we give           

𝐼 = [𝜆𝑏
𝜆𝑎

𝑠+𝐵1
+ 𝜆𝑎

𝜆𝑏

𝑠+𝐵2
]𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ 𝑞3(𝑠)̅̅ ̅̅ ̅̅ ̅      .    (4.29) 

Let  the second  integral  of equation (4.14)  is given by                                                                                                         

𝐼𝐼 = ∫ 𝜇5(𝑥) 𝑃5(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥
∞

0
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In view (4.19) we have  

 

𝑃5(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =   𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑒−𝑠𝑥𝑒− ∫ 𝜇5  𝑑𝑢 
𝑥

0  ,                                                                                                            (4.30) 
 

In view of (4.30)  the Second integral becomes  as the following  

𝐼𝐼 = ∫ 𝜇5(𝑥) 𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑒−𝑠𝑥𝑒− ∫ 𝜇5  𝑑𝑢 
𝑥

0 𝑑𝑥
∞

0
= 𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∫ 𝜇5(𝑥) 𝑒−𝑠𝑥𝑒− ∫ 𝜇5  𝑑𝑢 

𝑥
0 𝑑𝑥

∞

0
 

  

     = 𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅, 

where 

𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅=∫ 𝜇5(𝑥) 𝑒−𝑠𝑥𝑒− ∫ 𝜇5  𝑑𝑢 
𝑥

0 𝑑𝑥
∞

0
 

and by using the boundary condition (4.23), the above integrals becomes  as the following 

  𝐼𝐼 = 𝑤 𝑃4(𝑠)̅̅ ̅̅ ̅̅ ̅   𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅.                                                                                                                                      (4.31) 

From (4.18), we have  

 𝑃4(𝑠)̅̅ ̅̅ ̅̅ ̅ = [
𝜆𝑝

𝑠+𝑤
+

𝜆𝑝𝑎𝜆𝑎

(𝑠+𝑤)(𝑠+𝐵1)
+

𝜆𝑝𝑏𝜆𝑏

(𝑠+𝑤)(𝑠+𝐵2)
] 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅  .                                                                                    (4.32) 

 

From (4.31) we obtain 

𝐼𝐼 = 𝑤  [ 
𝜆𝑝

𝑠+𝑤
+

𝜆𝑝𝑎𝜆𝑎

(𝑠+𝑤)(𝑠+𝐵1)
+

𝜆𝑝𝑏𝜆𝑏

(𝑠+𝑤)(𝑠+𝐵2)
  ]𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅  𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅ .                                                                       (4.33) 

let the final integral  of equation (4.14)  is denoted by    

𝐼𝐼𝐼 = ∫ 𝜇6(𝑥) 𝑃6(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

∞

0

 

From  equation (4.30)  , we get    

𝑃6(𝑥, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑃6(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑒−𝑠𝑥𝑒− ∫ 𝜇6  𝑑𝑥 
𝑥

0  ,                                                                                                                (4.34) 

 By using (4.34) integral  𝐼𝐼𝐼   becomes as the following  

𝐼𝐼𝐼 = 𝑃6(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑞6(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                                                                         (4.35) 

From (4.24), (4.27) and (4.28) we have  

𝑃6(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = [𝜆𝑐𝑐 +
𝜆𝑐𝑐𝑎𝜆𝑎

𝑠+𝐵1
+

𝜆𝑐𝑐𝑏𝜆𝑏

𝑠+𝐵2
 ]   𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅     .                                                                                               (4.36) 

Using (4.36) in (4.35), the integral becomes  

𝐼𝐼𝐼 = [𝜆𝑐𝑐 +
𝜆𝑐𝑐𝑎𝜆𝑎

𝑠+𝐵1
+

𝜆𝑐𝑐𝑏𝜆𝑏

𝑠+𝐵2
 ]   𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅  𝑞6(𝑠)̅̅ ̅̅ ̅̅ ̅   .                                                                                                (4.37) 

 

In view of (4.21), let  the final term of   equation (4.14)   is  given by   

  𝐼𝑉 = 𝜃1𝑃7(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝜃1
𝜃2

𝑠+𝜃1
 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅   .                                                                                                                  (4.38) 

From (4.29), (4.33), (4.37), (4.40) and (4.14)  we get 

 

𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ =
1

𝐺(𝑠)
          (4.39) 

where: 
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𝐺(𝑠) = 𝑠 + 𝜆𝑐𝑐 + 𝜆𝑎 + 𝜃2 + 𝜆𝑏 + 𝜆𝑃 − 𝜆𝑎𝜆𝑏 (
1

𝑠+𝐵1
+

1

𝑠+𝐵2
) 𝑞3(𝑠)̅̅ ̅̅ ̅̅ ̅ −

𝑤

(𝑠+𝑤)
(𝜆𝑃 +

𝜆𝑎𝜆𝑃𝑎

𝑠+𝐵1
+

𝜆𝑏𝜆𝑃𝑏

𝑠+𝐵2
) 𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅ −

(𝜆𝑐𝑐 +
𝜆𝑎𝜆𝑐𝑐𝑎

𝑠+𝐵1
+

𝜆𝑏𝜆𝑐𝑐𝑏

𝑠+𝐵2
) 𝑞6(𝑠)̅̅ ̅̅ ̅̅ ̅ −

𝜃2

𝑠+𝜃1
    .                                                                                                          (4.40) 

 

From (4.30), the  marginal of 𝑠  by integration with respect to  𝑥: 

 

𝑃5(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝑃5(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∫  𝑒−𝑠𝑥𝑒− ∫ 𝜇5  𝑑𝑥 
𝑥

0
∞

0
𝑑𝑥  

 

Integrating the above equation  by parts and using(4.23) and  (4.32) we have  

 

𝑃5(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝑤 [
𝜆𝑝

𝑠+𝑤
+

𝜆𝑝𝑎𝜆𝑎

(𝑠+𝑤)(𝑠+𝐵1)
+

𝜆𝑝𝑏𝜆𝑏

(𝑠+𝑤)(𝑠+𝐵2)
] 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ [

1−𝑞5(𝑠)̅̅ ̅̅ ̅̅ ̅̅

𝑠
] .                                                                 (4.41) 

 

From (4.34), the  marginal of 𝑠  by integration with respect to  𝑥: 
 

𝑃6(𝑠)̅̅ ̅̅ ̅̅ ̅ = 𝑃6(0, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∫  𝑒−𝑠𝑥𝑒− ∫ 𝜇6  𝑑𝑥 
𝑥

0
∞

0
𝑑𝑥  

 

Integrating the above equation  by parts and using(4.34) we have    𝑢 

𝑃6(𝑠)̅̅ ̅̅ ̅̅ ̅ = [𝜆𝑐𝑐 +
𝜆𝑎𝜆𝑐𝑐𝑎

𝑠+𝐵1
+

𝜆𝑏𝜆𝑐𝑐𝑏

𝑠+𝐵2
+] 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅  

1−𝑞6(𝑠)̅̅ ̅̅ ̅̅ ̅̅

𝑠
 (4.42) 

 

The Laplace transform of the probabilities that the system is in up and down state at any 

Time 𝑡 is given by the following equations: 

 

𝑃𝑢𝑝(𝑠)̅̅ ̅̅ ̅̅ ̅̅ = 𝑃0(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃1(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃2(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃4(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃7(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                      (4.43)  

  

𝑃𝑑𝑜𝑤𝑛(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑃3(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃5(𝑠)̅̅ ̅̅ ̅̅ ̅ + 𝑃6(𝑠)̅̅ ̅̅ ̅̅ ̅                                                                                                             (4.44)  

5. Availability of the system in Case with Preventive Maintenance  

Availability is defined as the probability that a system is functioning properly at any random time𝑡 , Chopar & 

Ram (2017). Availability is a performance criterion for the repairable system and is closely associated with the 

concepts of reliability and maintainability. Availability refers to failure-free operation of the system at a given 

instant of time, whereas reliability refers to failure-free operation of the system during an interval. 

𝐴(𝑡) = ∑𝑢𝑝 𝑠𝑡𝑎𝑡 

We have measured the availability of the system in following particular cases:  

5.1. Availability of the system in comprehensive state. 

Let:  𝜆𝑎 = 0.50,   𝜆𝑏 =  0.40,   𝜆𝑃 = 0.25,   𝜆𝑃𝑎 = 0.20 ,   𝜆𝑃𝑏 = 0.10,  𝜆𝑐𝑐 = 0.25,  𝜆𝑐𝑐𝑎 = 0.20,    𝜆𝑐𝑐𝑏 = 0.10,  

 𝑤 = 0.30,  𝜇3(𝑥) = 1,   𝜇5(𝑥) = 1,    𝜇6(𝑥) = 1 ,   𝜃1 = 0.2,   𝜃2=0.3 

By inverse Laplace transform of equation (4.43), we get the availability of the system as: 

 

𝐴(𝑡) = 0.2952767384907252𝑒−1.6345838095948422𝑡Cos(0.44449509588338𝑡) +
              0.45217744681454647𝑒−1.6345838095948422𝑡Sin(0.44449509588338𝑡) −
              0.02545788080007272𝑒−0.22240267261787078𝑡 − 0.05418576883183501𝑒−0.4596306386006044𝑡 −

              0.0014644492667517106𝑒−0.7487990695918408𝑡 + 0.7858313604079344                 (5.1)           
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5.2.  Availability of the system without common cause failure.  

Let: 𝜆𝑎 = 0.50  ,   𝜆𝑏 =  0.40    ,     𝜆𝑃 = 0.25  , 𝜆𝑃𝑎 = 0.20 ,    𝜆𝑃𝑏 = 0.10,    𝜆𝑐𝑐 = 0,   𝜆𝑐𝑐𝑎 = 0,   

𝜆𝑐𝑐𝑏 = 0,  𝑤 = 0.30,   𝜇3(𝑥) = 1, 𝜇5(𝑥) = 1,  𝜇6(𝑥) = 1,  𝜃1 = 0.2,  𝜃2=0.3 

In equation (4.43), and after that taking inverse Laplace transform, we obtain: 

 

𝐴(𝑡) = 0.21710376260035463𝑒−1.4322098647752701𝑡Cos(0.5724236114296911𝑡) +
              0.5138052434463463𝑒−1.4322098647752701𝑡Sin(0.5724236114296911𝑡) −
              0.020633580125450024𝑒−0.21954802653121966𝑡 − 0.026379796279341505𝑒−0.4660322439182397𝑡 +

              0.8299096138044367       (5.2)      

 

5.3. Availability of the system without partial failure. 

 

Let: 𝜆𝑎 = 0,  𝜆𝑏 =  0, 𝜆𝑃 = 0 ,  𝜆𝑃𝑎 = 0.20, 𝜆𝑃𝑏 = 0.10, 𝜆𝑐𝑐 = 0.25,  𝜆𝑐𝑐𝑎 = 0.20,  

𝜆𝑐𝑐𝑏 = 0.10,  𝑤 = 0.30, 𝜇3(𝑥) = 1, 𝜇5(𝑥) = 1,    𝜇6(𝑥) = 1 ,   𝜃1 = 0.2 ,    𝜃2=0.3 

Then taking inverse Laplace transform equation(4.43), we attain the availability of the system as follows: 

 

𝐴(𝑡) = 0.0011052608350878845𝑒−0.5455464763767969𝑡 − 0.06979003200124803𝑒−0.24144470319751457𝑡

+ 0.7754164195796075𝑒0.01502015007704967𝑡

+ 0.29326835158𝑒  −1.4890144852513691𝑡Cos[0.4571489812273525𝑡]
+ 0.34734079413𝑒  −1.4890144852513691𝑡Sin[0.4571489812273525𝑡] 

                                                                                                                                                          (5.3)      

Information that pertains to the availability of the system with respect to time, when all the failure rates have 

some fixed values, is furnished in this Table 1 and Figure 5. An inspection of Figure 5 reveals that the availability 

of the system decreases sharply during the initial stage but later on stabilizes with the increment of time: 

   

Availability 

 

 

 

Time 

Comprehensive States Without common cause 

failure  States 

without partial failure 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

0 1 1 1 1 1 1 

1 0.820453 0.801619715 0.906823 0.898519305 0.826925 0.797011447 

2 0.768009 0.730375593 0.838014 0.813289374 0.779487 0.713192134 

3 0.762741 0.716108276 0.819202 0.784577324 0.782123 0.689970969 

4 0.767234 0.716071353 0.818038 0.779075731 0.797665 0.685301182 

5 0.772032 0.717945333 0.820408 0.779289632 0.815137 0.684768991 

6 0.775671 0.719417446 0.822706 0.780107744 0.832175 0.684837691 
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7 0.778283 0.720371805 0.824438 0.780651120 0.848524 0.684901381 

8 0.780159 0.720975557 0.825707 0.780955844 0.864318 0.684924494 

9 0.781524 0.721359904 0.82665 0.781129849 0.879716 0.684930404 

10 0.78253 0.721606263 0.827363 0.781234788 0.894851 0.684931497 

11 0.783281 0.72176471 0.827909 0.781300445 0.909824 0.684931565 

12 0.783848 0.721866742 0.828331 0.781342127 0.924718 0.684931534 

13 0.78428 0.72193247 0.828659 0.781368668 0.939596 0.684931515 

14 0.784613 0.721974815 0.828917 0.781385558 0.954509 0.684931509 

15 0.784871 0.722002098 0.829119 0.781396295 0.969499 0.684931507 

Table 1: Availability of the system 

 

 

 
 

Figure 2: Comparing Availability in comprehensive states in both cases (with and without preventive 

maintenance) 

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
va

ila
b

ili
ty

Time

With Preventive Maintenance 

Without Preventive Maintenance 



  

7956 

 
 

Figure 3: Comparing Availability without common cause failure in both cases (with and without preventive 

maintenance) 

 

 
Figure 4:  Comparing Availability without partial failure in both cases (with and without preventive 

maintenance) 
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Figure 5:  Comparing Availability for system with preventive maintenance in cases Comprehensive states, 

without common cause failure and without partial failure. 

The availability of the system with preventive maintenance stabilizes to 0.78, 0.83and 0.97 in a long run when 

the system is free from common cause failure, is in comprehensive state and is without partial failure, 

respectively. It is very clear from Figure 5 that the availability of the system in comprehensive state is slightly 

lower than the availability of the system when there is no common cause failure. It can also be seen that the 

availability of the system is minimum when the system is without partial failure and is maximum when the 

system is free from common cause failure. 

 

6. Reliability of the system in Case with Preventive Maintenance  

A sudden failure of any system may results in health hazard, accident or interruption in the continuity of service. 

Uninterrupted service and hazard-free operation of complex systems like software systems, satellite control 

systems, nuclear weapons control systems, power supply systems and telecommunication systems have 

necessitated the study of reliability analysis. Reliability is the probability of a device performing its purpose 

adequately for the period intended under the given operating conditions. It should be observed that the above-

stated definition brings into focus four significant factors, namely, probability, adequate performance, intended 

time and operating conditions. These four elements play a central role in determining the reliability of an item. 

The reliability of the present system is obtained by setting all the repair rates to 0 in Equation (3.43), and followed 

by the inverse Laplace transform. The reliability of the system with respect to different cases is discussed as 

follows 

6.1. Reliability of the system in comprehensive state. 

Putting all repair rates to 0 in Equation (4.43) and substituting  𝜆𝑎 = 0.50 ,   𝜆𝑏 =  0.40 ,  

𝜆𝑃 = 0.25  , 𝜆𝑃𝑎 = 0.20 ,    𝜆𝑃𝑏 = 0.10,    𝜆𝑐𝑐 = 0.25 , 𝜆𝑐𝑐𝑎 = 0.20 , 𝜆𝑐𝑐𝑏 = 0.10, 𝑤 = 0.30,   𝜃1 = 0.2,    𝜃2=0.3 and 

then taking inverse Laplace transform, we get the reliability of the system as follows: 

 

𝑅(𝑡) = −0.18080285396466123𝑒−1.7389866919029748𝑡 + 0.299999999999989𝑒−0.8𝑡 +
              0.2678571428571529𝑒−0.7𝑡 + 0.2750000000000017𝑒−0.3𝑡 + 0.33794571110751825𝑒−0.16101330809702502𝑡 

 (6.1) 

6.2. Reliability of the system without common cause failure. 

Setting all the repair rates to 0 in Equation (4.43) and considering 𝜆𝑎 = 0.50  ,   𝜆𝑏 =  0.40 ,   
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 𝜆𝑃 = 0.25  , 𝜆𝑃𝑎 = 0.20 ,    𝜆𝑃𝑏 = 0.10,    𝝀𝒄𝒄 = 𝟎  , 𝝀𝒄𝒄𝒂 = 𝟎 , 𝝀𝒄𝒄𝒃 = 𝟎,  𝑤 = 0.30 ,  

𝜃1 = 0.2,   𝜃2=0.3  and then taking inverse Laplace transform, we get: 

 

𝑅(𝑡) = −0.30315851932454924e−1.4962860791048778𝑡 + 0.4333333333333337e−0.6𝑡 +

               0.40952380952380885e−0.3𝑡 + 0.4603013764674067e−0.1537139208951224𝑡          (6.2) 

 

6.3. Reliability of the system without partial failure. 

Assuming all the repair rates as 0 in Equation (4.43) and substituting 𝜆𝑎 = 0,   𝜆𝑏 =  0 ,    

  𝜆𝑃 = 0 , 𝜆𝑃𝑎 = 0.20 ,    𝜆𝑃𝑏 = 0.10,    𝜆𝑐𝑐 = 0.25,  𝜆𝑐𝑐𝑎 = 0.20 ,  𝜆𝑐𝑐𝑏 = 0.10,  𝑤 = 0.30, 

  𝜃1 = 0.2 ,    𝜃2=0.3 and then taking inverse Laplace transform, we obtain: 

 

𝑅(𝑡) = −0.22745249871463738𝑒−1.49629𝑡 + 0.9𝑒−0.6𝑡 + 0.3274524987146374𝑒−0.153714𝑡   (6.3) 

Table 2 and corresponding Figure 9 yield information about the reliability with preventive maintenance of the 

considered system. It can be concluded that the reliability of the system decreases with the passage of time. 

Figure 9 depicts that the system has the highest reliability with preventive maintenance when there is no 

common cause failure and has the lowest reliability when it is without partial failure. It is interesting to find that 

the reliability of the assumed system is more in the comprehensive state as compared to its reliability when it is 

free from partial failure. 

Reliability 

 

 

Time 

Comprehensive States Without common cause 

failure  States 

without partial failure 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

With 

preventive 

maintenance 

Without 

preventive 

maintenance 

0 1 1 1 1 1 1 

1 0.727458 0.702211452 0.86802 0.857205606 0.723786 0.696559279 

2 0.516866 0.454977035 0.678538 0.636763128 0.500454 0.429062173 

3 0.379323 0.294698457 0.524972 0.452997509 0.352693 0.250287321 

4 0.288649 0.195454865 0.410788 0.319079942 0.258134 0.142050937 

5 0.225996 0.133273829 0.326211 0.225347140 0.196512 0.079444342 

6 0.18055 0.093094622 0.262516 0.160261503 0.154761 0.044070228 

7 0.146264 0.066244774 0.213581 0.114860915 0.125137 0.024335152 

8 0.119639 0.047768694 0.175297 0.082907972 0.103145 0.013402561 

9 0.0985394 0.034761592 0.144885 0.060201802 0.0861629 0.007370410 

10 0.0815788 0.025451716 0.120425 0.043923896 0.0726315 0.004049694 

11 0.067807 0.018710931 0.100556 0.032167354 0.0615941 0.002224016 

12 0.0565412 0.013792076 0.0842839 0.023625227 0.0524401 0.001221040 

13 0.0472729 0.010184023 0.0708692 0.017389328 0.0447608 0.000670271 

14 0.0396133 0.007528389 0.0597494 0.012820433 0.0382694 0.000367900 

15 0.0332596 0.005569371 0.0504894 0.009463620 0.0327542 0.000201923 



  

7959 

 
 

Figure 6: Comparing Reliability in comprehensive states in both cases (with and without preventive 

maintenance) 

 
 

Figure 7: Comparing Reliability without common cause failure in both cases (with and without preventive 

maintenance) 
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Figure 8: Comparing Reliability without partial failure in both cases (with and without preventive maintenance) 

 
 

Figure 9:  Comparing Reliability for system with preventive maintenance in cases Comprehensive states, 

without common cause failure and without partial failure. 
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A system cannot operate for infinitely long time due to various reasons such as degradation of its components, 

unfavorable environmental conditions, manufacturing defects, etc. Hence, there is a call for measuring mean life 

time of the system. MTTF is defined as the mean time for which the system is expected to be operational. It is 

one of the most widely used parameters of reliability. This metric should be used when failure time distribution 

is known because the reliability level implied by the MTTF depends on the underlying failure time distribution 

(Pham, 2007). MTTF is calculated by considering all the repair rates as 0 in Equation (4.43) followed by taking 

limit as s tends to 0. 
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 We have:  

 

                                                MTTF=lim
𝑠→0

𝑝𝑢𝑝̅̅ ̅̅̅ (𝑠) 

  

we have considered the following cases: 

7.1. MTTF when the system is in the comprehensive state.  

Taking all the repair rates to 0 in Equation (4.43) as s tends to 0, we get MTTF of the system as: 

 

𝑀𝑇𝑇𝐹 = [
1

𝜆𝑐𝑐+𝜆𝑎+𝜆𝑏+𝜆𝑝
] [1 +

𝜆𝑎

𝐵1
+

𝜆𝑏

𝐵2
+

𝜆𝑝

𝑤
+

𝜆𝑎𝜆𝑝𝑎

𝑤𝐵1
+

𝜆𝑏𝜆𝑝𝑏

𝑤𝐵2
+

𝜃2

𝜃1
]         (7.1) 

 

Substituting  𝜆𝑎 = 0.50  ,   𝜆𝑏 =  0.40    ,     𝜆𝑃 = 0.25  , 𝜆𝑃𝑎 = 0.20 ,    𝜆𝑃𝑏 = 0.10, 

𝜆𝑐𝑐 = 0.25  , 𝜆𝑐𝑐𝑎 = 0.20  , 𝜆𝑐𝑐𝑏 = 0.10 , 𝑤 = 0.30,   𝜃1 = 0.2 , 𝜃2=0.3 and varying failure rates𝜆𝑎, 𝜆𝑏, 𝜆𝑃 , 𝜆𝑐𝑐 , w, 

𝜆𝑃𝑎, 𝜆𝑃𝑏, 𝜆𝑐𝑐𝑎 , 𝜆𝑐𝑐𝑏 one at a time in Equation (7.1) as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, we have studied the 

effect of change of failure rates on MTTF. 

 

                                                                        MTTF 

𝜆𝑎 𝜆𝑏 𝜆𝑃 𝜆𝑐𝑐 𝑤 𝜆𝑃𝑎 𝜆𝑃𝑏 𝜆𝑐𝑐𝑎 𝜆𝑐𝑐𝑏 𝜃1 𝜃2 

5.31944 4.71861 3.70952 4.10952 5.72704 3.60544 3.66922 3.77551 3.66922 4.74065 2.95493 

4.62121 4.25265 3.68166 3.80511 4.18367 3.66922 3.72024 3.66922 3.60119 3.66922 3.31207 

4.1875 3.91941 3.65764 3.54269 3.66922 3.71882 3.75992 3.58655 3.54828 3.31207 3.66922 

3.88889 3.66922 3.63671 3.31413 3.41199 3.7585 3.79167 3.52041 3.50595 3.1335 4.02636 

3.66922 3.47443 3.61833 3.11328 3.25765 3.79097 3.81764 3.4663 3.47132 3.02636 4.3835 

3.5 3.31845 3.60204 2.93537 3.15476 3.81803 3.83929 3.4212 3.44246 2.95493 4.74065 

3.36516 3.19073 3.58752 2.77671 3.08127 3.84092 3.8576 3.38305 3.41804 2.90391 5.09779 

3.2549 3.08422 3.57448 2.63431 3.02615 3.86054 3.8733 3.35034 3.39711 2.86565 5.45493 

3.16288 2.99402 3.56272 2.50581 2.98328 3.87755 3.8869 3.322 3.37897 2.83588 5.81207 

 

7.2. MTTF when the system is without common cause failure. 

Setting    𝜆𝑐𝑐 = 0  , 𝜆𝑐𝑐𝑎 = 0 , 𝜆𝑐𝑐𝑏 = 0  in Equation (7.1) we obtain MTTF of the System as: 

 

𝑀𝑇𝑇𝐹 = [
1

𝜆𝑎+𝜆𝑏+𝜆𝑝
] [1 +

𝜆𝑎

𝜆𝑏+𝜆𝑝𝑎
+

𝜆𝑏

𝜆𝑎+𝜆𝑝𝑏
+

𝜆𝑝

𝑤
+

𝜆𝑎𝜆𝑝𝑎

𝑤(𝜆𝑎+𝜆𝑝𝑎)
+

𝜆𝑏𝜆𝑝𝑏

𝑤(𝜆𝑎+𝜆𝑝𝑏)
+

𝜃2

𝜃1
]  (7.2)  

 

Assuming 𝜆𝑎 = 0.50  ,   𝜆𝑏 =  0.40    ,     𝜆𝑃 = 0.25  , 𝜆𝑃𝑎 = 0.20,    𝜆𝑃𝑏 = 0.10 and  𝑤 = 0.30 ,   𝜃1 = 0.2   ,   𝜃2=0.3   

and varying failure rates 𝜆𝑎, 𝜆𝑏, 𝜆𝑃 , w, 𝜆𝑃𝑎, 𝜆𝑃𝑏 one by one in Equation (7.2)  as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, we have explored the effect of change of failure rates on MTTF. 
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MTTF 

𝜆𝑎 𝜆𝑏 𝜆𝑃 𝑤 𝜆𝑃𝑎 𝜆𝑃𝑏 𝜃1 𝜃2 

8.37037 7.45098 5.94444 7.92271 5.20359 5.12077 6.42512 4.25121 

6.66667 6.16959 5.32828 5.82126 5.12077 5.17598 5.12077 4.68599 

5.78947 5.39683 4.9537 5.12077 5.08313 5.21739 4.68599 5.12077 

5.24868 4.87923 4.70085 4.77053 5.06503 5.2496 4.4686 5.55556 

4.87923 4.50794 4.51814 4.56039 5.05636 5.27536 4.33816 5.99034 

4.60952 4.2284 4.37963 4.42029 5.05257 5.29644 4.25121 6.42512 

4.40329 4.01022 4.27083 4.32022 5.05143 5.31401 4.1891 6.8599 

4.2401 3.83513 4.18301 4.24517 5.05176 5.32887 4.14251 7.29469 

4.10753 3.69146 4.11055 4.1868 5.05291 5.34161 4.10628 7.72947 

7.3. MTTF when the system is without partial failure. 

In this particular case we have assumed that the system is free from any partial failure and hence Equation 

(7.2)  reduces to: 

 

𝑀𝑇𝑇𝐹 = [
1

𝜆𝑐𝑐+𝜆𝑎+𝜆𝑝
] [1 +

𝜆𝑎

𝜆𝑏+𝜆𝑐𝑐𝑎
+

𝜆𝑏

𝜆𝑎+𝜆𝑐𝑐𝑏
+

𝜃2

𝜃1
]                           (7.3) 

Putting 𝜆𝑎 = 0.5,   𝜆𝑏 =  0.4    ,     𝝀𝑷 = 𝟎  , 𝝀𝑷𝒂 = 𝟎 ,    𝝀𝑷𝒃 = 𝟎 ,    𝜆𝑐𝑐 = 0.25  , 

  𝜆𝑐𝑐𝑎 = 0.20 , 𝜆𝑐𝑐𝑏 = 0.10,  𝑤 = 0.30,   𝜃1 = 0.2   ,   𝜃2=0.3and varying failure rates 𝜆𝑎, 𝜆𝑏, 𝜆𝑐𝑐𝜆𝑐𝑐𝑎 , 

𝜆𝑐𝑐𝑏 individually in Equation (7.3) as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, we have calculated MTTF. 

 

MTTF 

𝜆𝑎 𝜆𝑏 𝜆𝑐𝑐 𝜆𝑐𝑐𝑎 𝜆𝑐𝑐𝑏 𝜃1 𝜃2 

6.22222 5.09804 4.0 3.62319 3.47826 4.78261 2.6087 

4.90196 4.29825 3.63636 3.47826 3.39545 3.47826 3.04348 

4.21053 3.80952 3.33333 3.37474 3.33333 3.04348 3.47826 

3.77778 3.47826 3.07692 3.2971 3.28502 2.82609 3.91304 

3.47826 3.2381 2.85714 3.23671 3.24638 2.69565 4.34783 

3.25714 3.05556 2.66667 3.18841 3.21476 2.6087 4.78261 

3.08642 2.91188 2.5 3.14888 3.18841 2.54658 5.21739 

2.95019 2.7957 2.35294 3.11594 3.16611 2.5 5.65217 

2.83871 2.69972 2.22222 3.08807 3.147 2.46377 6.08696 
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Conclusion 

In this paper, we have studied a parallel system with two non-identical unit have two types of failure: common 

cause failure and partial failure, considering that units could go for preventive maintenance (PM). 

 Our study differ from the study of Chopra and Ram (2016) due to that we studied the effect of preventive 

maintenance (PM) on their system. This study showed that the performance measures of this system with 

preventive maintenance (PM) was better than those of same system without preventive maintenance (PM). We 

had shown that Availability, Reliability and mean time to failure (MTTF) of the system with preventive 

maintenance (PM) were higher than those for system without preventive maintenance (PM). Same results have 

been achieved as Chopra and Ram (2017) regarding Comprehensive state case, without common cause failure, 

and without partial failure. 
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