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Abstract 
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1  Introduction 

Delay difference equations are an important class of discrete-time dynamical systems whose future states 

depend on not only the present states,but also the past states. In the past few decades, delay difference 

equations have attracted considerable research interestbecause these equations play an essential role in 

discrete analogues and numerical solutions of delay differential equations.A massive literature on the stability 

analysis delay difference equations is available [1-12]. It should be noticed that the equilibrium point 

sometimes does not exist in many real physical systems, especially innonlinear delay difference equations. 

Therefore, it is more interesting for nonlinear delay difference equations to study the attracting set than to 

study the stability.  However, not much has been developed in the study of attracting setsfor the nonlinear 

difference equations with time-varying delays. Motivated by the above discussions, the main aim of this paper 

is to study the attracting setof the nonlinear difference equations with time-varying delays. Based on a 

generalized discrete Halanay inequality, some sufficient conditions for the attracting set and the global 

asymptotic stabilityof the nonlinear difference equations with time-varying delays are obtained.with no 

subheadings. 

2  Model description and preliminaries 

Let ，R R  and 


0R  denote the set of real numbers, positive realnumbers, nonnegative real numbers, 

respectively. Let   denotethe Euclidean norm, Z  and 
Z  represent the set of integers and positive integers, 

respectively.
 

 rzZz  :Z-r
. For simplicity, we denote )(mx  and )(mx j  by mx  and mjx , , 

respectively. For a sequence of realnumber  mx , the difference operator   on mx  is defined as 

mmm xxx  1 . 

Consider the following nonlinear difference equations with time-varying delays: 
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where ic , ija , ijb , iI  ),...,2,1,( nji   are real constants,  rhhh  ...0 10 . 

    For convenience, we shall rewrite (1) in the vector form: 
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where ,),...,,( ,,2,1

T

mnmmm xxxx  },,...,{ 1 nccdiagC  nnijaA  )( ,  ,)( nnijbB  T

nIIII ),...,,( 21 , 

T

mnmm ),...,( ,,1   . Throughout this paper, we assume that Eq. (2) has at least one solution mx  for any given 

initial function  . 

Definition 2.1. The set 
nRS  is called a global attracting set of (2), if for any initial function  , the 

solution mx  satisfies dist 0),( Sxm  as m , where dist ),(inf),(   SS   for 
nR , ),(   is 

any distance in 
nR . 



  

7977 

Lemma 2.1. [13]  For any 0 , 
nyx R,  , 

YYXXYX TTT 12   . 

Lemma 2.2. [8]  Let  
 0, Rqi  , 

Zhi , ri ,...,1 ; where rhhh  ...0 10  and 1
0
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be a sequence of real numbers satisfying the inequality 
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which lies in the interval )1,0( . 

3  Main results  

In this section, we will obtain several sufficient conditions for the attracting set of (2) by Lemma 2.2. 

The following assumptions are needed for our discussion. 

 ( 1A )  For any 
n

m Rx  , there exists positive definite symmetric matrix J such that 

m

T

mmm

T Jxxxfxf )()( .                                                                                               (6)  

( 2A )  There exist positive definite symmetric matrices iL  such that 
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Theorem 3.1  Suppose that  ( 1A ) and  ( 2A ) hold. If there exists a positive definite symmetric matrix P  

such that 1)( 21

0
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and the constant )1,0(0   may be chosen as the smallest root of the polynomial 
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As a consequence, 
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is a positive attracting set of (2). 

Proof.  Choosing the Lyapunov functional candidate 
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Obviously, we have 

.)()()( maxmin xPxVxP  
                                                                   (10)  

Then, it follows that 
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From (11) and Lemma 2.1, we have 
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Utilizing (12) and Assumptions ( 1A ) and  ( 2A ), we obtain 
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Therefore, by Lemma 2.2, we obtain 
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This means 
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where )1,0(0   may be chosen as the smallest root of the polynomial (\ref{qq8}).  The proof is completed. 

 

Corollary 3.1   Suppose that  ( 1A ) and  ( 2A ) hold.  If exists a positive definite symmetric matrix P  such 

that 1)( 21

0





r

i

i , then the equation (2) with 0I  is globally exponentially stable with the 

exponential convergence rate 0r , where )1,0(0   may be chosen as the smallest root of the 

polynomial (8). 

Proof.   Substituting  0I  into 3  yields 03  . Therefore, from (17) we have 
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                                                           （18） 
 

where )1,0(0   may be chosen as the smallest root of the polynomial (8).  The proof is completed. 

 Let  1)6,...,2,1( ii  and P  be the n-dimensional unit matrix, then from Theorem 3.1 and Corollary 

3.1 we obtain the following Corollary 3.2 and Corollary 3.3, respectively.  
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As a consequence, 
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is a positive attracting set of (2). 

 

Corollary 3.3   Suppose that  ( 1A ) and  ( 2A ) hold.  If exists a positive definite symmetric matrix P  such 

that 1)ˆˆ(ˆ
21
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, then the equation (2) with 0I  is globally exponentially stable with the 

exponential convergence rate 0r , where )1,0(0   may be chosen as the smallest root of the 

polynomial (19). 
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