

On Almost Alpha Kenmotsu (κ, μ) -Spaces

¹Hakan Öztürk, ²Sermin Öztürk

¹Afyon Kocatepe University, Afyon Vocational School, Campus of ANS, Afyonkarahisar, Turkey

²Afyon Kocatepe University, Faculty of Art and Science, Department of Mathematics, Turkey

Abstract

In this paper, the geometry of almost alpha Kenmotsu (κ, μ) -spaces are studied. Finally, we give an illustrative example on almost alpha Kenmotsu (κ, μ) -space of dimension 3.

Indexing terms/Keywords: Almost Kenmotsu manifold, Almost alpha Kenmotsu manifold, (κ , μ)-space.

Subject Classification: 2010 Mathematical Subject Classsification, 53D10, 53C15, 53C25, 53C35.

Type (Method/Approach): Research article on manifold theory in the sense of certain nullity distribution.

Date of Publication: 2018-09-30

DOI: https://doi.org/10.24297/jam.v14i2.7662

ISSN: 2347-1921

Volume: 14 Issue: 02

Journal: Journal of Advances in Mathematics

Website: https://cirworld.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

Introduction

Manifolds known as Kenmotsu manifolds have been studied by K. Kenmotsu (see [8]). The author set up one of the three classes of almost contact Riemannian manifolds whose automorphism group attains the maximum dimension. A Kenmotsu manifold can be defined as a normal almost contact metric manifold such that $d\eta = 0$ and $d\Phi = 2\eta \wedge \Phi$. Kenmotsu manifolds can be qualifed through their Levi-Civita connection, given by $(\nabla X \varphi) Y = g(\varphi X, Y) \xi - \eta(Y) \varphi X$, for any vector fields X and Y. Kenmotsu described a certain structure similar to the warped product and it was characterized by tensor equations. The author showed that such a manifold M^{2n+1} is locally a warped product $(-\varepsilon, +\varepsilon) \times f N^{2n}$ being a Kaehlerian manifold and $f(t) = c e t$ where c is a positive constant. Moreover, Kenmotsu showed locally symmetric Kenmotsu manifolds are of constant curvature −1 that means locally symmetry is a strong restriction for Kenmotsu manifolds.

It is well known that there exist contact metric manifolds $(M^{2n+1}, \varphi, \xi, \eta, g)$, for which the curvature tensor R and the direction of the characteristic vector field ξ satisfy $R(X, Y)\xi = 0$, for any vector fields on M^{2n+1} . Using a D-homothetic deformation to a contact metric manifold with $R(X, Y)\xi = 0$ we get a contact metric manifold satisfying the following special condition

$$
R(X,Y)\xi = \eta(Y)(\kappa I + \mu h)X - \eta(X)(\kappa I + \mu h)Y, \qquad (1.1)
$$

where κ, μ are constants and h is the self-adjoint (1,1)-tensor field. This condition is called (κ, μ)-nullity on M^{2n+1} . Contact metric manifolds with (κ, μ) -nullity condition studied for $\kappa, \mu = const.$ (see [1]).

Moreover, Pastore and Dileo are studied the curvature properties of almost Kenmotsu manifolds, with special attention to (κ, μ) -nullity condition for $\kappa, \mu = const.$ and $\nu = 0$ ((see [6]). The authors prove that an almost Kenmotsu manifolds M^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval. If additionally M^{2n+1} is locally symmetric then it is locally isometric to the hyperbolic space H^{2n+1} of constant sectional curvature $c = -1$. It is recall that model spaces for almost cosymplectic case were given by Olszak (see [4, 5]).

In 2009, Öztürk et al. studied (M, φ, ξ, η, g) almost α -Kenmotsu manifold in the light of the following relation

$$
R(X,Y)\xi = \eta(Y)(\kappa I + \mu h + \nu \varphi h)X - \eta(X)(\kappa I + \mu h + \nu \varphi h)Y, \tag{1.2}
$$

where κ , μ , $\nu \in R_{\eta}M$ such that $df \wedge \eta = 0$ and $h = \left(\frac{1}{2}\right)$ $\frac{1}{2}$) $(L_{\xi}\varphi)$ (see [12]). Such manifolds are said to be almost α -Kenmotsu (κ, μ, ν) -spaces and (φ, ξ, η, g) be called almost α -Kenmotsu (κ, μ, ν) -structure.

In this paper, the geometry of almost alpha Kenmotsu (κ, μ) -spaces are studied. Finally, we give an illustrative example on almost alpha Kenmotsu (κ, μ) -space with dimension 3.

Preliminaries

Let M^{2n+1} almost contact manifold be an odd-dimensional manifold. The triple (φ, ξ, η) is defined as follow. It transports a field φ of endomorphisms of the tangent spaces, ξ is a vector field that is called characteristic or Reeb vector field, and η is a 1-form such that $\varphi^2 = -I + \eta \otimes \xi$ and $\eta(\xi) = 1$. The mapping defined by $I: TM^{2n+1}$ → TM^{2n+1} , is called identity mapping. By using the definition of these it follows that $\varphi \xi = 0$, $\eta \circ \varphi = 0$ and that the (1,1)-tensor field φ has constant rank 2n (see [1]). An almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$ is said to be normal if the Nijenhuis torsion tensor $N_\varphi = [\varphi, \varphi] + 2 d\eta \otimes \xi$ vanishes for any vector fields X, Y on M^{2n+1} . If M^{2n+1} admits a Riemannian metric *a*, such that

$$
g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),\tag{2.1}
$$

for any vector fields X, Y on M^{2n+1} , then this metric g is said to be a compatible metric and the manifold M^{2n+1} together with the structure $(M^{2n+1}, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold. Hence, (2.1) means

that $\eta(X) = g(X, \xi)$ for any vector field X on M^{2n+1} . On such a manifold, the fundamental 2-form Φ of M^{2n+1} is defined by $\Phi(X, Y) = g(\phi X, Y)$. An almost contact metric manifold $(M^{2n+1}, \phi, \xi, \eta, g)$ is said to be almost cosymplectic if $d\eta = 0$ and $d\Phi = 0$, where d is the exterior differential operator. An almost contact metric manifold M^{2n+1} is said to be almost alpha Kenmotsu if $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$, α being a non-zero real constant. It is obvious that a normal almost cosymplectic manifold is called a cosymplectic manifold and a normal almost Kenmotsu manifold is called Kenmotsu manifold.

Considering the deformed structure for Kenmotsu metric structure (φ , ξ , η , g)

$$
\eta^* = (1/\alpha)\eta, \ \xi^* = \alpha\xi, \ \varphi^* = \varphi,
$$

$$
g^* = (1/\alpha^2)g, \ \alpha \neq 0, \ \alpha \in R,
$$
 (2.2)

where α is a non-zero real constant. Thus we obtain an almost alpha Kenmotsu structure $(\varphi^*, \xi^*, \eta^*, g^*)$. This deformation called a homothetic deformation on M^{2n+1} (see [10]).

Now, we set $A = -\nabla \xi$ and $h = (1/2)(L_{\xi}\varphi)$. These definitions requires that $A(\xi) = 0$ and $h(\xi) = 0$. Furthermore, A and h are symmetric operators and holds the following relations

$$
\nabla_X \xi = -\alpha \varphi^2 X - \varphi h X,\tag{2.3}
$$

$$
(\varphi \circ h)X + (h \circ \varphi)X = 0,\tag{2.4}
$$

$$
(\varphi \circ A)X + (A \circ \varphi)X = -2\alpha\varphi,\tag{2.5}
$$

$$
(\nabla_X \eta)Y = \alpha[g(X,Y) - \eta(X)\eta(Y)] + g(\varphi Y, hX), \qquad (2.6)
$$

$$
\delta \eta = -2\alpha n, \ \ tr(h) = 0, \tag{2.7}
$$

for any vector fields X, Y on M^{2n+1} . It is clear that h vanishes iff $\nabla \xi = -\alpha \varphi^2$.

Some Curvature Properties

Lemma 3.1 The following relations are held for an almost alpha Kenmotsu manifolds

$$
R(X,Y)\xi = (\alpha^2 + \xi(\alpha)) + ([\eta(X)Y - \eta(Y)X] - \alpha[\eta(X)\varphi hY - \eta(Y)\varphi hX]
$$

$$
+ (\nabla_Y \varphi h)X - (\nabla_X \varphi h)Y, \tag{3.1}
$$

$$
R(X,\xi)\xi = (\alpha^2 + \xi(\alpha))\,\varphi^2 X + 2\alpha\varphi hX - h^2X + \varphi(\nabla_{\xi}h)X,\tag{3.2}
$$

$$
(\nabla_{\xi}h)X = -\varphi R(X,\xi)\xi - (\alpha^2 + \xi(\alpha))\varphi X - 2\alpha hX - \varphi h^2X,\tag{3.3}
$$

$$
R(X,\xi)\xi - \varphi R(\varphi X,\xi)\xi = 2[(\alpha^2 + \xi(\alpha))\varphi^2 X - h^2 X],
$$
\n(3.4)

$$
S(X,\xi) = -2n[\alpha^2 + \xi(\alpha)]\eta(X) - (div(\varphi h))X,\tag{3.5}
$$

$$
S(\xi, \xi) = -[2n(\alpha^2 + \xi(\alpha)) + tr(h^2)],
$$
\n(3.6)

for any vector fields on X, Y on M^{2n+1} where α be a smooth function such that $d\alpha \wedge n = 0$. In these formulas, V is the Levi-Civita connection and R the Riemannian curvature tensor of M^{2n+1} .

Some Results

Now, we are especially interested in almost almost alpha Kenmotsu manifolds whose almost alpha Kenmotsu structure (φ , ξ , η , g) satisfies the condition (1.1) for κ , $\mu \in R_n(M^{2n+1})$. Such manifolds are said to be almost alpha Kenmotsu (κ, μ) -spaces and (φ, ξ, η, g) be called almost alpha Kenmotsu (κ, μ) -structure.

Proposition 4.1 The following relations are held for an almost alpha Kenmotsu (κ, μ) -space

$$
l = -\kappa \varphi^2 + \mu h,\tag{4.1}
$$

$$
l\varphi - \varphi l = 2\mu h\varphi, \tag{4.2}
$$

$$
h^2 = (\kappa + \alpha^2)\varphi^2, \qquad \kappa \le -\alpha^2,\tag{4.3}
$$

$$
(\nabla_{\xi}h) = -\mu[\varphi h + 2\alpha]h,\tag{4.4}
$$

$$
\nabla_{\xi}h^2 = -4\alpha(\kappa + \alpha^2)\varphi^2,\tag{4.5}
$$

$$
\xi(\kappa) = -4\alpha(\kappa + \alpha^2),\tag{4.6}
$$

$$
R(\xi, X)Y = \kappa(g(Y, X)\xi - \eta(Y)X) + \mu(g(hY, X)\xi - \eta(Y)hX)
$$
\n(4.7)

$$
Q\xi = 2n\kappa\xi,\tag{4.8}
$$

$$
(\nabla_X \varphi)Y = g(\alpha \varphi X + hX, Y)\xi - \eta(Y)(\alpha \varphi X + hX), \qquad (4.9)
$$

$$
(\nabla_X \varphi h)Y - (\nabla_Y \varphi h)X = -(\kappa + \alpha^2)(\eta(Y)X - \eta(X)Y) - \mu(\eta(Y)hX - \eta(X)hY)
$$

$$
+\alpha(\eta(Y)\varphi hX - \eta(X)\varphi hY),\tag{4.10}
$$

$$
(\nabla_X h)Y - (\nabla_Y h)X = (\kappa + \alpha^2)(\eta(Y)\varphi X - \eta(X)\varphi Y + 2g(\varphi X, Y)\xi)
$$
\n(4.11)

$$
+\mu(\eta(Y)\varphi hX-\eta(X)\varphi hY)+\alpha(\eta(Y)hX-\eta(X)hY),
$$

$$
Q\varphi - \varphi Q = 2h[\mu\varphi],\tag{4.12}
$$

for all vector fields X, Y on M^{2n+1} and and $\xi(\alpha) = 0$.

Proof. The above relations can be proved with the help of the same techniques that used by Öztürk et al. where $\xi(\alpha) = 0$ and $\kappa, \mu \in R_{\eta}(M^{2n+1})$, (see [12]).

Theorem 4.1 For almost alpha Kenmotsu (κ, μ) -space, the following relation holds

$$
0 = \xi(\kappa)(\eta(Y)X - \eta(X)Y) + \xi(\mu)(\eta(Y)hX - \eta(X)hY) - X(\kappa)\varphi^{2}Y + X(\mu)hY
$$

$$
-Y(\mu)hX + Y(\kappa)\varphi^{2}X + 2(\kappa + \alpha^{2})\mu g(\varphi X, Y)\xi + 2\mu g(hX, \varphi hY)\xi.
$$
(4.13)

here $\xi(\alpha) = 0$.

Proof. By the means of [12], we have the desired result for $\xi(\alpha) = 0$.

Lemma 4.1 Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be an almost alpha Kenmotsu (κ, μ) -space. For every $p \in N$, there exists neighborhood W of p and orthonormal local vector fields X_i , φX_i and ξ for $i = 1, ..., n$ defined on W, such that

$$
hX_i = \lambda X_i, \qquad h\varphi X_i = -\lambda X_i, \qquad h\xi = 0,
$$
\n(4.14)

for $i = 1, ..., n$ where $\lambda = \sqrt{-(\kappa + \alpha^2)}$.

Proof. According to Öztürk et al. (see [12]), the proof can be easily seen for almost alpha Kenmotsu (κ, μ) space with $v = 0$ and $\xi(\alpha) = 0$.

Now, we explain why the smooth functions κ and ν are element of $R_n(M^{2n+1})$. With the help of above Lemma 4.1, we state the following theorem.

Theorem 4.2 Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be an almost alpha Kenmotsu manifolds. If the manifold satisfies the conditions given in Lemma 4.1 then there exists almost alpha Kenmotsu (κ, μ) -space where the κ and μ functions are non-constants defined $df \wedge \eta = 0$ in $R_n(M^{2n+1})$.

Proof. By means of Lemma 1, using the local orthonormal basis $\{X_i, \varphi X_i, \xi\}$ and (4.13) we have

$$
[e_i(\kappa) - \lambda e_i(\mu)]\varphi e_i + [-\lambda \varphi e_i(\mu) - \varphi e_i(\kappa)] = 0,
$$

for $X = e_i$, $Y = \varphi e_i$ and for $\xi(\alpha) = 0$. Since $\{e_i, eX_i\}$ is linearly independent, we obtain $e_i(\kappa) - \lambda e_i(\mu) = 0$ and $\lambda \varphi e_i(\mu) - \varphi e_i(\kappa) = 0$. Then replacing X and Y by e_i and e_j , respectively, for $i \neq j$, (4.13) shows that

$$
e_i(\kappa) + \lambda e_i(\mu) = 0.
$$

Also, substituting $X = \varphi e_i$ and $Y = \varphi e_j$ in (4.13) for $i \neq j$, we have

$$
\varphi e_i(\kappa) - \lambda \varphi e_i(\mu) = 0.
$$

In view of the last three equations, we deduce

$$
e_i(\kappa) = e_i(\mu) = \varphi e_i(\kappa) = \varphi e_i(\mu) = 0.
$$

For an arbitrary function κ , we obtain $d\kappa = \xi(\kappa)\eta$ in the last equation system. Thus we have

$$
0 = d^2 \kappa = d(dx) = d\xi(\kappa) \wedge \eta + \xi(\kappa) d\eta.
$$

Since $d\eta = 0$, it follows that $d\xi(\kappa) \wedge \eta = 0$. Similarly, the same method can be used for an arbitrary function μ . Therefore, there exists almost alpha Kenmotsu (κ, μ) -space where the κ and μ functions are non-constants defined $df \wedge \eta = 0$ in $R_n(M^{2n+1})$.

Example 4.1 Suppose that three dimensional manifold is defined by

$$
M^3 = \{ (x, y, z) \in R^3, \quad z \neq 0 \},
$$

where (x, y, z) are the cartesian coordinates in $R³$. We define three vector fields on $M³$ as

$$
e = \left(\frac{\partial}{\partial x}\right),
$$

$$
\varphi e = \left(\frac{\partial}{\partial y}\right),
$$

$$
\xi = \left[\alpha x - y\left(e^{\{-2\alpha z\}} + z\right)\right]\left(\frac{\partial}{\partial x}\right)
$$

$$
+ \left[x\left(z - e^{\{-2\alpha z\}}\right) + \alpha y\right]\left(\frac{\partial}{\partial y}\right) + \left(\frac{\partial}{\partial z}\right).
$$

We easily get

$$
[e, \varphi e] = 0,
$$

$$
[e, \xi] = \alpha e + (z - e^{\lambda} \{-2\alpha z\}) \varphi e,
$$

$$
[\varphi e, \xi] = -(e^{\lambda} \{-2\alpha z\} + z)e + \alpha \varphi e.
$$

Moreover, the matrice form of the metric tensor g , the tensor fields ϕ and h are given by

$$
g = \begin{pmatrix} 1 & 0 & -d \\ 0 & 1 & -k \\ -d & -k & 1+d^2+k^2 \end{pmatrix}, \quad \varphi = \begin{pmatrix} 0 & -d & k \\ 1 & 0 & -d \\ 0 & 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} e^{\Lambda} \{-2z\} & 0 & k-de^{\Lambda} \{-2z\} \\ 0 & -e^{\Lambda} \{-2z\} & ke^{\Lambda} \{-2z\} \\ 0 & 0 & 0 \end{pmatrix},
$$

where

$$
d = \alpha x - y(e^{\lambda}(-2\alpha z) + z),
$$

\n
$$
k = x(z - e^{\lambda}(-2\alpha z) + \alpha y).
$$

Let η be the 1-form defined by $\eta = k_1 dx + k_2 dy + k_3 dz$ for all vector fields on M^3 . Since $\eta(X) = g(X, \xi)$, we can easily obtain that $\eta(e) = 0$, $\eta(\varphi e) = 0$ and $\eta(\xi) = 1$. By using these equations, we get $\eta = dz$ for all vector fields. Since $d\eta = d(dz) = d^2z$, we obtain $d\eta = 0$. Using Koszul's formula, we have seen that $d\Phi = 2\alpha\eta \wedge \Phi$. Hence, it has been showed that M^3 is an almost alpha Kenmotsu manifold. Thus we obtain

$$
R(X,Y)\xi = -(e^{\Lambda}\{-4\alpha z\} + \alpha^2)[\eta(Y)X - \eta(X)Y] + 2z[\eta(Y)hX - \eta(X)hY],
$$

where $\kappa = -(e^{\{-4\alpha z\}} + \alpha^2)$ and $\mu = 2z$. Also, we remark that this example is provided according to Theorem 7.3.1 in [12] for $\xi(\alpha) = 0$.

Acknowledgments

This paper is supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 18.KARİYER.37. Also, the author is grateful to the referee for valuable comments and suggestions.

References

[1] Blair, D., Contact manifolds in Riemannian Geometry, Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New York, 509 (1976).

[2] Blair D. E., Koufogiorgos T. and Papantoniou B. J. Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1) (1995), 189-214.

[3] Boeckx E., A full classification of contact metric (κ, μ) -spaces, Illinois J. Math., 44(1) (2000), 212-219.

[4] Dacko P. and Olszak Z., On almost cosymplectic (κ, μ, ν) -spaces, Banach Center Publ., 69 (2005), 211-220.

[5] Dacko P. and Olszak Z., On almost cosymplectic (-1, μ , 0)-spaces, Cent. Eur. J. Math. 3(2) (2005), 318-330.

[6] Dileo G. and Pastore A. M., Almost Kenmotsu Manifolds and Nullity Distributions, J. Geom. 93 (2009), 46-61.

[7] Dileo G. and Pastore A. M., Almost Kenmotsu manifolds with a condition of η-parallelism, Differential Geometry and its Applications, 27 (2009), 671-679.

[8] Kenmotsu, K., A class of contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93-103.

[9] Kim, T.W, Pak, H.K., Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica, Eng. Ser. Aug., 21(4) (2005), 841-846.

[10] Koufogiorgos T., Markellos M. and Papantoniou J., The harmonicity of the reeb vector field on contact metric 3-manifolds, Pasific Journal of Math., 234(2) (2008).

[11] Öztürk H., Aktan N. and Murathan C., On α -Kenmotsu manifolds satisfying certain conditions, Applied Sci., 12 (2010), 115-126.

[12] Öztürk, H., On Almost α -Cosymplectic (κ, μ, ν) -Spaces, PhD Thesis, Afyon Kocatepe University, Graduate School of Natural and Applied Sciences (2009).

[13] Öztürk, H., On almost α-Kenmotsu manifolds with some tensor fields. AKU J. Sci. Eng. 16 (2016), 256-264.

[14] Öztürk H., Aktan N., Murathan C. and Vanlı A.T. Almost α -Cosymplectic f-Manifolds. The Journal of Alexandru Ioan Cuza University, 60 (2014), 211-226.

[15] Yano K., Kon, M., Structures on Manifolds, Series in Pure Math, Vol 3, World Sci., (1984).