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Abstract 

In this paper, we present the Hyers-Ulam stability of Cubic functional equation 
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1. Introduction 

The theory of random normed spaces (briefly, RN-Spaces) is important as a generalization of deterministic result 

of normed spaces and also in the study of random operator equations. The notion of an RN-Space corresponds 

to the situations when we do not know exactly the norm of the point and we know only probabilities of possible 

values of this norm. 

Random Theory is a setting in which uncertainty arising from problems in various fields of science, can be 

modelled. It is a practical tool for handling situations where classical theories fail to explain. Random Theory has 

many applications in several fields, for example, population dynamics, computer programming, nonlinear 

dynamical system, nonlinear operators, statistical convergence and so forth. Jun and Kim [5] introduced the 

following cubic functional equation 

( ) ( ) ( ) ( ) ( )2 2 2 2 12f x y f x y f x y f x y f x+ + − = + + − +    (1.1) 

and they established the general solution and the generalized Hyers-Ulam stability for the functional equation. 

The function ( ) 3f x x=  satisfies the functional equation (1.1), which is called a cubic functional equation. The 

solution and stability of the succeeding cubic functional equation, 

( ) ( ) ( ) ( ) ( ) ( )22 1f x ky kf x y kf x y f x ky k k f y+ − + + − − − = −      (1.2) 
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were dealt by Seong Sik Kim et al., [17], S, Murthy et al., [9].  Some of the non-cubic functional equations 

discussed in various spaces of papers are used to develop this paper which are [1,3,7,8,10,11,12, 13,14,16,18,19]. 

In this paper, the authors investigate the general solution and generalized Hyers-Ulam stability of a new type of 

n-dimensional cubic functional equation 
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(1.4) 

where n is greater than or equal to 4, in Random Normed Space by using direct and fixed-point method. 

2. Preliminaries 

In this part, we evoke some notations and basic definitions used in this article. 

Definition 2.1[9] A mapping      : 0,1 0,1 0,1T  →  is called a continuous triangular norm, if T satisfies the 

following condition: 

a) T is commutative and associative; 

b) T is continuous 

c) ( ),1T a a=  for all  0,1a  



 

7866 

d) ( ) ( ), ,T a b T c d  when a c  and b d  for all , , , [0,1]a b c d . 

Typical examples of continuous t-norms are ( ) ( ) ( ), , , min ,p mT a b ab T a b a b= = and 

( ) ( ), max 1,0LT a b a b= + − ( The Lukasiewicz t-norm). Recall [9] that if T is a t-norm and 
nx is a given 

sequence of numbers in [0,1], then 
1

n

i n iT x= +
 is defined recurrently by 

'

1i i iT x x= =  and ( )1

1 1 ,n n

i i i i nT x T T x x−

= ==  for 

12, i in T x

=  is defined as 
1i n iT x

= +
. It is known that, for the Lukasiewicz t-norm, the following implication holds: 

( ) ( )
1

1

lim 1 1L n i nin
n

T x x




+=→
=

=  −   

Definition 2.2[9] A random normed space (briefly, RN-Space) is a triple ( ), ,X T , where X is a vector space. 

T is a continuous t-norm and   is a mapping from X into D+
 satisfies the following conditions: 

(RN1) ( ) ( )0x t t =  for all 0t   if and only if 0x = . 

(RN2) ( )x x

t
t 



 
=   

 

for all x X , and   with 0  . 

(RN3) ( ) ( ) ( )( ),x y x yt s T t s  + +  for all , , 0x y X and t s  . 

Definition 2.3[9] Let ( ), ,X T be a RN-space. 

1) A sequence  nx in X is said to be convergent to a point x X  if, for any 0 0and   , there 

exists a positive integer N such that ( ) 1
nx x  −  −  for all n N . 

2) A sequence  nx in X is called a Cauchy sequence if, for any 0 0and   , there exists a positive 

integer N such that ( ) 1
n mx x  −  −  for all n m N  . 

3) A RN-Space ( ), ,X T is said to be complete, if every Cauchy sequence in X is convergent to a point in 

X. 

For more details we can go through [ 2, 4, 6, 16, 20,21]. 

3. General Solution of the n-Dimensional Cubic Functional Equation (1.4): 

In this part, the authors discuss the general solution of the functional equation (1.4) by considering X and Y are 

real vector space. 

Theorem 3.1 If a mapping 𝑓: 𝑋 → 𝑌 satisfies the functional equation (1.1), then the function  𝑓: 𝑋 → 𝑌 satisfies 

the functional equation (1.4). 

Proof. Assume that :f X Y→  satisfies the functional equation (1.4), for all 1 2 3, , ,..., nx x x x X .Substituting  

( )1 2 3, , ,..., nx x x x   by ( )0,0,0,...,0  in (1.4), we receive 
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( )0 0f =
 

for all x X . Replacing  ( )1 2 3, , ,..., nx x x x  by ( ),0,0,...,0x  in (1.4), we get 

( ) ( )f x f x− = −  

for all x X . Hence f is an odd function. Again replacing  ( )1 2 3, , ,..., nx x x x   by  , ,0,...,0
2

x
x

 
 
 

 in (1.4), we 

have 

( ) ( )32 2f x f x=       (3.1) 

 for all x X . Now, letting x   by  2x in (3.1), we get 

( ) ( )34 4f x f x=       (3.2) 

for all x X . In general, for any positive integer a , we obtain  

( ) ( )3f ax a f x=       (3.3) 

Setting ( )1 2 3 4, , , ,..., nx x x x x  by  , , , ,0,...,0
2 3 4

x x y
x
− 

 
 

 in (1.4) and using (3.1), we receive 

( ) ( ) ( ) ( ) ( )3 6 3 2f x y f x f y f x y f x y+ = − + + + + −   (3.5) 

for all ,x y X . Replacing y by y−  in (3.5), we obtain 

( ) ( ) ( ) ( ) ( )3 6 3 2f x y f x f y f x y f x y− = − − + − + +   (3.6) 

for all ,x y X . Adding (3.5) and (3.6), We achieve our required result (1.1). 

All over this paper we use the following notation for a given mapping :f X Y→  as 

( ) ( ) ( ) ( )
2

1 2 3

1 1 1

5 6
, , ,..., 3
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n i i j k i j
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  

 − + 
= − + + − − + −  

   
  

 

       ( ) ( )
1

3

1

0

1
n

i

i

i f x
−

+

=

+  

for all 1 2 3, , ,..., nx x x x X .  

4. Random Stability Results: Direct Method 

In this part, the generalized Ulam-Hyers Stability of the cubic functional equation (1.4) in RN-Space is provided. 

All through this part, let us consider X be a linear space ( ), ,Y T  is a complete RN-Space.  

Theorem 4.1 Let 1j =  , :f X Y→ be a mapping for which there exists a function : nX D +→  with the 

condition  

( ) ( ) ( ) ( )

( )( )( )
1 2 3

3 1

0 2 ,2 ,2 ,...,2
lim 2 1k i k i k i k i

n

k i j

i x x x xk
T t + + + +

+ +

=
→

= =   (4.1) 

( )
1 2, 3

3

2 ,2 2 ,...,2
lim 2kj kj kj kj

n

kj

x x x xk
t

→
=                 (4.2) 
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such that the functional inequality with ( )0 0f =  such that  

( ) ( ) ( ) ( )1 2 1 2, ,..., , ,...,n nDf x x x x x x
t t       (4.3) 

for all 1 2 3, , ,..., nx x x x X  and all 0t  . Then there exists a unique cubic mapping  :C X Y→  satisfies the 

functional equation (1.4) and  

( ) ( ) ( ) ( ) ( )

( )( )( )1 1

3 1

0 2 ,2 ,0,...,0
2i j i j

i j

iC x f x x x
t T t  + +

+

=−
    (4.4) 

for all x X and all 0t  . The mapping ( )C x is defined by  

( ) ( ) ( )
( )

3

2

2

lim kj

kj

C x f xk
t t 

→
=      (4.5) 

for all x X and all 0t  . 

Proof.  Assume 1j = . Setting ( ) ( )1 2 3, , ,..., , ,0,...,0nx x x x by x x  in (4.1), we acquire  

( ) ( ) ( ) ( )
( ) ( )2 2 , ,0,...,05 6 2 8 5 6 x xn n f x n n f x
t t 

− + − − +
    (4.6) 

for all x X and all 0t  . It follows from (4.5) and (RN2), we arrive 

( )
( )
( ) ( )( )

3

2

, ,0,...,02

2

8 5 6x xf x
f x

t n n t 
−

 − +    (4.7) 

for all x X and all 0t  . Replacing 2kx by x  in (4.6), we catch 

( )
( )

( )
( ) ( )( )1

33 1

2

2 ,2 ,0,...,02 2

22

8 5 6 8k kk k

kk

k

x xf x f x
t n n t +

+
−

 − +    (4.8) 

( )2

, ,0,...,0

8 5 6 8k

x x k

n n
t



 − +
 
 
 

 

for all x X and all 0t  .  It follows from 
( )

( )
( ) ( )1

1

1
0

2 2 2

8 8 8

n k k
n

n k k
k

f x f x f x
f x

+
−

+
=

− = −  and (4.8) that  

( )
( ) ( )

( )( ) ( )
1

1

0 , ,0,...,0 , ,0,...,022
0

8

8 5 6 8
n

n

kn
n

k x x x xkf x
kf x

t T t t
n n


  

−
−

=

=−

 
   =
 − +
 
   (4.9) 
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( )
( )

( )

( )

, ,0,...,0 12

8 2
0 8 5 6 8

n

n

x x knf x
f x

k
k

t
t

n n

 
−

−

=

 
 
 


 
 
 − +
 


                                (4.10) 

for all x X and all 0t  . Replacing 2mx by x  in (4.10), we arrive that 

( ) ( )
( )

( )

, ,0,...,02 2

8 8 28 5 6 8

n m m

n m m

x x kn mf x f x

k
k m

t
t

n n

 


+

+

+
−

=

 
 
 


 
 
 − +
 


                              (4.11) 

As  

( )

, ,0,...,0

2

1

8 5 6 8

x x kn m

k
k m

t

n n


+

=

 
 
 

→
 
 
 − +
 


as ,m n→ , then 
( )2

8

n

n

f x  
 
  

 is a Cauchy sequence in 

( ), ,Y T . Since ( ), ,Y T  is a complete RN-Space, this sequence converges to some point ( )C x Y . Fix 

x X  and put 0m =  in (4.11), we have 

( )
( )

( )

( )

, ,0,...,0 12

8 2
0 8 5 6 8

n

n

x x knf x
f x

k
k

t
t

n n

 
−

−

=

 
 
 


 
 
 − +
 


    (4.12) 

and so, for every 0  , we collect 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
2 2

8 8

,n n

n n

C x f x f x f x
C x f x

t T t    
−

− −

 
 + 
 
 

 

( )
( )

( )

( )

, ,0,...,0 12

8 2
0

,

8 5 6 8

n

n

x x knf x
C x

k
k

t
T

n n t

  
−

−

=

  
  
  

   
  

  − +
  


  (4.13) 

Taking limit as n→  and using (4.13), we arrive  

( ) ( ) ( ) ( )( )( )2

, ,0,...,0 5 6 8x xC x f x
t n n t   

−
+  − + −    (4.14) 

Since   was arbitrary, by taking 0 →  in (4.14), we have 
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( ) ( ) ( ) ( )( )( )2

, ,0,...,0 5 6 8x xC x f x
t n n t  

−
 − + −    (4.15) 

Replacing ( )1 2, ,..., nx x x  by ( )1 22 ,2 ,...,2n n n

nx x x  in (4.3) respectively, we acquire 

( )
( ) ( )

1 21 2
2 ,2 ,...,22 ,2 ,...,2

8n n nn n n
nn

n

x x xDf x x x
t t      (4.16) 

for all 1 2, ,..., nx x x X  and for all 0t  . Since  

( ) ( ) ( ) ( )

( )( )( )
1 2 3

3 1

0 2 ,2 ,2 ,...,2
lim 2 1.k i k i k i k i

n

k i j

i x x x xk
T t + + + +

+ +

=
→

= =

 

We   conclude that C fulfils (1.1). To prove the uniqueness of the cubic mapping C, assume that there exists a 

cubic mapping D from X to Y, which satisfies (4.15). Fix x X . Clearly, ( ) ( )2 8n nC x C x=  and 

( ) ( )2 8n nD x D x=  for all x X . It follows from (4.15) that 

( ) ( ) ( ) ( ) ( )
( )

2 2

8 8

lim n n

n n

C x D x C x D xn
t t 

−
→

−

=  

( ) ( )
( )

( ) ( ) ( ) ( )2 2 2 2 2 2

8 8 8 8 8 8

min ,
2 2

n n n n n n

n n n n n n

C x D x C x f x D x f x

t t
t  

− − −

 
    

     
     

 

( )( )( )2

2 ,2 ,0,...,0
8 5 6 8n n

n

x x
n n t  − + −  

( )( )2

, ,0,...,0

8 5 6 8n

x x n

n n t




 − + −
 
 
 

  (4.17) 

Since 
( )( )28 5 6 8

lim

n

nn

n n t

→

 − + −
  = 
 
 

, we get 
( )( )2

, ,0,...,0

8 5 6 8
lim 1

n

x x nn

n n t


→

 − + −
  =
 
 

. Therefore, it 

follows that 
( ) ( ) ( ) 1

C x D x
t

−
=  for all 0t   and so ( ) ( )C x D x= . This completes the proof. 

The following corollary is an immediate consequence of Theorem 4.1, concerning the stability of (1.4). 

Corollary 4.2. Let  and s be non-negative real numbers. Let a Cubic Function :f X Y→ satisfies the 

inequality 
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( ) ( )

( )

( )

( )

1 2 3, , ,...,
1

11

, 3

3
,

n

n
s

iDf x x x x
i

n n
s ns

i i

ii

t

t x t s

x x t s
n









 



=

==






 

  

+   
  





  (4.18) 

for all 1 2 3, , ,..., nx x x x X and all 0t  . The there exists a unique cubic function :C X Y→ such that 

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

2 3

2 3

2 3

5 6 2 1

2

5 6 2 2

2

5 6 2 2

s

s

ns

ns

n n

f x c x x

n n

x

n n

t

t t

t









 



− + −

−

− + −

− + −







 






    (4.19) 

for all x X  and all 0t  . 

5. Random Stability Results: Fixed Point Method. 

In this part, the author presents the generalized Ulam-Hyers Stability of the functional equation (1.4), in Random 

Normed Space using fixed point method. 

Theorem 5.1 Let :f X Y→  be a mapping for which there exists a function : nX D +→  with the condition  

( )
1 2 3

3

, , ,...,
lim 1k k k k

i i i i n

k

ix x x xk
t

   
 

→
=      (5.1) 

for all 1 2 3, , ,..., nx x x x X and all 0t   and where  

2, 0;

1
1;

2

i

i

i


=


= 
=



  satisfying the functional inequality 

( ) ( ) ( )
1 2 31 2 3
, , ,...,, , ,..., nn

x x x xDf x x x x
t t      (5.2) 

for all 1 2 3, , ,..., nx x x x X and all 0t  . If there exists ( )L L i= such that the function  

( ) ( )( )2

, ,0,...,0
2 2

, 5 6 ,x xx x t n n t → = − +  

has the property, that 

( ) ( )3

1
, ,ix

i

x t L t  


     (5.3) 
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for all x X and 0t  . Then there exists a unique cubic function :C X Y→ satisfying the functional equation 

(1.4) and  

( ) ( ) ( )
1

,
1

i

C x f x

L
t x t

L
 

−

−

 
 

− 
    (5.4) 

for all x X and 0t  . 

Proof. Let d be a general metric on  , such that 

( ) ( ) ( ) ( )( ) ( ) ( ) , inf 0, / , , , 0
g x h x

d g h k kt x t x X t 
−

=      . It is easy to see that ( ),d is complete. 

Define :T →  by ( ) ( )3

1
i

i

Tg x g x


= , for all x X . Now for ,g h , we have ( ),d g h K . 

( ) ( )( ) ( ) ( ),
g x h x

Kt x t 
−

   

( ) ( )( ) ( )3
,

Tg x Th x

i

Kt
x t 

−

 
  

 
 

( ) ( )( ),d Tg x Th x KL   

( ) ( ), ,d Tg Th Ld g h      (5.5) 

for all ,g h . Therefore, T is strictly contractive mapping on   with Lipschitz constant L.  

It follows from (4.6) that 

( ) ( ) ( ) ( )
( ) ( )2 2 , ,0,...,05 6 2 8 5 6 x xn n f x n n f x
t t 

− + − − +
     (5.6) 

for all x X . It follows from (5.6) that  

( )
( )
( ) ( )( )2

, ,0,...,02

8

5 6 8x xf x
f x

t n n t 
−

 − +     (5.7) 

for all x X . Using (5.3) for the case 0i = , it reduces to 

( )
( )
( ) ( )2

8

,
f x

f x

t L x t 
−

  

for all x X . Hence, we obtain 

( ) ( )( ) 1 i

Tf x f x
d L L −

−
 =        (5.8) 

for all x X . Replacing 
2

x
x by  in (5.7), we get 
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( ) ( ) ( )( )2

, ,0,...,0
2 28 2

5 6 8x xf x x
f

t n n t 
 

−  
 

 − +    (5.9) 

for all x X . Using (5.3) for the case 1i = , it reduces to  

( )
( ) ( ) ( ) ( ) ( ) ( )

8
2

, ,
x Tf x f x

f f x

t x t t x t   
− 

− 
 

    

for all x X . Hence, we get 

( ) ( )( ) 1 i

Tf x f x
d L L −

−
 =        (5.10) 

for all x X . From (5.8) and (5.10), we can conclude 

( ) ( )( ) 1 i

Tf x f x
d L L −

−
 =        (5.11) 

for all x X . In order to prove :C X Y→   satisfies the functional equation (1.4), the remaining proof is 

similar by using Theorem 4.1. Since C is unique fixed point of T in the set ( ) / ,f d f C =   .Finally, 

C is an unique function such that  

( ) ( ) ( )
1

,
1

i

f x C x

L
t x t

L
 

−

−

 
 

− 
 

for all x X  and 0t  . This completes the proof of the Theorem. 

From the Theorem 5.1, we obtain the following Corollary concerning the stability for the functional equation 

(1.4). 

Corollary 5.2. Suppose that a function :f X Y→  satisfies the inequality   

( ) ( )

( )

( )

( )

1 2 3, , ,...,
1

11

, 3

3
,

n

n
s

iDf x x x x
i

n n
s ns

i i

ii

t

t x t s

x x t s
n









 



=

==






 

  

+   
  





  (5.12) 

for all 1 2 3, , ,..., nx x x x X and all 0t  , where , s  are constants with 0  , then there exists a unique cubic 

mapping :C X Y→  such that 
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( ) ( ) ( )

( )

( )

( )

( )

( )

( )

2 3

2 3

2 3

5 6 2 1

2

5 6 2 2

2

5 6 2 2

s

s

ns

ns

n n

f x c x x

n n

x

n n

t

t t

t









 



− + −

−

− + −

− + −







 






    (5.13) 

for all x X  and all 0t  . 

Proof. Setting  

( ) ( )

( )

( )

( )

1 2 3, , ,...,
1

11

,

,

n

n
s

iDf x x x x
i

n n
s ns

i i

ii

t

t x t

x x t









 



=

==






 

  

+  
  





 

for all 1 2 3, , ,..., nx x x x X and all 0t  .Then 

( ) ( )

( )

( )
( )

( ) ( )
( )

3

31 2 3

1

3 3

11

3

, , ,...,

k
i

nk k k k
s s ki i i i n

i i

i

n n
s nss k ns k

i i i i

ii

k

ix x x x
x

x x

t

t t

t



   
 

  



  



−

=

− −

==

 
 +
 
 







= 







 

1

1

1

as k

as k

as k

→ → 


= → → 
→ → 

 

But we have ( ) ( )( )2

, ,0,...,0
2 2

, 5 6x xx t n n t = − +  has the property ( )3

1
,i

i

L x t 


for all x X  and 0t  . 

Now 

( )

( )

( )

( )

( )

( )

( )

2

2

2

5 6

2

2 5 6

2

2 5 6

, s

s

ns

ns

n n

x

n n

x

n n

t

x t t

t









 



− +

− +

− +







= 





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( )

( )
( )

( )
( )

( )
( )

3

3

3

3

1
,

i

s
i

ns
i

x

ix x
i

x

t

L t t

t

 

 

 



  




−

−

−





= 



 

By using Theorem 5.1, we prove the following six cases: 

32L −=  if 0i =  and 
32L =  if 1i =  

32sL −=   for 3s   if 0i =  and 
32 sL −=   for 3s   if 1i =  

32nsL −=   for 
3

s
n

  if 0i =  and 
32 nsL −=   for 

3
s

n
  if 1i =  

Case .1: 
32L −=  if 0i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3

5 6 2 1

1
,ixf x C x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Case.2: 
32L =  if 1i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3

5 6 1 2

1
,ixf x C x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Case.3: 
32sL −=   for 3s   if 0i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3
2

5 6 2 2

1
,

s

s

ixf x C x
x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Case.4: 
32 sL −=   for 3s   if 1i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3
2

5 6 2 2

1
,

s

s

ixf x C x
x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Case.5: 
32nsL −=   for 

3
s

n
  if 0i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3
2

5 6 2 2

1
,

ns

ns

ixf x C x
x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Case.6: 
32 nsL −=   for 

3
s

n
  if 1i =  

( ) ( ) ( ) ( )( )

( )( )

( )
2 3

3
2

5 6 2 2

1
,

ns

ns

ixf x C x
x

i
n n

t L t t t


   
−  

 
  − + −
 

   

Hence the proof is complete. 
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