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 1 Introduction  

Lotka-Volterra (LV) system is one of the widely used models in the field of nonlinear dynamics. This system 

with three or higher species can describe many scientific phenomena in the arena of science and engineering 

even in social sciences[1-2]. Like most of the other nonlinear systems, the exact solution of differential 

equations involved in the LV system is very hard to get when the number of species is large. 

Heteroclinic orbits are of great importance in the study of dynamical systems[3 -4]. Finding heteroclinic or 

homoclinic orbits for a given dynamical system is not an easy task. But their presence provides much 

information about the behaviour of the system. Li et.al.[5] presented the condition of existence/non-existence 

of homoclinic or heteroclinic orbit of Chen system. Tigan[6] presented a method to detect homoclinic o r 

heteroclinic orbit of a three-dimensional dynamical system by tracing the separatrices until they hit a given 

surface and then looking for the condition such that the separatrices meet one another on this surface. The 

varied heteroclinic orbit was used to make the late-time behaviour of the model insensitive to the initial 

condition and thus alleviating the fine-tuning problem in the cosmological dynamical system of a barotropic 

fluid and quintessence with a double exponential problem[7]. Beiye presented sufficient condition for the 

existence of heteroclinic cycles of n-species LV system and criterion for determining the stability of 

heteroclinic cycles[8]. A series method for continuous-time autonomous dynamical systems was proposed to 

find exact heteroclinic orbits by finding the intersections of the unstable manifold and the stable manifold of 

the equilibria[9]. 

Although several methods for obtaining invariants for  the system of nonlinear ordinary differential 

equations(ODEs) like LV system [10-17] are now available in the literature but getting their solutions in closed 

form (in terms of elementary known function) even for a simpler system is not an easy task. F. Gonzalez-

Gascon[11] developed time independent first integrals of LV systems based on the computation of 

generalized symmetry vectors of the vector field associated with the systems. Aziz[14] discussed local 

integrability and linearizability of three dimensional LV equations at the origin using  the method of Darboux 

with extensions for inverse Jacobi multipliers and the linearizability of a node in two variables with power-

series arguments in the third variable. Some invariants ware introduced by Almeida et. al.[17] for three species 

LV system with the aid of Lie Symmetry analysis of the system of ODEs. 

In this paper, we consider the LV system of the form[17]  

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(𝑑1 + 𝑐𝑦(𝑡) + 𝑧(𝑡))

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦(𝑡)(𝑑2 + 𝑥(𝑡) + 𝑎𝑧(𝑡))

𝑑𝑧(𝑡)

𝑑𝑡
= 𝑧(𝑡)(𝑑3 + 𝑏𝑥(𝑡) + 𝑦(𝑡)).

 (1) 

A substantial number of literatures is dedicated to the integrability properties of these types of LV 

system[18,19]. It is known that when one of the coupling parameters 𝑎, 𝑏, 𝑐 equals unity and growth or decay 

rate are equal (𝑑1 = 𝑑2 = 𝑑3), the system (1) is completely integrable in the sense that a pair of first integrals 

exists[18]. Some general solution of this system of ODEs was published by Maier[20] but not as an explicit 

dependence on 𝑡 . Consequently, getting the analytic expression for heteroclinic orbit between two fixed points 

is not inevitable. 

Purpose of this brief report is to obtain an exact analytic solution of the system of equations (1)  to deriving a 

condition for the existence and time-dependent solution in a compact form of heteroclinic orbits as well as to 

find the domain in phase-space where heteroclinic orbit exists. We have used separation of variable and the 

invariant of the system to get an explicit analytic solution containing some parameters involved in the system 

and presented in section 2. The condition of existence of heteroclinic orbits joining two unstable/saddle or 

stable/saddle equilibrium points has been proposed in section 3. Some applications of our result have been 

exercised in section 4. Our findings have been concluded in section 5.  
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2 Analytic Solution of LV System  

The system of ODEs (1) has five equilibrium points whose dependence on parameters involve in the equations 

are given by (𝑖) (0,0,0), (𝑖𝑖) (−𝑑2, −
𝑑1

𝑐
, 0), (𝑖𝑖𝑖 ) (−

𝑑3

𝑏
, 0, −𝑑1), (𝑖𝑣) (0, −𝑑3, −

𝑑2

𝑎
) and  

(𝑣) (−
−𝑎𝑑1+𝑑2+𝑎𝑐𝑑3

1+𝑎𝑏𝑐
, −

𝑎𝑏𝑑1−𝑏𝑑2 +𝑑3

1+𝑎𝑏𝑐
, −

𝑑1+𝑏𝑐𝑑2−𝑐𝑑3

1+𝑎𝑏𝑐
).  

The system of Eqs. (1) has invariant [17] 

 

 𝐼 = −
1

𝑎
(𝑦(𝑡) − 𝑎𝑧(𝑡) + 𝑎𝑥(𝑡))𝑒−𝜆𝑡 (2) 

 whenever  

 𝑑1 = 𝑑2 = 𝑑3
(= 𝜆), 𝑏 = 1,𝑐 = −

1

𝑎
. (3) 

 In this case the invariant is nonautonomous, in general, and the number of equilibrium points within finite 

domain of state space reduces to four given by (𝑖) (0,0,0), (𝑖𝑖) (−𝜆, 𝑎𝜆, 0), (𝑖𝑖𝑖) (−𝜆, 0,−𝜆), (𝑖𝑣) (0, −𝜆, −
𝜆

𝑎
). 

The inner equilibrium point of the original system becomes unbounded. The equilibrium point (0,0,0) is 

unstable one for 𝜆 > 0, and stable for 𝜆 < 0. The other three equilibrium points are the saddle. It is observed 

that under the parameter restriction mentioned above all four equilibrium points are on the surface 𝐼 = 0. 

           We introduce here the transformation  

 𝑥1 = 𝑥𝑒 −𝜆𝑡 , 𝑦1 = 𝑦𝑒−𝜆𝑡 , 𝑧1 = 𝑧𝑒−𝜆𝑡 , 𝜏 = 𝑒𝜆𝑡 . (4) 

Using transformation (4) and the parameter restriction is given in (3), the three species LV system (1) and 

invariant have the form  

 
𝑑𝑥1 (𝜏)

𝑑𝜏
=

𝑥1 (𝜏)

𝜆
(−

1

𝑎
𝑦1(𝜏) + 𝑧1(𝜏))) (5) 

  

 
𝑑𝑦1(𝜏)

𝑑𝜏
=

𝑦1(𝜏)

𝜆
(𝑥1(𝜏) + 𝑎𝑧1(𝜏)) (6) 

  

 
𝑑𝑧1(𝜏)

𝑑𝜏
=

𝑧1(𝜏)

𝜆
(𝑥1(𝜏) + 𝑦1 (𝜏)) (7) 

  

 𝐼 = −
(𝑦1(𝜏)−𝑎𝑧1(𝜏)+𝑎𝑥1(𝜏))

𝑎
. (8) 

It is apparent from (8) that the invariant now becomes 𝜏-independent, i.e. autonomous. For the solution of Eqs. 

(5)-(7) with invariant (8) we consider the following two cases.  

(a) Autonomous Invariant(𝑰 = 𝟎) 

 In this case, the invariant becomes  
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 𝑧1(𝜏) =
𝑦1(𝜏)

𝑎
+ 𝑥1(𝜏) (9) 

 which represents a plane passing through the origin. It simplifies Eq.(5) into the form of  

 
𝑑𝑥1 (𝜏)

𝑑𝜏
=

𝑥1
2 (𝜏)

𝜆
. (10) 

 whose solution is given by 

 

 𝑥1(𝜏) =
−𝜆

𝜏+𝜆𝑘1
. (11) 

            Here 𝑘1 is the integration constant. Use of (9) and (11) into Eq.(6) leads to  

 
1

𝑦1
2(𝜏)

𝑑 𝑦1(𝜏)

𝑑𝜏1
=

1

𝜆
−

1+𝑎

𝑦1(𝜏)(𝜏+𝜆𝑘1)
. (12) 

 

so that 

 

 𝑦1 (𝜏) =
𝜆𝑎

(𝜏+𝜆𝑘1 )+𝜆𝑎𝑘2(𝜏+𝜆𝑘1)𝑎+1
. (13) 

             The symbol 𝑘2 appearing here is the second integration constant. 

Use of (11) and (13) in (9) gives 𝜏 dependence of 𝑧(𝜏) as  

 𝑧1(𝜏) =
𝜆

𝜏+𝜆𝑘1

(
1

(1+𝜆𝑎𝑘2 (𝜏+𝜆𝑘1 )𝑎 − 1) (14) 

Use of the inverse transformation of (4) in (11), (13) and (14) provides the explicit time-dependent solution of 

the system of ODEs (1) as  

 𝑥(𝑡) =
−𝜆𝑒𝜆𝑡

𝑒𝜆𝑡+𝜆𝑘1
 (15) 

  

 𝑦(𝑡) =
𝑎𝜆𝑒𝜆𝑡

(𝑒𝜆𝑡 +𝜆𝑘1 )+𝑎 𝜆 𝑘2(𝑒𝜆𝑡+𝜆𝑘1 )
𝑎+1 (16) 

  

 𝑧(𝑡) =
𝜆𝑒𝜆𝑡

𝑒𝜆𝑡 +𝜆𝑘1
(

1

(1+𝜆𝑎𝑘2 (𝑒𝜆𝑡 +𝜆𝑘1 )𝑎 − 1). (17) 

The dependence of integration constant 𝑘1, 𝑘2, and parameters involved in the equations with the initial 

condition are given by  

 𝑘1 = −
𝑥(0)+𝜆

𝜆  𝑥(0)
 (18) 
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 𝑘2 =
{𝑎  𝑥(0)+𝑦(0)}𝑥(0)𝑎

𝑎  (−𝜆)1+𝑎  𝑦(0)
 (19) 

 

(b) Nonautonomous Invariant( 𝑰 ≠ 𝟎) 

 In this case, the invariant condition geometrically represents a plane not passing through the origin. 

Following the steps of previous case (𝐼 = 0), the explicit time-dependent solution can be found as  

 𝑥(𝑡) = 𝐼  𝑥(0)
𝑒

𝜆𝑡 +
𝐼
𝜆

𝑒𝜆𝑡

𝑒
𝐼

𝜆{𝐼 +𝑥(0)}−𝑒
𝐼

𝜆
𝑒𝜆𝑡

𝑥(0)

 (20) 

 

 

 𝑦(𝑡) = −
𝑎𝐼𝑦(0)𝑐1(−

𝐼𝑒𝐼/𝜆

𝑥(0)
)

𝑎

𝑒
𝐼

𝜆 𝑒
𝜆𝑡+𝑎

𝐼

𝜆
𝑒𝜆𝑡

(𝑒𝐼/𝜆 𝑐1−𝑥(0)𝑒
𝐼

𝜆
𝑒𝜆𝑡

){𝑦(0)𝑒
𝑎𝐼

𝜆
𝑒𝜆𝑡

(−
𝐼𝑒𝐼/𝜆

𝑥(0)
)

𝑎

−𝑒
𝑎𝐼

𝜆 (𝑎𝑐1+𝑦(0))(𝑒
𝐼

𝜆
𝑒𝜆𝑡

−
𝑒𝐼/𝜆𝑐1

𝑥(0)
)

𝑎

}

 (21) 

  

 𝑧(𝑡) = 𝑒𝜆𝑡 {
𝑦(𝑡)

𝑎
+   𝑥(𝑡) + 𝐼} (22) 

 where 𝑐1 = 𝐼 + 𝑥(0). From (20)-(22) it appears that each of 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) → +∞ or −∞ as 𝑡 → ∞ for 𝜆 > 0 

and 𝑡 → −∞ in case of 𝜆 < 0.  

3 Heteroclinic Orbits  

In order to propose the criterion for existence of heteroclinic orbit from the explicit time-dependent 

solution of system of Eqs.(1) with the restriction on parameter given in (3), we mention here the definition of 

heteroclinic orbit as: A heteroclinic orbit 𝛿(𝑡) connects two distinct equilibrium points 𝐸𝑖 + and 𝐸𝑓 provided 

lim
𝑡→−∞

𝛿(𝑡) = 𝐸𝑖 and lim
𝑡→+∞

𝛿(𝑡) = 𝐸𝑓  or vice versa. Fron (20) − (22) is straightforward to conclude that 

heteroclinic orbit does not exist for 𝐼 ≠ 0. 

Consequently, we concentrate on the case of autonomous invariant 𝐼 = 0. 

Theorem 1 

The solutions of the LV system (1) with parameter restriction (3) and 𝑎 ∈ ℤ diverges to infinity for 𝑇 =

1

𝜆
𝑙𝑛 [

𝑥(0)+𝜆

𝑥(0)
] or 𝑇 =

1

𝜆
𝑙𝑛 [1 +

𝜆

𝑥(0)
{1 − (

𝑦(0)

𝑎𝑥(0)+𝑦(0)
)

1

𝑎 }]. 

Proof. From (15), we observe that the solution diverges to infinity when the denominator of the solutions is 

zero. If the denominator vanishes at 𝑡 = 𝑇1, then 𝑇 satisfies the equation  

 𝑒𝜆𝑇1 −
𝜆+x(0)

x (0)
= 0 (23) 

 leads to 
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 𝑇1 =
1

𝜆
Log [

𝑥(0)+𝜆

𝑥(0)
]. (24) 

 Using the similar condition on 𝑦(𝑡) given in (16) one gets equation as  

 
(−

𝜆

x(0)
)

−𝑎
(𝑎x(0)+y(0))(𝑒𝜆𝑇−

𝜆+x(0)

x(0)
)

𝑎+1

y(0)
+ 𝑒𝜆𝑇 −

𝜆+x(0)

x(0)
= 0 (25) 

 It is interesting to observe that the equation has two roots. One is 𝑇1 in (1) and the other is 𝑇2 given by  

 𝑇2 =
1

𝜆
ln [1 +

𝜆

𝑥(0)
{1 − (

𝑦(0)

𝑎𝑥(0)+𝑦(0)
)

1

𝑎 }]. (26) 

 Since 𝑧(𝑡) =
𝑦(𝑡)

𝑎
+ 𝑥(𝑡), it diverges with divergence of either of 𝑥(𝑡) or 𝑦(𝑡). Hence the theorem is proved. 

As mention earlier all four equilibrium points appearing under condition (3) lies on the invariant plane 𝐼 = 0. 

While the equilibrium point (0,0,0) is unstable or stable depending on the sign of 𝜆, the rest three are saddle 

in nature. So there may be a heteroclinic connection between (0,0,0) and other saddle equilibrium points. To 

find the analytic expressions for heteroclinic orbits of the system of Eq.(1) with condition (3) on parameters 

involve as 𝑡 → ±∞, the asymptotic behaviour of the solution has been calculated and summarized in Tab-1. 

While results in the table indicate that the solution approaches two distinct equilibrium points in their two 

asymptotic limits 𝑡 → ±∞, Theorem-1  exhibits the appearance of singularity at some finite time 𝑇1, 𝑇2 in the 

evolution of 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), thus prohibits the connection of two limiting equilibrium points. If the singularity 

(𝑇1, 𝑇2 ) can be removed, then the evolution of the system may terminate at one equilibrium points beginning 

from close vicinity of some other unstable or saddle equilibrium points.  

  

 

  

 

 

 

                       Table1:  Asymptotic behaviour of LV system with parameter restriction (3) and 𝑎 ∈ ℤ . 

Corresponding trajectory in the state space may be regarded as the heteroclinic orbit of the system. 

Disappearance of singularities can be attributed by claiming that the singularity 𝑇1, 𝑇2 given by Theorem-1 as a 

function of parameters in the Eqs.(1)and the initial condition (𝑥(0), 𝑦(0), 𝑧(0)) are complex. Such claim 

provides conditions for the existence of heteroclinic orbit as  

(i) 
𝑥(0)+𝜆

𝑥(0)
< 0 and 1 +

𝜆

𝑥(0)
{1 − (

𝑦(0)

𝑎𝑥(0)+𝑦(0)
)

1

𝑎} < 0 when 
𝑦(0)

𝑎𝑥(0)+𝑦(0)
> 0 and 

(ii) 
𝑥(0)+𝜆

𝑥(0)
< 0 and 

𝑦(0)

𝑎𝑥(0)+𝑦(0)
< 0.   

 

 

𝜆 and 𝑎   𝐸𝑖   𝐸𝑓  

𝑎, 𝜆 > 0   (0,0,0) (−𝜆, 0, −𝜆)  

𝑎 > 0, 𝜆 < 0  (−𝜆, 0, −𝜆)   (0,0,0)  

𝑎 < 0 , 𝜆 > 0   (0,0,0)  (−𝜆, 𝑎𝜆, 0)  

𝑎, 𝜆 < 0   (−𝜆, 𝑎𝜆, 0)  (0,0,0) 
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4 Applications 

To verify the criterion (i) and (ii) derived in section-3 as a consequence of the principle for the existence of 

heteroclinic orbit proposed here, we consider four cases where a (a ∈Z) and λ are positive and negative 

separately. If the criterion (i) and (ii) involving parameters and initial condition are satisfied, the trajectory 

connects will two equilibrium points as indicated in Table-1. In Fig.1(i), the marked blue region exhibits 

domain of existence of heteroclinic orbit predicted by criterion (i) and (ii) for a=2 and λ=1. The green lines 

show heteroclinic orbits connecting equilibrium points (-1,0,-1) and (0,0,0). The trajectories marked by red 

lines in Fig.1(i) indicate that whenever the initial point (x(0),y(0),z(0)) lies outside the (blue marked) domain of 

heteroclinic orbit, the trajectory diverges to (±) infinity as t→∞. Fig.1(ii), Fig.2(i) and Fig.2(ii) show similar 

features for parameter value (a=2, λ=-1), (a=-2, λ=1) and (a=-2,λ=-1). 

                                   

                         (i)                                                                                 (ii)   

Fig.1 Heteroclinic orbit(green line) and domain of existence of heteroclinic orbit (blue region) when (i) a=2 ,λ=1 

and (ii) a=2, λ=-1. The red line shows that solution diverges outside the region of heteroclinic orbit for both (i) 

a=2,λ=1 and (ii) a=2, λ=-1.   

 

 

                                  (i)                                                                        (ii) 

                  Fig.2 (i) a=-2, λ=1 and (ii) a=-2, λ=-1. Descriptions of figures are same as in Fig.1.  
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Next, we concentrate on λ<0, i.e. the growth rate of all three species is negative and a<0, i.e. the destructive 

effect on second species due to interaction with third species. All other inter species interactions are positive. 

From condition for the existence of heteroclinic orbit we can find heteroclinic orbit of LV system(1) with 

parameter restriction (3) and a∈Z between (-λ,aλ,0) (as t→-∞) and (0,0,0) (as t→+∞). 

The above model for λ<0 and a<0 can be applied in a real situation. Here y is considered as human. In the 

human gut a mutualistic bacteria E. coli is present which is considered as x. E. coli in human gut takes food for 

their survival but does not have any bad effect on human rather synthesizes biotin which is essential for 

humans, there is no outside source of biotin from any food. So perfect mutualistic relationship between E. coli 

and human exists. 

Human guts also contain  E. histolytica (serious pathogen of human beings) which is considered as z. Human is 

seriously affected by E. histolytica and suffered from amebiasis. 

 The relationship of E. coli and  E. histolytica  are also mutualistic. Enteric bacteria such as E. coli may alter the  

E. histolytica -induced expression of genes responsible for secretion of 1L-8. In vitro virulence of E. histolytica 

trophozoites can be increased by E. coli. Also, the destruction of cell mono-layer in tissue culture by E. 

histolytica trophozoites has been shown to be increased by bacteria E. coli, and in the presence of E. 

histolytica, the growth of E. coli is also increased[21].  

5 Conclusions 

We have derived here explicit time and parameter dependent solution in a compact form of LV system with 

some parameters which may be used as a mathematical model for human pathogen system. Information 

available from the exact solutions helped us to propose a principle for the existence of heteroclinic orbit for 

this system. The principle proposed here have been invoked to derive condition relating initial points and 

parameters involved in this system for the existence of heteroclinic orbit. Such conditions have been used to 

identify the region in the state space where the heteroclinic orbits connecting equilibrium points of this 

system may exist. From our exercise, it appears that principle for getting heteroclinic orbit proposed here can 

be efficiently used for another system too. 

 Acknowledgements. This work is supported by DST funded research project SR/S2/MS:821/13 dated 24.4.13 

and UGC assisted SAP(DRS-Phase-III) program through the Dept. of Mathematics, Visva-Bharati, Santiniketan-
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