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Abstract 

The author presents some sufficient conditions for second order difference equation with damping term of the 

form 

1( ( )) ( ) 0n n n k n n n n la x cx p x q f x− + −  + +  + =  

An example is given to illustrate the main results. 
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1   Introduction  

In this paper, we study the asymptotic behaviour of solutions of second order difference equation 

with damping term of the form 

1( ( )) ( ) 0n n n k n n n n la x cx p x q f x− + −  + +  + =           (1.1) 

Where 0( ),{ }nn N n a  is a positive sequence, { }np and { }nq  are nonnegative real sequences, k  

and l  are nonnegative integers, c is a real number, and :f R R→  is continuous and 

nondecreasing with ( ) 0uf u   for 0u  . 

Let max{ , }k l = : By a solution of equation (1.1), we mean a real sequence { }nx  which is defined 

for 0n n  −  and satisfies equation (1.1) for all 0( )n N n . A solution of equation (1.1) is said to 

be almost oscillatory if { }nx  is oscillatory or { }nx  is oscillatory for 0( )n N n . 

In recent years there has been great attention denoted to the asymptotic behaviour of second order 

difference equations with damping term, see [1-10, 12], and the references cited there in. Therefore, 

in this paper we establish some sufficient conditions for the almost oscillation of equation (1.1) and 

give an example for the main results. 

2 Main Results  

In this section, we establish sufficient conditions for the almost oscillation of equation (1.1). We 

begin with the following theorem. 

Theorem 2.1.1   Let 0 1, 0 n nc a p  −  for 0( )n N n , and 

0 0

1

1 (1 )s

n s

n
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a a

n n s n

−

= =

− =       (2.1) 
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n n

q


=

=        (2.2) 

then every solution of equation (1.1) is almost oscillatory. 

Proof. 

 Let { }nx  be an eventually positive solution of equation (1.1) say 0, 0n n kx x −   and 0n lx −   for

1 0( )n n N n  . There are two possibilities to consider: 

(i) 0nx   eventually;  

(ii) 0nx  eventually.  

Case (1) Suppose 0nx   eventually. Then equation (1.1) leads to 
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                                  1 1( ) ( ) 0,n n n n la z q f x n n+ −  +      (2.3) 

where  , 0n n n k nz x cx z−= +    eventually. Then 

(1-c)n n n k nx z cx z−= −   

Combining the last inequality with (2.3), we obtain 

1( ) ((1 ) ) 0n n n n la z q f c z + −  + −   

For all 1n n  . Since 0, 0n nz z    there exists a constant k > 0 such that 1n lz k+ −   for all

2 1n n n l  + . Hence 

2( ) (1 )) 0,n n na z q f c n n  + −     

Summing the last inequality from n2 to n, we have 

2

1 1 2 2 ( (1 ))
n

n n n n s

s n

a z a z f k c q+ +

=

   − −   

Now from (2.2), it follows that n na z →− , a contradiction to 0nz  eventually. Case (2) 

Suppose 0nx   eventually. Then from equation (1.1) we have 

1( ) ( )n n n n n n la z p x q f x + −  +  = −   

or 

1 0( ) 0,  ( )n n n na z p x n n N n l  +     +  (2.4) 

Since n n n kz x c x − =  +  , we have 0n nz x     and from (2.4), we obtain 

1( ) 0,  n n n na z p z n n  +      

Let n n nu a z= −  . Then we have 

    0n

n

p

n na
u u +  . 

Summing the last inequality from n1 to n -1, we have 
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Or 
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Again summing the last inequality from n1 to n-1, we have 

          ( )
1

11

1
1

1

1 t

n t

nn
p

n n na a

s n t n

z u u
−−

= =

  − −   

However condition (2.1) leads to   nz as n→− → , a contradiction. The proof for the case{ }nx  

eventually negative is similar. This completes the proof of the theorem.  

The

ore

m 

2.2. 

Let 0 

< c < 1 and conditions (2.1) and (2.5) hold. If the equation 

1( ) (1 ) ( ) 0n n n n la z q f c f z + −  + −   (2.6) 

is oscillatory then equation (1.1) is almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (1.1). We consider the two cases: 

(i)  0nx   eventually;  

(ii)  0nx   eventually;  

Case (1) Assume that  0nx   eventually. Then equation (1.1) leads to  

  1( ( )) ( ) 0n n n k n n la x cx q f x− + −  + +   (2.7) 

Set    

  n n n kz x cx −= +  (2.8) 

Then inequality (2.7) takes the form 

1( ) ( ) 0n n n n la z q f x + −  + 

                                         

(2.9) 

eventually, and clearly  0nz   eventually. Thus, from (2.8) we find 

(1 )n nx c z −   eventually                                                     (2.10) 

Using (2.10) in equation (2.9), we obtain 

To prove our next result, we need the following condition:  

( ) ( ) ( ) ( )f xy f xy f x f y−    for xy > 0 (2.5) 
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1( ) ((1 ) ) 0n n n n la z q f c z + −  + −   

and by (2.5), this inequality reduces to 

1( ) (1 ) ( ) 0n n n n la z q f c f z + −  + −   

eventually. But inview of a lemma in [11], it follows that equation (2.6) has an eventually positive 

solution, which is a contradiction. 

Case (2) Assume that 0nx   eventually. Then 0nz  eventually, and n nz x    eventually. 

From equation (1.1), we see that inequality 

    ( ) 0n n na z pz  +   

eventually has an eventually negative solution. The rest of the proof is similar to that of Case(2) of 

Theorem 2.1. This completes the proof.  

Theorem 2.3. Let c > 1; k is a negative integer, and conditions (2.1) and (2.5) hold. If the equation 

   ( )2

1
1( ) ( ) 0c

n n n n k lc
a z f q f z−

+ + −  + =                 

 (2.11) 

is oscillatory, then equation (1.1) is almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (1.1). We consider two Cases (1) 

and (2) as in Theorem 2.2. 

Case (1) Assume that 0nx   eventually. Then as in the proof of Theorem 2.2, we obtain the 

inequality (2.9). Proceeding as in the proof of Case (2) of Theorem 2.2, we arrive at the desired 

contradiction. The proof of Case (2) is similar to the proof of Case (2) of Theorem 2.2. The proof is 

now complete.  

We conclude this paper with the following example. 

Example 2.4. Consider the difference equation 

          ( ) 2

2 1 1 2
1 12 ( 1) ( 3)

0    , 2n n n nn n n
x x x x n− ++ +

 + +  + =                  (2.12) 

Here 1 1
2

1, ,n n n
a c p= = = , and 2

2

( 1) ( 3)n n n
q

+ +
=  . It is easy to verify that all the conditions of the 

Theorem 2.2 are satisfied except that on the oscillatory behaviour of the equation 

2

2 1
1( 1) ( 3)

0    , 2n nn n
z z n++ +

 + =   

Equation (2.12) has a nonconciliatory solution 1
{ } { }n

n n
x

+
= . 
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