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1. INTRODUCTION 

Mathematics seems to be a language through which scientists can understand some aspects of the nature of 

the universe, but the extent to which numbers can explain the ephemeral experience of music has yet to be 

fully explored. Music is a language which exists as numbers in time;  

• combination of melody (a succession of notes arranged horizontally) ,  

• harmony (the vertical combination of notes to produce chords ),  

• timbre (the tone colour),  

• dynamic (variation of loudness and softness),  

• texture (voices)  

• tonality (the key), and, most importantly,  

• rhythm (the grouping of notes to form defined time patterns) 

It is well known that the Fibonacci sequence of numbers and associated golden ratio underlie certain musical 

intervals and compositions [1]. Are these connections accidental or structural, coincidental or natural? The 

question is not trivial because aspects of the literature challenge common claims from both a mathematical [2] 

and musical point of view [3]. 

Music itself has rules related to certain mathematical principles. “Notwithstanding all the experience I may 

have acquired in music from being associated with it for so long, I must confess that only with the aid of 

mathematics did my ideas become clear and did light replace a certain obscurity of which I was unaware 

before” (Jean-Philippe Rameau quoted in [4]). The Fibonacci numbers have certain established connections 

with music either directly or indirectly through other mathematical topics such as the golden section [5], 

continued fractions [6], Pythagorean triples [7] and Farey fractions [9] (for instance, Farey was one of the 

discoverers of a process for tuning keyboards in equal temperament: in order to obtain one equal tempered 

interval, one must tune eight intervals by eliminating beats. The fifths and fourths are not so hard, but tuning a 

major third by eliminating beats is considered difficult. 

The mention of ‘fourths’ suggests Lucas numbers might also be involved, and so the point of this paper is to 

ask whether generalized Fibonacci numbers also have theoretical connections which are fundamentally related 

to music. It is beyond the scope of the paper to do more than tease out some of the issues. 

2.  MATHEMATICS AND MUSIC 

Pythagoras established the mathematical basis for a musical scale by focusing on intervals:  

• octave (division in half),  

• perfect fifth (division at two- third),  

• perfect fourth (division at three-quarters),  

where the core of his interest was an interval between the perfect fourth and perfect fifth. He called this 

interval a tone. This leads to the understanding that the octave is divided into two tetrachords, which allowed 

Pythagoras to divide each tetrachord into two tones and semitone, which he called hemitone. The result is the 

modern diatonic C major: T-T-S-T-T-T-S; only one scale existed at that time. 

Musical structures can be expressed as fractions, ratios and proportions. Musicians use basic mathematic 

knowledge to play rhythm accurately. All divisions of the beat and fraction are expressed by different note 

length values:  

• whole (semibreve),  

• half (minim),  

• dotted half (dotted minim),  

• quarter (crotchet),  
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• eighth (quaver),  

• sixteenth (semiquaver),  

• thirty-second (demisemiquaver),  

• sixty- fourth (hemidemisemiquaver).  

Those note lengths are exact proportions of a whole note, operating in the same way as fractions. 

Cognitive similarity exists between intellectual skills and mental stimulation provided by mathematics and 

music. Music and mathematics are related in the way symbols, numbers and notes are organized and 

displayed logically. In music numbers are used in the same way as in mathematics, to describe, to teach, and 

to compose. It is important for musicians to understand the relationship and values of fractions in order to 

correctly hold a note. For example, in Common time, if whole (semibreve) note lasts through a bar (measure), 

while it is equivalent to four quarter (chrothets) notes, it can be expressed mathematically as 4 x ¼ = 1. A 

quarter (crotchet) with dot after it would be held for 3/8 of measure. Keeping in mind that 4 x quarter 

(crotchet) = whole (semibreve) note, 8 x eights (quavers) = whole (semibreve) note, and dot makes note half 

longer of the note which precedes it, dotted quarter (crothet) can be expressed mathematically in the 

following ways: 

¼ +1/2 (1/4) = 3/8, or ¼ + (1/4)/2 = 3/8, or ¼ + 1/8 = 3/8 

Another example: any note can be divided into three equal parts instead of two. A whole (semibreve) note can 

be divided so as to contain three halves (minims), a half (minim) to contain three quarters (crothets), a quarter 

(crotchet) three eights (quavers), an eights (quaver), three sixteenth, and so on. These groups are referred to as 

Triplets. This division is indicated by a group in sets of three, each with the number three over or under them. 

It is possible to substitute fractions by notes’ names and add or substruct according to mathematical rules; for 

instance, take six eights (quavers) from a whole (semibreve) and write the reminder as one note. 1 – 6/8 = 2/8 

= ¼. The answer is a quarter (crotchet) note. 

Music exists in Time. The word ‘Time’ describes rhythmic divisions in music, so the Rhythm is the movement of 

music in Time with regular recurring accents. Regular accent is shown in notation by the bar line drawn 

through the stave, dividing it into sections of equal time value. The music between the bar lines is called bar or 

measure. Subdivisions of the bar are called beats or pulses. The composer can choose any number of beats in 

a bar: two, three, or four in a bar, corresponding to Duple, Triple, Quadruple time, which is expressed in 

notation by two numbers, called Time Signature. Although numbers appearing as one number above the 

other, they do not represent a fraction. The top number represents a number of beats in each bar, the bottom 

number indicates the value of each beat. For example: 2 = half note (minim), 4 = quarter note (crotchet), 8 = 

eight note (quaver). The Time Signature also implies the subdivision of the bar, where some beats are stronger 

than others; it also implies the grouping of notes. According to the subdivision of the beat, Time Signature is 

classified as Simple Time, where beat is subdivided into halves or Compound Time, where beat can be 

subdivided into thirds. 

One of the closest links or connections between music and mathematics is the Pattern. The same Pattern 

recognition applies  in chess play: positioning, special relationship, resolving tension. One of the examples of 

typical Pattern created in music are Cadences. The meaning of this pattern is to emphasise arrival of the end of 

a phrase, or the end of composition, what in chess would be checkmate, end of the game and in mathematics, 

it would be the Answer, Proof, Resolution. Mathematics and Music both can be called Contrapuntal Art 

blended by Logic. In mathematics, study of the pattern can explain and predict the unknown. Music uses the 

same strategies. When musicians are looking at the score, they recognize notes and their characteristics and 

how they relate to each other. Relationships among symbols, numbers, and notes are fundamental in both 

mathematics and music, a cause of inspiration, devotion and appreciation of great beauty [10]. 
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However, the German mathematician Johannes Kepler (1571-1630) criticised the Pythagoreans for relying on 

numbers and not trusting their own ears, although Kepler himself promoted the understanding of the musical 

intervals of thirds and sixths, which had been excluded/neglected by Pythagoras as not harmonious enough. 

His use of proportions in music paralleled his study of planetary motion [11]. In this he had been influenced by 

Boethius’ teaching on the Music of Spheres. 

The medieval philosopher Anicius Manlius Severinus Boëthius, Boetius or Boethius (480-520AD), in his ‘De 

Institutione Musica’ classified music into three parts: Musica mundana (Music of Spheres, harmony of the 

macrocosm), Musica humana (harmony of the human body), and spiritual harmony (harmony of the microcos ) 

and Musica instrumentalist (instrumental music). For Boethius Music was/is pure Order out of Chaos [12]. 

According to him Music is everywhere in nature where everything is in Harmony and Agreement (the word 

‘harmonia’ coming from the  Greek meaning ‘to fit together’). The golden ratio or section forms part of this as 

we note in the next section. 

3.  FIBONACCI NUMBERS AND THE OCTAVE SCALE 

Music was one of the four parts of the classical quadrivium which supported, or at least rounded out the 

trivium in the Greek foundations of the liberal arts. The word ‘music’ in ancient Greece had a wider meaning 

than it does now, as it included the idea of ratios of integers as the key to understanding both the visible 

physical universe and the invisible spiritual universe [13]. Thus the Pythagorean scale was the result of 

applying the Pythagorean ideal of using only the ratios 2:1 and 3:2 to build the music intervals. The 

Pythagorean scale was used in mediæval European music from about the eighth to the fourteenth centuries 

(Stewart [14]). 

An octave is the interval between a note and the next instance of that same note name on the piano. In Figure 

1 an octave interval is from the C on the left to the C on the right of the keyboard. An octave spans 13 notes. 

For example, an octave starting on C would include C,C#,D,D#,E,F,F#,G,G#,A,A#,B,C. This is called a “chromatic” 

scale. The interval between two consecutive notes in a chromatic scale is a “semitone” interval. A “whole-tone” 

interval is twice a semitone interval. For example, the interval between F and G in Fig. 1 is a whole-tone. 

“Major” and “minor” scales span 8 notes in one octave, with a mixture of semitones and whole-tones. For 

example, an octave major scale starting on C would include C,D,E,F,G,A,B,C. On a keyboard there are 8 white 

keys and 5 black keys. The black keys are grouped in 2 and 3. 

 

Figure 1: An octave interval 

 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 4  N u m b e r  0 1  

                                                  J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

 

7568 

In the key of C, the notes C,E,G are the basic chord of the key, called the root triad. These are 1,3,5 in the scale 

– Fibonacci numbers. In the octave, the foundational unit of melody and harmony, we see Fibonacci numbers 

popping up everywhere [15]. 

The greatest of luthiers, Stradivarius, designed his violins around the golden ratio, ϕ. His violins are the most 

valuable and precious instruments in the string-playing world because of their exquisite tonal and harmonic 

qualities [16]. The Stradivarius violin in Figure 2 reveals how precisely his instruments are determined by the 

golden ratio [17]: 

 

 

 

Figure 2. Photo of “Lady Blunt” Stradivarius violin (sold for nearly $16M). 

Photo credits: http://www.bazookaluca.com/2011/07/stradivarius-violins-pizzicato-at-my.html 

Roy Howat in his work, Debussy in Proportion: A Musical Analysis, presents his discovery that Debussy’s music 

“contains intricate proportional systems which can account both for the precise nature of the music’s 

unorthodox forms and for the difficulty in defining them in more familiar terms,” [18]. These proportional 

systems are based on the Golden Ratio. For example, Howat notes that the dramatic climax of Cloches à 

travers les feuilles and of ‘Mouvement’ from Images (1905) occur exactly on the overall Golden Ratio division of 

the work; that is, the climaxes occur when the ratio of the total number of bars to the climax bar gives 

approximately 1.618. 

Howat also postulated that Debussy’s preoccupation with Fibonacci numbers explains some of the unorthodox 

structure of his compositions. As examples he notes:  

• the 21 bars introduction to Rondes de Printemps; 

• the 34 bars of the ⅜ time section of Jeux;  

• the 34 bars build-up to the triumphant coda of L’isle joyeuse and to the recapitulation of Masques; 
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• the 34 bars before the first reprise in Reflets dans l’eau and the 55 bars before its climax; 

• the 55 bars introduction to the last movement of La mer. 

4.  GENERALIZED FIBONACCI NUMBERS  

To what extent are these Fibonacci connections accidental and to what extent are they fundamental? If the 

latter, could generalized Fibonacci numbers also be involved?  

To pose that question more specifically we here consider such numbers in the context of generalized golden 

sections. It is well-known that the powers of the Golden Section or Ratio, are related to the elements of the 

Fibonacci sequence, {Fn}: 

 ,1 nn

n FF   (4.1) 

and 

 
1 ,n

n nF F    (4.2) 

in which 

 .1     

Similarly for the Lucas sequence, {Ln}: 

 

 ,21   nn

n LL   (4.3) 

and 

 .1  nn

n LL  (4.4) 

in which 

 2    

and 

 2    

are the roots of  130 2  xx , which is the characteristic polynomial of the second order homogeneous 

linear recurrence relation 

 213   nnn UUU , 

from which even- and odd-suffixed Fibonacci and Lucas numbers can be generated [19,20].  Variations of 

results for the Golden Section also include the idea that the Golden Ratio may be considered as the first 

member of a family which can generate a set of generalized Fibonacci sequences.  
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Here we relate the ideas there to the work of Filipponi (1991) [21], Monzingo (1980) [22] and Whitford (1977) [23] 

to consider some related problems with their common thread being the Binet form of these sequences, {Fn(a)}, 

where the sequence of ordinary Fibonacci numbers can be expressed as {Fn(5)} in this notation. Thus, for instance 

 a

n

n

aF

aF


 )(

)(

1

  (4.5) 

in which  

 
2

1 a
a


   (4.6) 

and the generalized Binet formula in this notation is 

 .
2

1

2

1

)(
a

aa

aF

nn

n













 














 

  (4.7) 

which is well-known for the Fibonacci numbers as 

 

1 5 1 5

2 2
.

5
n

n n

F

    
      

   
   (4.8) 

Hence, elements of the sequences in the family should be similarly predicted. We note in passing that the Binet 

formula for the Fibonacci numbers is usually attributed to Jacques Philippe Marie Binet (1786–1856), but it was 

previously known to such famous mathematicians as Abraham de Moivre (1667–1754), Daniel Bernoulli (1700–

1782), and Leonhard Euler (1707–1783): “like many results in Mathematics, it is often not the original discoverer 

who gets the glory of having their name attached to the result, but someone later!” [24]. 

When n in Equation (4.7) is a power of 2 we can start to develop identities analogous to those of the Fibonacci 

sequence.  For example, 

   nnnnnn yxyxyx  22
 (4.9) 

 

 )()()(2 aLaFaF nnn    (4.10) 

in which )(aLn is the corresponding generalized Lucas sequence.  We can continue the process in (4.9) to get 
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  

   2 2 2

2 2

n n n n
z

n n n n n n

n n

x y x y x y

x y x y x y

   

   
  (4.11) 

and so on. For instance, when n = 4, this can be reduced to  

 

     yxyxyxyxyx  224488
 

 

with x + y =1 and x – y = a , and when n = 8, this can be reduced to 

 

      yxyxyxyxyxyx  2244881616
 

or 

 )()()()( 24816 aLaLaLaF  , 

 

which can be readily confirmed when a = 5.  More generally, 

 

    2211  





 nnnn
nn

yx
yx

xy
yx

yx

yx
  (4.12) 

can be expressed as 

 
1 2

1
( ) ( ) ( ),

4
n n n

a
F a L a F a 

 
   

 
  (4.13) 

 

which, when a = 5 and n = 7, ,13)5(7 F and .318)5()5( 56  FL Equation (4.12) can be factorised 

further 

 

      
3

55

2

3311

4

1

4

1

4

1







 








 








 




  a
yx

a
yx

a
yx

yx

yx nnnnnn
nn
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This in turn can be re-written as 

 

2 3

1 3 5

1 1 1
( ) ( ) ( ) ( ) ;

4 4 4
n n n n

a a a
F a L a L a L a  

       
        

     
  (4.14) 

for instance, 

 .1)5()5()5()5( 2467  LLLF  

Direct calculations of 

n

a












 

2

1
and 

n

a












 

2

1
as in the Binet equation (4.7) and from (4.13) yield the 

patterns set out in Table 1. Each n yields an infinity of ‘golden ratios’, and from them we can generate an 

infinity of generalized Golden Ratio Fibonacci numbers, some examples of which are also displayed in Table 2. 

n Ln(a) Ln(5) Ln(13) Ln(17) 

2  1
2

1
1

a  3 7 9 

4  16
2

1 2

3
 aa  7 31 49 

6  11515
2

1 23

5
 aaa  18 154 297 

8  1287028
2

1 234

7
 aaaa  47 799 1889 

n Fn(a) Fn(5) Fn(13) Fn(17) 

3  3
2

1
2

a  2 4 5 

5  510
2

1 2

4
 aa  5 19 29 

7  73521
2

1 23

6
 aaa  13 97 181 

9  98412636
2

1 234

8
 aaaa  34 508 1165 

Table 1: Various Golden Ratio Sequences 
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That is, for example, as in the last line of Table 1 and from Equation (4.14), we have that: 

 

 )(9 aF  98412636
2

1 234

8
 aaaa  

so that 

 ),5(34)5( 99 Fu  ),13(508)13( 99 Fu   ),17(1165)17( 99 Fu   

 

in which the sequences satisfy a second order recurrence relation in the form 

 ,2),(
4

1
)()( 21 







 
  nau

a
auau nnn   (4.15) 

with unity as the initial terms as in Whitford. Thus Simson’s identity becomes 

 

n

n

nnn

a
aFaFaF 







 
 


4

1
)1()()()( 12

12   (4.16) 

which had previously been proved by Lucas [25]. We shall not explore the underlying mathematics further. 

Instead we shall briefly consider Whitford’s table of sequences which we have slightly adapted and extended 

(Table 2).  

a 
4

1a
 )(1 aF  )(2 aF  )(3 aF  )(4 aF  )(5 aF  )(6 aF  )(7 aF  )(8 aF  )(9 aF  )(10 aF  

1 0 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 2 3 5 8 13 21 34 55 

9 2 1 1 3 5 11 21 43 85 171 341 

13 3 1 1 4 7 19 40 97 217 508 1159 

17 4 1 1 5 9 29 65 181 441 1165 2929 

21 5 1 1 6 11 41 96 301 781 2286 6191 

25 6 1 1 7 13 55 133 463 1261 4039 11605 

Table 2: Whitford’s table of Generalized Fibonacci numbers – extended 
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Can these be related to music in some fundamental theoretical manner? 

5. FIBONACCI COMPOSITION FOR PIANO  

While not wanting to be compared to the genius of a Debussy, here is a short composition by van Gend 

(Figure 4) based almost entirely on Fibonacci numbers.1 Each note in the scale of C major is numbered (see 

Figure 3) and the notes that correspond to Fibonacci numbers are used in the composition. Each time the 

music changes key, the note that corresponds to 1 in the Fibonacci sequence changes. So in D major, note 1 is 

a D (while in C major it is a C). The order of notes in the melody is 1,1,2,3,5,8 with the occasional addition of 13 

and 21.  

 

Figure 3: Numbered notes in the scale of C 

The work, naturally, is 13 bars long and is structured in phrases of increasing length: 1,1,2,3 and 5 bars. The 

groups of bars are marked by brackets in the music score (see Figure 4). After the first 1 bar motif, the second 

is similar but inverted. Then the theme appears for the first time as a 2 bar phrase, repeated as a 3 bar phrase 

with added bass notes. A 5 bar developed version of the theme is the final phrase, and a short 1 bar imitation 

of the first bar motif concludes the work. While this structure is far less subtle than the form of Debussy’s 

compositions, it gives the music a clear feeling of “growth”.  

The theme grows over the course of the work – one can hear in the recording how it sounds “busier” and 

more developed. It has been made clear on the score how the notes correspond to Fibonacci numbers. The 

opening bar is a flourish of notes, using all the Fibonacci numbers in order up to 21. The recurring theme 

starting in bar 3 uses the notes corresponding to 1,1,2,3,5,8,5,3,2,1. It creates a restful rising and falling tune. In 

bar 7, a note is used that is not in the Fibonacci sequence. While it makes sense as part of the chord 

progression in the bass, it sounds less harmonious than the rest of the piece – a “surprise” note. This is an 

interesting discovery – that a non-Fibonacci note sounds out of place (perhaps even “unnatural”) in a piece 

completely full of Fibonacci notes. In bar 12 I break up the order of the Fibonacci notes for variety and to help 

with modulating to the new key. Instead of 1,3,5,8, it becomes 3,1,5,3,8. It has a similar growing sense to it and 

the notes harmonise well in the progression. 

Bar 11 begins a progression of keys. It starts in C major (as indicated on the score) which is number 1 as a 

Fibonacci note. The music modulates half a bar later to D major, which corresponds to 2 on the Fibonacci 

sequence. Then the music modulates to E major (3) and finally G major (5). So while the notes themselves fly 

up and down the Fibonacci notes, the overall progression of keys also follows the sequence: 1,2,3,5. The 

progression rises well, and has that sense of growth. 

                                                           
1 To hear a  recording of the work, visit this link and download the file:  

https://docs.google.com/file/d/0Bwb7y3cfmfoeRV9rZTVObkJKbWs/edit?usp=sharing 
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Figure 4: Fibonacci composition  (van Gend) 
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From this analysis, it is clear that the sequence {1,1,2,3,5,8, … } has a distinct growing sound to it. In this work, 

the theme is repeated and developed over the course of the 13 bars, and this gives the piece a feel of 

continuous rising and falling while evolving. The overall structure of the work is based on groupings of bars 

into Fibonacci numbers, which gives the sense of expansion and growth of the whole work. The use of only 

Fibonacci notes works well for harmonious writing. This was surprising, as it could be difficult to have variety 

while only using Fibonacci notes. In summary, it seems that the Fibonacci numbers work naturally together in 

music too. 

6. CONCLUSION 

It is clear that the Fibonacci sequence of numbers and the golden ratio are manifested in music. The numbers 

are present in the octave, the foundational unit of melody and harmony. Stradivarius used the golden ratio to 

make the greatest string instruments ever created. Roy Howat’s research on Debussy’s works shows that the 

composer used the golden ratio and Fibonacci numbers to structure his music. Haylock [26] describes a 

number of occurrences of the golden ratio in the first movement of Beethoven’s fifth symphony; he poses the 

question which goes to the heart of this paper: “is this just something which happened by accident, or did 

Beethoven do it deliberately?”,. 

The Fibonacci Composition reveals the inherent aesthetic appeal of this mathematical phenomenon. Fibonacci 

numbers harmonise naturally and the exponential growth that the Fibonacci sequence typically defines in 

nature is made present in music by using Fibonacci notes.  

Of course, music and mathematics share their love of suitable notation [27] and this too opens up other 

possibilities for more research into deeper connections and appropriate pedagogies in both music and 

mathematics, which are essential components of the liberal arts and the study of Western civilization [28]. In 

this sense, other approaches to generalization of the golden ratio are implicit in Section 1.1 of Falcon [29]. 

Finally, “during the past 40 years, mathematical music theory has grown and developed in both the fields of 

music and mathematics. In music pedagogy, the need to analyze patterns of modern composition has 

produced Musical Set Theory, and the use of Group Theory and other modern mathematical structures have 

become almost as common as the application of mathematics in the fields of engineering or chemistry. 

Mathematicians have been developing stimulating ideas when exploring mathematical applications to 

established musical relations. Mathematics students have seen in Music in Mathematics courses, how their 

accumulated knowledge of abstract ideas can be applied to an important human activity while reinforcing 

their dexterity in Mathematics” [30]. 
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