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Abstract
Let G be a locally compact group equipped with a normalized Haar measure u, A(G) the Fourier algebra of G
and VN(G) the von Neumann algebra generated by the left regular representation A of G. In this paper, we
introduce the space VN(G,A) associated with the Fourier algebra A(G,A) for vector-valued functions on G

where A is a H*-algebra. Some basic properties are discussed in the category of Banach space, and also in the
category of operator space.
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1. Introduction

The theory of rings of operators called today von Neumann algebra was first introduced and developed by
Murray and von Neumann in 1936 [10], with the aim of developing a suitable mathematical framework for
quantum mechanics. Today, it extends into the larger theory of noncommutative geometry and intervenes in
various fields such as the theory of representations and the L,-invariants theory.

In mathematics, one can assign to a locally compact group G an operator algebra such that representations of
the algebra are related to representations of the group. Any space constructed in this way is called group
algebra.

Let L,(G)(1 < p < =) be the set of all functions f:G — C, such that fG |f(x)|p < o0, and C(G) the set of all
continuous complex-valued functions on G. These spaces form Banach algebras under usual operations and
convolution. In [13], D. Z. Spicer extended the group algebras L,(G)and C(G) to group algebras of vector-
valued functions respectively denoted B,(G,A)and C(G,A). Mainly, B,(G,A) is the space of all continuous
functions f:G —» A such that fGIIf(x)IIfjdx < oo (usually denoted L,(G,A))), and C(G,A) is the space of all
continuous functions from G to A, where A is a Banach algebra.

As far as we know, the space VN(G) is associated with the space of complex-valued continuous functions on G
with compact support and there is no analog for vector-valued functions yet. In this paper, we want to extend
this definition in the case of Banach algebra-valued functions with additional conditions.

Section 2 deals with preliminaries.

In Section 3, we introduce a vector-valued analog of the group C*-algebra C*(G) and the reduced group  C*-
algebra C;(G) which will be denoted respectively by C*(G,A) and C;(G,A) where A is assumed to be an H*-
algebra.

Now, we deal with one of the main results of our paper in Section 4: the generalization of the space V(G) in
the case of vector-valued functions. The vector-valued von Neumann algebra VN(G, A) is the weak operator
topology closure of C*(G,A). We discuss some basic properties of this space.

Finally, in Section 5, the spaces VN(G) (resp. A(G)) and VN(G,A) (resp. A(G,A))) are equipped with their
natural operator space structure. We then study some properties of isomorphisms and isometries in the
category of operator spaces. A characterization of completely bounded multiplier on a specific dense
subspace of by A(G,A) is established.

2. Preliminaries

In this section, we recall some notations and results related to locally compact groups and operator spaces.The
reader is referred to P. Eymard [6], Effros and Ruan [5] for more details. Through this paper, we shall assume
that G is a locally compact Hausdorff topological group endowed with its left Haar measure u normalized so
that u(G) = 1.

Let B(G) be the Fourier-Stieltjes algebra of G, then the Fourier algebra A(G) is defined as the Banach
subalgebra of B(G) generated by the continuous functions of positive type with compact support. A(G) is
identified with the space

{f *8:f,g € L,(G)}(see Eymard [6])
where f * g(s) = fG f(st™)g(t)dt is the convolution product and f:t = f(t71) .
A(G) is equipped with the norm
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“u“A(G) = ug}gg”f”Lz(G)”g”LZ(G)

and is known to be a subalgebra of C,(G) (the space of decreasing continuous functions on G, vanishing at
infinity), so a commutative Banach algebra with respect to the pointwise multiplication.

Let C.(G) be the space of complex-valued continuous functions on G with compact support; this acts on L,(G)
by left convolution, and forms a *-subalgebra of Hom(L,(G)):{A;:L,(G) 3 g — f * g € L,(G),f € C.(®)} . ,
which closure is C;(G), the reduced group C*-algebra. The group C*-algebraC*(G) is obtained by taking the
supremum over all C*-norms. The weak operator topology closure of C;(G) is called the group von Neumann
algebra of G, denoted VN (G). Equivalently, if B(L,(G)) denotes the space of all bounded linear maps on L,(G),
we have:

VN(G) = {A(s):s € G}

where 1: G - (BL,(G)) is the left regular representation of G.

A(s):L(G) — L,(G)
f — g, gt)=f(""t).

A(G) is the predual of VN(G).

An operator space is a closed subspace of the space B(H) of all bounded operators on a Hilbert space H. In
other words, it is a Banach space given together with an isometric linear embedding into the space B(H). An
abstract characterization of operator spaces was given by Ruan in [5]. A complex vector space E is an operator
space if and only if for each integer n =1, there is a complete norm ||.||,, on M,(E), the space of nxn
matrices with entries in E, such that the following properties are satisfied:

vu € M,,(E),v € M,(E),a, 8 € M,,
M) llu @ vllnsm = max{llull,, vl
@ii) Nlaeupll, < allull,B.

A linear map ¢: E; c B(H,) — E, c B(H,) between two operator spaces is said to be completely bounded (c.b.

in short) if the linear maps
¢n: Mn(El) - Mn(Ez)
(aif)1si,jsn = (¢(a‘7))

1<i,jsn

are such that sup||¢,|| < o0. The completely bounded norm is denoted by |[¢]l., = supll¢p,|l. The space of
nz1 nz1

all completely bounded maps from E, into E, is denoted cb(E, E,) and simply cb(E,) if E; = E,.
We give the following definition about H*-algebras as introduced by Ambrose in [1]:

An involutive Banach algebra A over C with involution

* 1A - A
x B x*

is called an H*-algebra if A admits an inner product (:,-) satisfying the following postulates:

(i) The underlying Banach space of A is a Hilbert space (of arbitrary dimension);
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(ii) For each x € A, there is an element in A denoted by x* and called an adjoint of x, such that for all
v,z € A, we have both (xy,z) = (y,x*z)and (yx,z) = (y, zx").

3. The generalized group C*-algebras C;.(G,A) and C*(G,A)

In the sequel, A will denote an H*-algebra and G a compact topological group with Haar measure u ,
normalized so that u(G) = 1. For 1 < p <, L,(G,A) is the space of all equivalence classes (modulo null

functions) of all measurable functions f: G — A such that fG lf NP, du(x) < oo, and C.(G,A) will denote the
space of all continuous functions from G to A with compactly support. The space L,(G,A) (resp. C.(G,A))
equipped with the norm ||f]|, = ||f(x)||f,’qdy(x)(resp. [Ifllc = supllf(x)ll.4) is @a Banach space.

XEG

The Fourier algebra A(G,A) on G associated with functions f: G — A is defined as the usual one:
AG,A) ={f*G:f g €L (G A},

where f(t) = (f(t™))™" and = is the involution in A . Equipped with the norm

lulla.a: = uil}{g{llfllzllgllff.g € L,(G,A)},
it becomes a Banach space.
If we set £,(t) = f(t™1), then f(£) = (£,(£))™.
The completion of C.(G, A) in the L, (G, A)-norm is isomorphic to the space L, (G, A).
In this section we will generalize the group algebras C;(G) and C*(G) of complex-valued functions to those of
vector-valued functions denoted C;(G,A) and C*(G,A), then we will study some of their properties. Recall

that since A is an H*-algebra, so is L,(G,A). Set (,),,(resp.(, ).4) the inner product associated with L,(G,A)
(resp. with A) as a Hilbert space. We have:

(g, h), = j (9, h(O)) ad
G

Proposition 3.7 Let G be a locally compact group and A be an H*-algebra.
(0 The space C.(G,A) acts boundedly on on L,(G,A) by left convolution.
(ii) The space T(G,A) = {A;: L(G,A) — Ly(G,A), f € C.(G,A)} of operators such that

Ar(g) = fxg, Vg € Lr(G,A)
is a *-subalgebra of B(L,(G,A)).

Proof.

(i) Forall f € C.(G,A),g € L,(G,A) , we have:

(!
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2 1/2
s(fG (fG ||f(y)g(y—1x)||ﬂdy> dx)

1/2

< f ||f(y)||ﬂ(f ||g(y-1x>||?ﬂdx) dy (by Minkowski)
G G

1/2

- f ||f(y)||ﬂ<f ||g(x)||34dx) dy
G G

< Ifllllgllz
Thus, f * g € L,(G,A) and 3C > 0, [If * gll, < Cligll..

(i) From (i), it is clear that for each f € C.(G,A), A; € B(L,(G,A)).
-Step 1: C.(G,A) is a *-algebra
It is easy to check that, C.(G,A)endowed with the convolution product is an algebra. Set *, the involution in

A, then the mapping ~: f = f such that f(s) = (f(s™)) ™" is an involution of C.(G,A). In fact VA € C, Vf, g €
C(G,A),Vx € G,

f*g)

(F*(xD)™
( [ 10290737 dy)
G

fG (Fglyx1)) “dy

= L(g(y‘lx‘l))m(f(y))*ﬂdy

| e (Fom)ay

| (0@)(fen)a

= g*f(0)
=Fra=g+f.
Trivially, B
W+ =r+g  (F=f
-Step 2: The space B(L,(G,A)) is a x-algebra

Like C.(G,A), the space L,(G,A) is a *-algebra under the convolution product and the involution denoted
by . Moreover B(L,(G,A)) is a -algebra if endowed with:

-the inner product T, o T,: f = T, (T, f),
-and the involution  *:T = T* such that(T*g, h),, =(g,Th),, , forall g,h € L,(G,A).
-Step 3: The space T (G, A) is a -subalgebra of B(L,(G,A))
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(/mf1 + Afz)(g) =AMi*g+faxg
=Ufitfi)*xg
= Nyg,45,(9)

= /‘lAf1 + Afz = Alf1+f2 € T(G,cﬂ)

() @n)  =lg.am), .

L2(6A)
=(g,f * h)LZ(G,Jl)
= F*9:h) 6

= <Af(g)' h>L2(G,cﬂ)

<(Af)* @, h> = {451, o0y = (4,)" = 4; €T (G, A).

Ly(G,A)

(AAﬁ + Afz)* = A(Af;fz)

= N7+7

=Mﬁ+/1}72

= (AAﬁ + Afz)* = X(Afl)* + (Afz)*'

(Af1 oAfz)g = Af1(Afzg)
= fix(fa*xg)
(fixf)*g

= Af1*f2g

= Afl ° Afz = Af1*f2 ’

(A 0 45) = A
=5

= A o Ay

The rest of the proof is obvious. =

Remark 3.2 The previous proposition is always true, if C.(G,A) is replaced by L,(G, A).
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Corollary 3.3 If A is an H*-algebra endowed with its natural operator space structure, then Vf € Li(G,A) , As is
completely bounded. More precisely, T(G,A) < cb(L,(G,A)) .

Proof. For n € N*, consider the mapping

AP My(L2(G, D) — My(La(G, )

('gij)lsi‘jsn = (Afgij)lﬁi,jﬁn

A}”) ((gij)lﬁi,an) : ”(gij)lswsn

= sup H(Afgij)

[l <1

My(Ly(GA))

sup |
M(Ly(G)

su <1

My (Lo (GR) | 19"]})3" ”gij”Lz(Gw‘l)

1<ij<n

_ sup {||/1fgij||2= llgisl, < 1}

1<i,j<n
) — Mg
Il = sup {7+ gy, aull, <1
< 155%n{||f||1 lagl gl < 1}
< £ 14

So sup[|4™]| < lIflly < o,
nz1

And Ay is completely bounded. m
Definition 3.4 Assume A is an H*-algebra.

For a locally compact group G, we denote by C*(G,A) the (vector-valued) C*-algebra of G, which is G the
C*-envelopping algebra of L, (G, A), i.e. the completion of C.(G, A) with respect to the largest C*-norm

Il f o = supll 2(F) Il,

where 1 ranges over all non-degenerates -representations of C.(G,A) on Hilbert spaces.
Definition 3.5 Let G be a locally compact group and A an H*-algebra.

The (vector-valued) reduced group C*-algebra C; (G, A) is the completion of C.(G,A) with respect to the norm

sup ){“f * gl ¢ gl < 1}.

g€eL,(G,A
Proposition 3.6 The space C.(G,A) is isometrically isomorphic to the space T (G, A).
Proof. The operators /A, determine the bijective linear map

A:C(G,A) — T(G,A) cB(Ly(G,A))
f — Ay

Moreover, for any f € C.(G,A),
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I ACF) gL, 6.0 ”Af”B(Lz(G,d‘l))

gELS:EgCA){”Afg”LZ(GKA) : ”g”2 < 1}

sup {IIf * gllL,comy: I g 1< 1}
gEL(G,A)

= lfllc;
which completes the proof. m
Corollary 3.7 Assume A is an H*-algebra and G a locally compact group. The norm

Ifllcz:="sup {llf *gllz:llgll. <13
gELz(G,Jl)

isa C*-norm on C;(G,A).

Proof. We already know that C.(G,A) is a *-algebra, and (C,f(G, A), ||~||C;) is a Banach space. Moreover,
using Proposition 3.6 we have :

(i) -Submultiplicative property:
”fl *fZ”C; = ||Af1 oAfZHnB(Lz(G’Uq))
< Al 148 s, 6y = Willei 21l
(ii) “IIll¢; is a normed algebra:
||f |C7*j = ||(Af) B(Lz(G,uq)) = ||Af||B(L2(G’¢/1)) :" f ”Cr*t

(iii) -The C*-property:

\f = f

o = 1A o 4| = lasll” = g1z m

Following Proposition 3.6, the reduced group C*-algebra C; (G, A) can be defined equivalently as follows:

Definition 3.8 (Definition 3.5 bis)

Let G be a locally compact group and A an H*-algebra. The (vector-valued) reduced group C*-algebra C;:(G,A)
is the closure of the space T (G, A), with respect to the operator norm on B(L,(G,A)).

Remark 3.9 In the second definition, C;(G,A) is indeed a C*-algebra. In fact, C;:(G,A) is a closed self-adjoint
subalgebra of the C*-algebra B(L,(G, A)) with respect to the C*-norm of B(L,(G, A)) (the operator norm). By
following this definition, one can conclude that C;:(G,A) is the C*-algebra generated by the image of the left
regular representation of C.(G,A) on L,(G,A) .
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4. The generalized group von Neumann algebra VN (G, A)

Definition 4.1 The (vector-valued) group von Neumann algebra VN (G, A) of G is the enveloping von Neumann
algebra of C*(G,A), i.e. the weak operator topology closure of C; (G, A).

Remark 4.2 -Considering the previous assertions in Remark 3.9 about the reduced C*-algebra, one can also
define the (vector-valued) group von Neumann algebra as follows:

VN(G,A) = {A(s):s € G}
where :G - B(L,(G,A)) is the left regular representation of G.

A(s): L, (G, A) — L,(G,A)
f — g, gt)=f(""t)

-Naturally, A(G,C) = A(G) and VN(G,C) = VN(G).

Proposition 4.3 The Fourier algebra A(G,A) is isometrically isomorphic to the predual of the group von
Neumann algebra VN (G, A).

Proof. Consider the mapping

P:VN@G,A) — (4G, A))
v — o)

such that if u = f * § € A(G,A), then p(v) (u) = (4,f,9) = |, ((A,,f)(x),g(x))dq du(x).

We know that C;: (G, A) is a C*-subalgebra of B(LZ(G, c;‘l)) with strong closure VN(G, A), so the closed unit ball
of C;(G,A) is strongly dense in the unit ball of VN(G, A) (Kaplansky theorem of density). Thus, there exists a

sequence (w,) in C.(G,A) such that [lwyll¢c: < [lvll¢: and (4,,,) stromaty A,. Moreover,

FIGIOI lim|(4,,,f, g)l

= lim
n

[ (10,90
G

= lim | [ s £G 9@t
G

J U Wn(y)f(y‘lx)dy,g(x)> du(x)
G G

A

lim
n

n;p‘ | <wn(y), | g(x)(f(y-lx»*"“dx) dy

A

n;p‘ | <wn(y), | g(yZ)(f(Z))*‘”dZ> dy
A
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lirrln‘ f <wn(y).< f f(Z)(g(yZ))*AdZ> > dy
G G

A

= lirrln‘ f <wn(y).<f f(Z)g(Z‘ly‘l)dZ> > dy
G G

A

— lirrln U (Wn(y), (f * 9‘(}"1))*:/1)04(1}’|
G

lim
n

f <wn<y),u<y>>ﬂdy|
G

lirfln”Wn”cr* ||u||A(G,ﬁ)

IA

IA

vl llullac.n

= eIl < vl

Moreover, we have

v lle: = sup {llh*fll:If1l < 1}
fE€Ly(G,A)
= sup  {[(h* £, 90, | IfIl < 1, 1If1l, < 1}
f19€L2(G,A)

2 sup  {lp@)@)|: lull < 1}
f1g€L2(G,A)

2 lp@)Il.

The linearity of ¢ is obvious, let us prove the injectivity. Assume ¢(T) = 0, then for all f,g € L,(G,A),

dOG D=0 = [ (TO).(f*g3)) ") ,dy =0
G

= Ty)=0VyeaG
= T=0

Conversely, assume ¢ € (A(G,JZ))* and let f, g € L,(G,A), then

lp(f +)l < oWl (g ) If * #llagny  (since @ is continuous)
(4(6.A)
< llelllifllzllgllz
= sup {lo(f*PNfllz < Lllgllz < 1 < Mol g0y

f.9€L2(GA)

Then, there exists a linear map V,, € B(L,(G, A)) such that (V,f, g) = o(f * &) and ||V, || < ll¢ll.
Let us prove that V,, commutes with convolution :

Vf,g € L,(G,A),Vh € C.(G,A), we have

(Vo(f * 1), g) o((f*m) * g) = o(f * (hx D))

o(f+(g~h))

= (vqof’g *fl)
= ((Vf) *hg),
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which implies that V,,(f * h) = (V,f) * h, and V,, is an element of VN(G,A). =

Let C?(G) be the space of all bounded continuous functions from G to C, a function f € C?(G) such that Vg €
A(G), fg € A(G) is said to be a multiplier of A(G). The space of all completely bounded multipliers on A(G) is
denoted by M., (A(G)). In a similar way, we define the space of completely bounded multipliers on A(G,A)
and the space of completely bounded vector-valued multipliers on A(G, A).

Definition 4.4 Let G be a locally compact group, A an H*-algebra and CP(G,A) the space of all bounded
continuous functions from G to A. Let V, c C°(G,A) and V, c A(G,A) two vector spaces. We denote by
M., A(G,A) c CP(G,A) (resp. M,V,) the space of completely bounded multipliers on A(G,A) (resp. on V), ie.
the collection of functions f € C?(G,A) (resp. on V) such that fg € A(G,A) (resp. fg € V,) for each g € A(G, A)
(resp. for each g € V,) and the operator

M A(G,A) —  A(G,A)(resp.V, = V)
g — fg,

is completely bounded,
where
fg:¢G — A
Coe (090

€EA EA

Remark 4.5 We denote by MA(G,A) the space of all multipliers of A(G,A). Let A be the left regular
representation of C.(G,A) on L,(G,A). As in the case of multipliers of A(G) (cf [9], Introduction), each f €
MA(G, A) generates an operator My on A(G,A) whose transpose defines a o-weakly continuous operator My on
VN(G,A) such that MgA(s) = f(s)A(s), for s € VN(G,A),

Definition 4.6 We define A°(G, A) as the following vector space.

n
A°(G,A) = Zajgj:aj EA,gj€AG),nEN .

j=1
We also define the vector space € (G, A) as follows.

n
CbO(G,cﬂ) = Zajg]a] € rﬂ,g] € Cb(G),n € N*».

j=1

Theorem 4.7 Let G be a locally compact group and let A be a unital and commutative H*-algebra. The
following assertions hold:

(i) A°(G,A) c A(G,A), A°(G,A) is dense in A(G, A).
(i) Ch(G,A) c CP(G,A), CP(G,A) is dense in CP(G, A).
Proof.

(i) Let a € A and f € A(G). There exists fi, f, € L,(G) such that f = f; = f5. Consider the function

af:G - Ly,(G,A)
t - a(f(t)).
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We have, af = af; * f, = (af)) * (14f2) = (afy) * (14f2) which implies that af € A(G,A), and finally
ELz(G,cﬂ) ELz(G,Jl)
A°(G, A) € A(G,A).

Let f = g «xh € A(G,A), with g,h € L,(G,A)

Set

n

L5(G,A) = Zajgj:aj €A, g;€L(G),neEN,
=1
. Itis know that L3(G,A) is dense in L, (G, A) , then for all £ > 0, there exist g,, h, € L3(G, A) such that

lg - ge and

< &
< h—h S

Iz 201+ M) I =hellz < 2(1+ M)’

Where M, = sup{llg.|l2; llr]l.}.

Moreover, there exist n,m € N*,a.,a. 5, ..., e, e 1, b 2y ooy ey € A and

Ge1,Gezr or Gem ey Re g ooy e € Ly (G, A) such that

n
Ge * Ee = (Z QAg,iJe,i

=1
m

N————
*
N
Hngb
S

&
~.
=1
iyl
~.
N———

s

ae,ibs,j (ge,i * Ee.j)
N
j=1 €A(G)

i=

[y

which means that g, * h, is an element of A°(G, A).

Set f. = g. * h. , we have,

If = fell a0 ”g *h— ge * ﬁE”A(Gcﬂ)

= ”g‘E * (E - EE)”A(GJC,Q) + ”(g - gf) * fl”A(G’ﬂ)
< lgellzllh = Rellzllg — gell2lIRll2
(37
= T+ m,
< £
Hence, A°(G, A) is dense in A(G, A).
(i) This follows by using the same method as in (i).

Remark 4.8 If A = C, then A°(G,C) = A(G) and C*(G,C) = C*(G).

Corollary 4.9 Let G be a locally compact group and let A be a unital commutative H*-algebra. A(G) @ A is
isometrically isomorphic to a dense subspace of A(G,A).
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Proof. It is obvious that the space A°(G,A) is isometrically isomorphic to A(G) ® A, so using the previous
theorem, we are done. =

Proposition 4.10 Let (¢ j)je] be an orthonormal basis of an H*-algebra A. For each g € A°(G,A), there exists a
family of functions inA(G) such that

9O =) g% .
Jj€J
Proof. Let g € A°(G, A), then

g= Zahl,

with a; € A and h; € A(G). Since A has a Hilbert space structure with (f]) as an orthonormal basis, then

for all t € G we have:

i ai(h'(t))

i=

zn: Z Al EJ) (h; (t))where/lj eC
i=1 \j&J
z i’l{ (h(®) |

jeg \i=1

g(®)

Zg,(t)f,wnhgj Z/l’h €AG). m

JjeJ

Lemma 4.11 Llet G be a locally compact group and let A be a unital and commutative
H*-algebra. A function f = Y, f; € CP (G, A) is a completely bounded multiplier on A°(G,A) if and only if for
each 1 <i <mn, f; is a completely bounded multiplier on A(G).

Proof. Assume f is a completely bounded multiplier on A°(G, A), then for all g € A°(G,A), fg € A°(G,A),

m

i.e. zn:aifiZb Zn:

i=1 j=1 i=1j

Ma

1l
g

i.e. foralll<i<nl1<j<m, figj € AG). (1)
Since for all b € A and for all h € A(G) we have bh € A°(G,A)
then by settingm = 1,b; = b and g; = h, (1) becomes
Vh € A(G),and 1 <i <mn, f;h € A(G).
Moreover, since the operator,

M;:A°(G,A) - A°(G,A)
g - fg,

is completely bounded, it is obvious that for each 1 < i < n, the operator
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mgA(G) - A(G)
h - fih,
is also completely bounded. In fact, sinceM is c.b. on A°(G,A), we have

,fg\lglllmk ® Mf”B( )<

M ®A4°(G,A)
SoVa € My,Vh € A(G),Vb € A such that | « @ bh lI< 1, we have

}fgg)*”a ® ((aifi)(bh))”Mk®A°(G,cﬂ) <,

with 1 < i < n. This implies that

la; llg ,fg\g”(le @ ms)(a® h)||Mk®A(G) < oo,Va € My, Vh € A(G) suchthat | a ® h II< 1.

Hence :g@”l’"k ® mfi”B(Mk@A(G)) < o and my, is completely bounded on A(G).
We conclude that for all 1 < i < n, f; is a completely bounded multiplier on A(G).
Conversely, if for all 1 < i < n, f; is a completely bounded multiplier on A(G), then for all h € A(G), f;h € A(G).

Let g € A°(G, A), there exists a family of elements by, by, -+, by, € A,g1, 92 » 9m € A(G)(m € N*) such that

m
j=1

Thus, fig; € A(G) and a;b; € A, which means that fg € A°(G, A).

Now, let k € N* and a; € M, such that ||la; ® gll <1, then ||b;|| < 1 and ||g;|| < 1 (forall 1 < j < m). Set

w = sup {lla;]l4 | mg, "cb(A(G))}

1<isn
and
5 = 5up {{l(h, ® )@ @ Dl 0, 6.0}
we have:
S = sulla® Unluenme.n)
n m
D e @ e fsily 0.
i=1j=1
n m
< supd > > flatyl Ml @ gl ae
keN =
n m
< Z D kbl gz {1 © ) © 9l )
n
- m;”ai”‘ﬂfélng {”IM" ® mfi”B(Mk® A(c))}
<

n
mZ”ai“ ”mfi”cb(A(G))
i=1
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S < miw
< 0

which implies that sup {||(IM ® M;)|| } < oo, that is the operator
keN* « 5( )

M ®A°(G,A)

M:A°G,A) - A°G,A)
g - fa

is completely bounded.m

We have the following theorem which is a vector-valued extension of a result given by Gilbert [7] and proved
by Jolissaint in [9].

Theorem 4.12 Let G be a locally compact group, A a unital and commutative H*-algebra and let f € C? (G, A).
The following assertions are equivalent:

()  f is a completely bounded multiplier on A°(G,A).

(i)  there exists an integer n € N*,a family (a;);c;with a; € A, a Hilbert space K and two families of bounded
continuous functions (a;);e; , (B:)ie; from G to K such that for all s,t € G,

FE) = ) (el BiO) ar,

i€l
where {- ,-)x denotes the inner-product on K and I = {1,2,+--,n} c N*,

Proof.

()= (ii): Since f € CP(G,A), there exist ne€N*, aj,a,,a,€A and fi,fo -, f, € A(G) such that
n

f=> af.

=1

If f=%",af; is a completely bounded multiplier on A°(G,A), then for each 1 <i <mn, f; is a completely
bounded multiplier on A(G) (Lemma 4.11). Using Gilbert's Theorem, we claim that for each i, there exist a
Hilbert space K; and two bounded continuous functions y;, §; from G to K; such that

fi(t71s) = {a;(s), B;(t))forall s,t €G.

Each y; (resp. §;) can be identified to the element

a;=10,..,0, Vi ,0,...,0 | (resp. B; =10,...,0, 6; ,0,..,0 )

[
ithcomponent ithcomponent
of the Hilbert space

K=@®K,.

i€l
Finally,
fE™'s) = ) (a;i(s), i)k a; .

1

n
i=

7610



ISSN 2347-1921
Volume 14 Number 01

Journal of Advances in Mathematics
(ii)= (i): Conversely, assume
ftts) = Z(ai(s)' Bi(O))k a;, then f(t) = Z((ai(t)'ﬁi(lG))K) a; .
i=1 i=1

Let f; be the functions from G to C such that f;(t71s) = (a;(s),B;(t)), for all s,t €G, thus fi:t+
(a;(t), B;(15))x are bounded on G and we have

f© =) ®a; .
i=1

Using Lemma 4.11, all we have to prove is that each f; is a completely bounded multiplier on A(G). This is
obvious according to Gilbert's Theorem.m

5. Group von Neumann algebras and operator spaces

The group von Neumann algebra VN(G) (resp. VN(G, A)) is a closed subspace of B(L,(G)) (resp. B(L,(G,A)))
and then, is an operator space. Moreover, since A(G) (resp. A(G,A)) is a predual of a von Neumann algebra, it
can be equipped with its canonical operator space structure.

In this section, the H*-algebra A is assumed to have a dual operator space structure, ie. A is an operator
space and there exists an operator space E such that A is completely isometric to the dual operator E* of E .
The operator space E is called the operator predual of the dual operator space A and shall be denoted A,
(for more details about operator predual of a dual operator space, see [12]).

Theorem 5.1
()  The space VN(G) ®mnin A is completely and isometrically isomorphic to the space VN(G, A).
(i)  We have the completely isometric injection

AG) Qumin A S (VNG RA.) .

Proof. The proof of this theorem will be largely analogous to that of Grothendieck’s theorem [8] ($2, section 1
théoreme 2).

@ Consider the mapping H:VN(G) ® A = VN(G, A),
such that
m
HW© = ) wOay
k=1
n \%
where u = Euk ®a, EVN(G) Q Aandt € G.
k=1

Hv is then an element of C.(G, A) equipped with the norm || - [|o-

Let n € N*, consider also the mapping
\%
H,: M, (VN(G) ® Jl) — M,(VN(G,A),
such that
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k=1 1<i,j<n

\%
where v = (vij)lsi'an EM, (VN(G) X o‘l) ,

m

with v;; = Zvl’j ®af; EVN(G) @ Aand t € G.

k=1

H,v is then an element of C.(G, M,(A)) equipped with the norm [I-l,.

We have to prove that vn € N*, H,, is an isometric isomorphism and we are done.

I1Hn vl

m
sup (Z v{j-(g)aﬁj-) 'g€EG

k=1 isijsnlly o

m
supq sup Z vi(@af|| :9€G
1<i,jsn
k=1 A
m
sup {lsup a* (Z v{j-(g)aﬁj-) :g€G,a* € A ||a*| < 1}
<i,jsn e~

sup{ sup z vi(g)a*(af)

1<i,jsn
2l i

tg €G,a* €A |a*|| < 1]

m
sup{ sup {sup Z a*(ag‘]-)v{‘j(g) ]: a* e A% |a*|| < 1}
1<i,jsn | g€G
k=1
m
sup{ sup z a (afvs|| :a” €A lla*ll <1
1<i,jsn
k=1 o
m
supq sup |@ Z a*(aﬁ-)v{‘j cw EVN(G),a* e A" ||lw|| < 1,]la*|| <1
1<i,jsn =1
m
sup{ sup Z a*(aﬁ-)w(v{‘j) cw EVN(G),a* € A ||w|| <1, |a*|| < 1}
1<i,j<n k=1
m
sup{ sup |[(@®a") Z vi®af; ||: @ € VN(G)',a* € A% |lwll < 1, |la*|| < 1
1<i,jsn =
m
sup Z vfi®af;
1<i,jsn = y
vl

thatis ||H,vlle = IV .

\%
We just proved that M, (VN(G) ®c/l) is isometrically isomorphic with the closed linear subspace of
M,(VN(G,A)) = VN(G, M,(A)) generated by the family of functions of the form
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G — M, (A)

g = (Z vi"j(y)®a£‘j>

k=1

where vf; € VN(G) and af; € A for 1 <i,j <nand 1 < k < m; all we have left to do is to show that this
family is dense in VN(G, M, (A)).

Let f,:G - M,(A) be continuous and let € >0 be given. f,(G) is compact so there are points
ti, t;, ty € G such that for any t € G there's a £:1 < £ < m for which || f,(¢t) — f,,(t,) II< £/2, say. Let
Uy = {t: |lfn(®) — fu(t)ll < €}. Then {U,,--, Uy} is a finite open cover of G and therefore, there is a
continuous partition of unity {fu1, fuz =**» fum} Subordinate to {U,,--,U,,} , that is, there are continuous
real-valued functions f,1, fnz ***, fum ON G each having values in [0,1] with

m
z frk(t) = Iand f (t) = 0, when t is outside Uy.
k=1

Define h,: G - M, (A) by
MOEDWHOIADE
£=1
Plainly t = }[n< fre @ frn(t )>
Zl £ £

and if t € G, then

lhy (&) = £l

PN XCIADEIAC
£=1

PN GIAPEIAG)
£=1

D Fu @) - fu®)]

L:teU,
< &
it follows that ||h, — f1ll < € and with this the density of #,,'range is plain.
(i) Since for any operator space X and Y, the natural embedding
X" Qmin Y © cb(X,Y) is completely isometric and we have the complete isometries

x® Y)* = ch(X,Y*) = cb(Y,X") (Corollary 7.1.5 and Proposition 8.1.2 in [4]), we have:

A(G) ®min Ao Cb(VN(G): C/q') = (VN(G) @ cﬂ*)*. |
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