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ABSTRACT: 

A flow problem concerning the motion of an incompressible electrically conducting Oldroyd-B fluid in a channel bounded 
by two infinite rigid non-conducting parallel plates in presence of an external magnetic field acting in a direction normal to 
the plates has been solved in this paper. The unsteady motion is supposed to generate impulsively from rest in the fluid 
due to pulses of longitudinal impulses applied periodically on the upper plate in its own plane with the lower plate held 
fixed. There is no external electric field acting on the system and the magnetic Reynolds number is very small. The 
operational method is used to obtain the exact solutions for the velocity field and the skin-friction on the walls. The 
influence of the magnetic field and the fluid elasticity on the flow as well as on the skin-frictions is examined quantitatively. 
Solutions for the hydromagnetic and hydrodynamic situations are derived as special cases of the present analysis.  
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1. INTRODUCTION 

It is well-known that the fluid flow generated by pulsatile motion of the boundary has important applications in 
aerodynamics, nuclear technology, astrophysics, geophysics, atmospheric science and cosmic gas dynamics. The 
investigation in this direction was presented by Chakraborty and Ray [1] who examined the magneto-hydrodynamic 
Couette  flow of an electrically conducting incompressible viscous  fluid between two non-conducting parallel plates when 
the upper plates is set in motion by random pulses. Makar [2] presented the solution of magneto-hydrodynamic flow 
between two parallel plates when one of the plates is subjected to velocity tooth pulses and the induced magnetic  field is 
neglected. Bestman and Njoku [3] constructed solution of hydrodynamic channel  flow of an incompressible, electrically 
conducting viscous  fluid induced by tooth pulses including the effect of induced magnetic  field, ignored by the author [2], 
and using the methodology of Fourier analysis instead of applying the commonly used technique of Laplace transforms  
which involve complicated inversions. Ghosh and Debnath [4] considered the hydromagnetic channel flow of a two-phase  
fluid-particle system induced by tooth pulses and obtained solution using the method of Laplace transforms. Datta and 
Dalal [5,6] discussed the pulsatile  flow and heat transfer of a dusty  fluid in a channel and in an annular pipe employing 
the method of perturbation. On the other hand, Hayat et al. [7] have studied some simple  flows of an Oldroyd-B  fluid 
using the method of Fourier transforms. Asghar et al. [8] also utilized the same methodology as that of authors [7] to solve 
the problem concerning Hall effect on unsteady hydromagnetic flows of an Oldroyd-B  fluid while Hayat et al. [9] 
constructed the solution of hydromagnetic Couette  flow of an Oldroyd-B  fluid in a rotating system following the method of 
perturbation. Most recently, Ghosh and Sana[10] discussed the hydromagnetic channel  flow of an Oldroyd-B  fluid 
induced by recti fied sine pulses with a view to its application in several astrophysical situations. In the present paper, the 
problem as that of authors [1] has been studied in the case of an Oldroyd-B fluid, which takes into account both the elastic 
and memory effects exhibited by most polymeric and biological liquids, when the upper plate is set in motion impulsively 
from rest by pulses of longitudinal impulses of equal strength instead of random pulses of different strengths as 
considered by authors [1]. It appears that, besides various applications mentioned above, the present investigation is 
particularly useful in mobile technology, signal processing, seismology and in detecting the e ffect of magnetic  field on 
electrically conducting physiological fluid  flow systems. The problem is concerned with the analysis of unsteady 
hydromagnetic flow of an in- compressible, electrically conducting Oldryod-B fluid in a channel bounded by two in finite 
rigid non-conducting parallel plates. The motion is suppose to generate impulsively from rest in the  fluid due to pulses of 
longitudinal impulses subjected periodically on the upper plate with the lower plate held  fixed. Exact expression for the 
fluid velocity is obtained using the method of Laplace transforms. The results for the skin-friction on the walls are also 
obtained. The effects of the magnetic field and the fluid elasticity on the flow and also on the skin-friction on the plates are 
examined quantitatively. It is observed that the viscoelastic flows neither grow nor decay as fast as the ordinary viscous 
fluids. The magnetic field has a damping effect on the flow. The increase of fluid elasticity also diminishes the flow since it 
is retarding in nature. The structure and the magnitude of the flow is found to remain independent with the increase of time 
period of impulses subjected on the plate. The classical hydromagnetic and hydrodynamic results corresponding to the 
present problem have been derived. The work of authors [1] has also been compared with the present solution for the 
velocity field as a special case.  

2. BASIC EQUATIONS  

The constitutive equations for an Oldroyd-B fluid [7-9] are 

                     

    

where T = Cauchy stress tensor, p = fluid pressure, I = identity tensor, S = extra stress tensor, μ,1, 2= viscosity 
coefficient , relaxation time, retardation time (assumed constants).The tensor A1 is defined as 

           

In a cartesian system, Dt

D

(upper convected time derivative) operating on any tensor B1 is 

 

It is to be mentioned here that this model includes the viscous fluid as a particular case for 1 = 2; the Maxwell fluid when 

2 = 0 and an Oldroyd-B fluid when 0 < 2 < 1 < 1. 

The stress equations of motion for an incompressible electrically conducting Oldroyd-B fluid in presence of an external 
magnetic fluid are 
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where V = (u,v,w) = fluid velocity, ρ = fluid density, J = current density, B = magnetic flux density, E = electric field, μ0 = 
magnetic permeability (assumed constant), σ= electrical conductivity (assumed finite). 

3. FORMULATION OF THE PROBLEM 

In this problem, we consider the motion of an incompressible electrically conducting Oldroyd-B fluid between two infinite 
rigid non-conducting parallel plates separated by a distance h. The x-axis is taken in the direction of flow with origin at the 
lower plate and y-axis perpendicular to the plates. The initial motion is generated in the fluid due to train of longitudinal 
impulses subjected periodically on the upper plate with the lower plate held fixed. A uniform magnetic field of strength B0 is 
acting parallel to y-axis. We assume that no external electric field is acting on the fluid and the magnetic Reynolds number 
is very small. This implies that the current is mainly due to induced electric field and the applied magnetic field remains 
essentially unaltered by the electric current flowing in the fluid. We also assume that the induced magnetic field produced 
by the motion of the fluid is negligible compared to the applied magnetic field so that the Lorentz force term in (2.6) 
becomes    -σ B

2
0 V. 

Since the motion is a plain one and the plates are infinitely long, we assume that all the physical variables are independent 
of x and z. Then from the equation of continuity (2.5) and from the physical condition of the problem , we take 

 

              

The equations of motion in (2.6) then reduces to 

      

It follows from (2.2) and (3.1ab) that 

      

The Equation (3.7) gives 

        

where A(y) is an arbitrary function of y. But Syy is known to be zero for t < 0. This implies that A(y) must be zero. Hence 
Syy is zero always. Consequently, from (3.2) and (3.6) and in absence of pressure gradient along x direction, we get 

 

      

which on introducing the dimensionless quantities given by 

 

and on dropping the bars, yields 
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The problem now reduces to solving (3.10) subject to boundary and initial conditions: 

 

where f(t) representing the train of longitudinal impulses, as shown in Figure 1, is a periodic function of time with period T 
and each of strength E0. 

 

Figure 1: Longitudinal Impulses 

4. SOLUTION OF THE PROBLEM 

According to the nature of f(t) mentioned above, the mathematical form of u(d,t) may be written as 

              

where δ(t) is Dirac's Delta function which is defined as 

 

The use of Laplace transform method for the solution of the Eqn.(3.10) with initial conditions in Eqn.(3.12), provides the 
transformed equation for the fluid velocity in the form 

 

with the boundary conditions  

 

where s is the Laplace transform variable and  

The transformed solution for the fluid velocity ),(
_

syu  becomes 

 

The Inversion of Eqn.(4.4) gives 
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The inversion integral has poles at s = 0, a series of poles at s = im; m = 1; 2; …. and two other poles at s = s1 ; s2. 

Evaluating Eqn.(4.5) with the help of Cauchy's Residue theorem, we get 

     

In the event, the number of pulses is finite in number, i.e.  the fluid velocity corresponding to 
the present problem turns out as 

         

The result (4.7), in the case d=1 and k=1 i.e (1 = 2 = 0) which corresponds to Newtonian viscous fluid yields 

                     

The result (4.8) coincides exactly with the finding of the authors [1] provided the variable strength of impulses, An, in their 
result is replaced by E0. However, the result (4.8) has a drawback because m-series is not convergent. Under the 

circumstances, we have considered the train of impulses executed periodically on the plate to arrive at the solution (4.6). 
On the other hand, in the limit k 1, the hydromagnetic solution corresponding to the present problem as obtained from 
Eqn.(4.6) is given by  

 

        

Further, when M=0, (4.9) provides the hydrodynamic result 

   

The exact expression for the skin-friction at the lower plates (y=0) is given by 
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Similarly the expression for the skin-friction at the upper plate (y=d) becomes 

         

When k=1, the hydromagnetic results for the skin-frictions are 

      

Further, if k=1 and M=0, the hydrodynamic results for the skin-frictions become 

    

5. NUMERICAL RESULTS 

The quantitative analysis of the velocity field, given by Eqn.(4.6),for various values the magnetic field (M) and the fluid 
elasticity (k) are examined with the progress of time after the first impulse is executed at the upper plate through figures 
2(a) to 2(d). It is found that immediately after the impulse is communicated to the plate the fluid in the channel gets a 
sudden disturbance which tries to settle down after the impulsive action is over. As a result, an unsteady retarding flow 
exists in the channel which naturally tries to come to rest before receiving the next impulse. The viscous fluid (k=1) comes 
to rest more quickly than that of viscoelastic fluids. The smaller and smaller the value of k indicates that the fluid is more 
and more viscoelastic. The increase in the magnetic field (M) and the elasticity (k) of the fluid produce damping effect on 
the flow. Unlike viscous fluid, viscoelastic fluids come to rest through fluctuation (fig.2(c)) and a small amount of backward 
flows(fig.2(d)) prevailing in the channel with the progress of time till the next impulse occurs at t=T=1. The execution of the 
second impulse at t=1.0 on the upper plate provides similar flow structures in the fluid which are shown in figures 3(a) to 
3(c).The structure of the velocity profiles with the effects of the magnetic field (M) and the fluid elasticity (k) on them and 
with the progress of time for the period T=2 are presented in figures 4(a) to 4(e) and figure 5. It is observed that the 
velocity profiles are independent of time period T of the impulses. In other words, the fluid velocity at time t do not change 
with the variation of the magnetic field(M) and the fluid elasticity (k) when the time period of impulses changes from T=1 to 
T=2 as evident from the above figures. 
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Figure 2(a): Fluid velocity for different values of (M, k) when t= 0.25, T=1 and d=1 

 

 

Figure 2(b): Fluid velocity for different values of (M, k) when t=0.5, T=1 and d=1 

 

Figure 2(c): Fluid velocity for different values of (M, k) when t=0.85, T=1 and d=1 
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Figure 2(c): Fluid velocity for different values of (M, k) when t=0.95, T=1 and d=1. 

 

Figure 3(a): Fluid velocity for different values of (M, k) when t=1.25, T=1 and d=1 
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Figure 3(b): Fluid velocity for different values of (M, k) when t=1.5, T=1 and d=1 

 

Figure 3(c): Fluid velocity for different values of (M, k) when t=1.95, T=1 and d=1 
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Figure 4(a): Fluid velocity for different values of (M, k) when t=0.25, T=2 and d=1 

 

Figure 4(b): Fluid velocity for different values of (M, k) when t=0.5, T=2 and d=1 

 

 

Figure 4(c): Fluid velocity for different values of (M, k) when t=1, T=2 and d=1 
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Figure 4(d): Fluid velocity for different values of (M, k) when t=1.5, T=2 and d=1 

 

 

Figure 4(e): Fluid velocity for different values of (M, k) when t=1.95, T=2 and d=1 

 

Figure 5: Fluid velocity for different values of (M, k) when t=2.25, T=2 and d=1 
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The skin-friction at the lower plate(y=0) is presented in figures 6(a) and 6(b) respectively for the cases T=1 and T=2. It is 
found that for T=1 the skin-friction at the lower plate decreases with the increase of the magnetic field (M)and increases 
with the increase of fluid elasticity (k). It is further noticed that for all values of the magnetic field(M),the skin- friction at the 
lower plate for Newtonian fluid remains always higher than that produced by the viscoelastic fluids. Exactly similar 
situation prevails for T=2 which indicates that skin-friction at the lower plate is also independent of the time period of 
impulses executed on the upper plate. The skin-friction at the upper plate, presented in figures 7(a) and 7(b), is always 
negative which is contrary to that found in the lower plate. The magnitude of the skin-friction at the upper plate is more for 
T=1 than for T=2 which also contradicts the findings at the lower plate. Moreover, the skin-friction at the upper plate is 
independent of the magnetic field (M) but depends on the fluid elasticity (k) only. Finally, the magnitude of skin-friction at 
the upper plate for Newtonian viscous fluid remains always greater than that of viscoelastic fluids. This observation is also 
true for the skin-friction at the lower plate as reported earlier.  

 

 

Figure 6(a): Skin- friction (z0 / E0) on the lower plate (y=0) for different value of (M, k) when T=1, d=1. 

 

 

Figure 6(a): Skin- friction (z0 / E0) on the lower plate (y=0) for different value of (M, k) when T=2, d=1. 
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Figure 7(a): Skin- friction (z0 / E0) on the lower plate (y=d) for different value of (M, k) when T=1, d=1. 

 

Figure 7(b): Skin- friction (z0 / E0) on the lower plate (y=d) for different value of (M, k) when T=2, d=1. 

6. Conclusion 

The effect of train of impulses on electrically conducting viscoelastic flow in presence of an external field has been 
discussed in this paper. The fluid in the channel excited by the impulsive action produces a retarding motion which 
decreases both with the increase of magnetic field and the elasticity of the fluid. The viscous fluid comes to rest more 
rapidly than viscoelastic fluids. Contrary to viscous fluids, viscoelastic fluids produce a backward flow, of small magnitude, 
which persists till the beginning of next impulse. Flows in between successive impulses are of similar kinds and are 
independent of the time period of occurrence of impulses. The magnitude of skin-frictions on both the plates is greater for 
viscous fluids than for viscoelastic fluids. The skin-friction is positive at the lower plate and negative at the upper plate 
which is expected for channel flows induced by excitation of the upper plate. Finally, the skin-friction at the upper plate 
remains independent of the magnetic field while that at the lower plate decreases with the increase of the magnetic field. 
The present problem although idealized may provide useful applications in mobile technology, signal processing, 

seismology and in the analysis of blood flow. 
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