

Spectral Continiuty : (p, k) - Quasihyponormal and Totally p - (α, β) normal operators

D. Senthil Kumar, R. Santhi

¹Post Graduate and Research Department of Mathematics,
Government Arts College (Autonomous), Coimbatore - 641 018,Tamil Nadu, India.

E-mail address: senthilsenkumhari@gmail.com

²Department of Mathematics, Sri Ramakrishna Engineering College,
Vattamalaipalayam, Coimbatore - 641 022, Tamil Nadu, India.

E-mail address: santhinithyasena@yahoo.co.in

ABSTRACT

An operator $T \in B(H)$ is said to be p - (α, β) - normal operators for $0 if <math>\alpha^2 (T^*T)^p \le (TT^*)^p \le \beta^2 (T^*T)^p$, $0 \le \alpha \le 1 \le \beta$. In this paper, we prove that continuity of the set theoretic functions spectrum, Weyl spectrum, Browder spectrum and essential surjectivity spectrum on the classes consisting of (p, k) - quasihyponormal operators and totally p - (α, β) - normal operators.

Indexing terms/Keywords

Weyl's theorem; Single valued extension property; Continuity of spectrum; Fredholm; B – Fredholm; generalized a - Weyl's theorem; B – Fredholm; B - Weyl.

SUBJECT CLASSIFICATION

Mathematics Subject Classification: (Primary 47A10; Secondary 47A11, 47A53.)

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 8, No 3

editor@cirjam.org

www.cirjam.com, www.cirworld.com

INTRODUCTION

Let H be an infinite dimensional complex Hilbert space and B(H) denotes the algebra of all bounded linear operators acting on H. Every operator T can be decomposed into $T=U\left|T\right|$ with a partial isometry U, where $\left|T\right|=\sqrt{TT^*}$. In this paper, T=U|T| denotes the polar decomposition satisfying the kernel condition N(U)=N(|T|).

An operator $T \in B(H)$ is said to be normal if $TT^* = T^*T$ and hyponormal if $T^*T \geq TT^*$. An operator T is said to be Dominant if ran $(T - \lambda I) \subseteq \text{ran } (T - \lambda I)^*$ for all $\lambda \in \mathbb{C}$ or equivalently there exists a real number M_λ for each $\lambda \in \mathbb{C}$ such that $\|(T - \lambda I)^*x\| \leq M_\lambda \|(T - \lambda I)x\|$ for each $x \in H$. If there exists a constant M such that $M_\lambda \subseteq M$ for all $\lambda \in \mathbb{C}$, then T is called M – hyponormal and if M = 1, T is hyponormal. The class of hyponormal operators has been studied by many authors. In recent years this class has been generalized , in some sense , to the larger sets of so called p - hyponormal , log hyponormal , Posinormal, etc [31], [32], [29], [26] and [27].

An operator $T \in B(H)$ is said to be

- p -hyponormal for $0 iff <math>\left(TT^*\right)^p \leq \left(T^*T\right)^p$,
- p -posinormal for $0 iff <math>\left(TT^*\right)^p \le c^2 \, \left(T^*T\right)^p$,
- (α, β) normal operators if $\alpha^2 T^* T \leq TT^* \leq \beta^2 T^* T$, $0 \leq \alpha \leq 1 \leq \beta$ [30].

The example of an M - hyponormal operator given by Wadhwa [35], the weighted shift operator defined by $Te_1=e_2$, $Te_2=2e_3$ and $Te_i=e_{i+1}$ for $i\geq 0$, is not an p - (α,β) - normal, which is neither normal nor hyponormal. So it is clear that the class of p - (α,β) - normal lies between hyponormal and M - hyponormal operators. Now the inclusion relation becomes

Normal
$$\subseteq$$
 Hyponormal \subseteq (α,β) - normal \subseteq p - (α,β) - normal \subseteq M - hyponormal \subseteq Dominant

S.S Dragomir and M.S.Moslehian [28] and [30] has given various inequalities between the operator norm and numerical radius of (α,β) - normal operators . Weyl type theorems and composition operators of (α,β) have been studied by D.SenthilKumar and Sherin Joy.S.M [33, 34]. As a generalisation of (α,β) - normal operators, we introduce p - (α,β) - normal operators. When p = 1, this coincide with (α,β) - normal operators. An operator T is called totally p - (α,β) - normal, if the translate $T-\lambda$ is p - (α,β) - normal for all $\lambda\in C$.

An operator $T \in B(H)$ is said to be (p,k)-quasihyponormal operator, for some $0 and integer <math>k \ge 1$ if $T^{*^k} \left(\left| T \right|^{2^p} - \left| T^* \right|^{2^p} \right) T^k \ge 0$. Evidently,

- a(1,k) -quasihyponormal operator is k-quasihyponormal;
- $a\left(1,1\right)$ -quasihyponormal operator is quasihyponormal;
- $a\ (p,1)$ -quasihyponormal operator is k -quasihyponormal or quasi- p -hyponormal [8, 10],
- $a\ (p,0)$ -quasihyponormal operator is $\ p$ -hyponormal if $0 and hyponormal if <math>\ p = 1$.
- If $T \in B(H)$, we shall write N(T) and R(T) for the null space and the range of T respectively. Let $\alpha(T) = \dim N(T) = \dim(T^{-1}(0))$, $\beta(T) = \dim N(T^*) = \dim(H/T(H))$, $\sigma(T)$ denote the spectrum and

 $\sigma_a(T)$ denote the approximate point spectrum. Then $\sigma(T)$ is a compact subset of the set C of complex numbers. The function σ viewed as a function from B(H) into the set of all compact subsets of C, with its Hausdroff metric, is known to be an upper—semi-continuous function by [15, Problem 103], but it fails to be continuous by [15, Problem 102]. Also we know that σ is continuous on the set of normal operators in B(H) extended to hyponormal operators—[15, Problem 105]. The continuity of σ on the set of quasihyponormal operators (in B(H)) has been proved by Djordjevic [10], the continuity of σ on the set of p-hyponormal has been proved by Duggal [13] and Djordjevic [9], and the continuity of σ on the set of G_1 -operators has been proved by Luecke [18].

An operator $T\in B\left(H\right)$ is called Fredholm if it has closed range, finite dimensional null space and its range has finite co - dimension. The index of a Fredholm operator is given by $\mathrm{i}(\mathsf{T})=\alpha(T)-\beta(T)$. The ascent of T, $\mathrm{asc}\,T$, is the least non - negative integer n such that $T^{-n}(0)=T^{-(n+1)}(0)$ and the descent of T, $\mathrm{dsc}\,T$, is the least non - negative integer n such that $T^n(H)=T^{n+1}(H)$. We say that T is of finite ascent (resp., finite descent) if $\mathrm{asc}\,(T-\lambda I)<\infty$ (resp., $\mathrm{dsc}\,(T-\lambda I)<\infty$) for all complex numbers λ . An operator T is said to be left semi - Fredholm (resp., right semi - Fredholm), $T\in\Phi_+(H)$ (resp., $T\in\Phi_-(H)$) if T H is closed and the deficiency index $\alpha(T)=\dim(T^{-1}(0))$ is finite (resp., the deficiency index $\beta(T)=\dim(H/T(H))$) is finite); T is semi - Fredholm if it is either left semi - Fredholm or right semi - Fredholm, and T is Fredholm if it is both left and right semi - Fredholm. The semi - Fredholm index of T, ind T, is the number ind T is a called Weyl if it is Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. Let T denote the set of complex numbers. The Weyl spectrum T0 and the Browder spectrum T1 are the sets T2. A is not Weyl and T3 is not Browder T3.

Let $\pi_0(T)$ denote the set of Riesz points of T (i.e., the set of $\lambda \in C$ such that $T-\lambda$ is Fredholm of finite ascent and descent [7] and let $\pi_{00}(T)$ and iso $\sigma(T)$ denotes the set of eigen values of T of finite geometric multiplicity and isolated points of the spectrum. The operator $T \in B(H)$ is said to satisfy Browder's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_0(T)$ and T is said to satisfy Weyl's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$. In [16], Weyl's theorem for T implies Browder's theorem for T, and Browder's theorem for T is equivalent to Browder's theorem for T^* .

Berkani [5] has called an operator $T \in B(H)$ as B - Fredholm if there exists a natural number n for which the induced operator $T_n: T^n(X) \to T^n(X)$ is Fredholm. We say that the B - Fredholm operator T has stable index if ind $(T-\lambda)$ ind $(T-\mu) \ge 0$ for every λ , μ in the B - Fredholm region of T.

The essential spectrum $\sigma_e(T)$ of $T \in B(H)$ is the set $\sigma_e(T) = \{\lambda \in C : T - \lambda \text{ is not Fredholm}\}$. Let $acc \ \sigma(T)$ denote the set of all accumulation points of $\sigma(T)$, then $\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma_e(T) \cup acc\sigma(T)$. Let $\pi_{a0}(T)$ be the set of $\lambda \in C$ such that λ is an isolated point of $\sigma_a(T)$ and $0 < \alpha(T - \lambda) < \infty$, where $\sigma_a(T)$ denotes the approximate point spectrum of the operator T. Then $\pi_0(T) \subseteq \pi_{00}(T) \subseteq \pi_{a0}(T)$. We say that a-Weyl's theorem holds for T if

$$\sigma_{aw}(T) = \sigma_a(T) \setminus \pi_{a0}(T)$$

where $\sigma_{aw}(T)$ denotes the essential approximate point spectrum of T (i.e., $\sigma_{aw}(T) = \bigcap \{\sigma_a(T+K): K \in K(H)\}$ with K(H) denoting the ideal of compact operators on H).

Let $\Phi_+(H) = \{T \in B(H) : \alpha(T) < \infty \text{ and } T(H) \text{ is closed} \}$ and $\Phi_-(H) = \{T \in B(H) : \beta(T) < \infty \}$ denotes the semigroup of upper semi-Fredholm and lower semi-Fredholm operators in B(H) and let $\Phi_+^-(H) = \{T \in \Phi_+(H) : ind(T) \le 0\}$. Then $\sigma_{aw}(T)$ is the complement in C of all those λ for which $(T - \lambda) \in \Phi_+^-(H)$ [20]. The concept of a-Weyl's theorem was introduced by Rakocevic [21]. The concept states that a-Weyl's theorem holds for $T \Rightarrow$ Weyl's theorem holds for T, but converse is generally false. Let $\sigma_{ab}(T)$ denote the Browder essential approximate point spectrum of T.

$$\sigma_{ab}(T) = \bigcap \{ \sigma_a(T+K) : TK = KT \text{ and } K \in K(H) \}$$
$$= \{ \lambda \in C : T - \lambda \notin \Phi_+^-(H) \text{ or } asc(T - \lambda) = \infty \}$$

then $\sigma_{\!\scriptscriptstyle aw}\!\left(T\right)\!\subseteq\!\sigma_{\!\scriptscriptstyle ab}\!\left(T\right)$. We say that T satisfies a-Browder's theorem if $\sigma_{\!\scriptscriptstyle ab}\!\left(T\right)\!=\!\sigma_{\!\scriptscriptstyle aw}\!\left(T\right)$ [20].

An operator $T\in B(H)$ is said to have the Single Valued Extension Property at $\lambda_0\in C$, if for every open disc D_{λ_0} centered at λ_0 , the only analytic function $f:D_{\lambda_0}\to H$ which satisfies the equation

$$(T-\lambda)f(\lambda)=0$$
; for all $\lambda \in D_{\lambda_0}$

is the function $f\equiv 0$. Trivially, every operator T has SVEP at points of the resolvent $\rho(T)=C/\sigma(T)$. Also T has SVEP at $\lambda\in$ iso $\sigma(T)$. We say that T has SVEP if it has SVEP at every $\lambda\in C$. In this paper, we prove that if $\{T_n\}$ is a sequence of operators in the class (p, k) - quasihyponormal operator or totally p - (α,β) - normal operators which converges in the operator norm topology to an operator T in the same class, then the functions spectrum, Weyl spectrum, Browder spectrum and essential surjectivity spectrum are continuous at T. Note that if an operator T has finite ascent, then it has SVEP and $\alpha(T-\lambda) \leq \beta(T-\lambda)$ for all λ [1, Theorem 3.8 and Theorem 3.4]. For a subset S of the set of complex numbers, let $\overline{S}=\left\{\overline{\lambda}:\lambda\in S\right\}$ where λ denotes the complex number and $\overline{\lambda}$ denotes the conjugate.

MAIN RESULTS

Lemma 2.1

Let $T \in \textit{totally p} \cdot (\alpha, \beta)$ - normal operator, if $\overline{\lambda} \in \pi_{00}(T^*)$, then it is a pole of the resolvent of T^* .

Proof

If $0 \neq \overline{\lambda} \in \pi_{00}\left(T^*\right)$, then $\lambda \in iso \ \sigma(T)$ implies that λ is a normal eigenvalue of T [22, Lemma 2.4] and hence a simple pole of the resolvent of T [22, Theorem 2.5]. If instead, $\lambda = 0$ then $\dim \ker \left(T^*\right) < \infty$ implies that $\operatorname{ran} T^*$ is closed and hence $T^* \in \Phi_+\left(H\right)$. Since both T and T^* has SVEP at 0, it follows that, $\operatorname{asc}\left(T\right) = \operatorname{dsc}\left(T\right) < \infty$ [2, Theorem 2.3]. Hence 0 is a pole of the resolvent of T implies 0 is the pole of the resolvent of T^* .

Lemma 2.2

- (i) If $T \in (p,k)$ -quasihyponormal operator, then $asc(T-\lambda) \leq k$ for all λ .
- (ii) If $T \in \textit{totally p} \cdot (\alpha, \beta)$ normal operator, then T has SVEP.

Proof

- (i) Proof follows [13, page 146] or [25].
- (ii) Proof follows from [22, Lemma 2.1].

Lemma 2.3

If $T \in (p,k)$ -quasihyponormal \bigcup totally p - (α,β) - normal operator and $\lambda \in iso \ \sigma(T)$, then λ is a pole of the resolvent of T.

Proof

Proof follows from [25, Theorem 6] and Lemma 2.1.

Lemma 2.4

If $T \in (p,k)$ -quasihyponormal \bigcup totally $p - (\alpha,\beta)$ - normal operator, then T^* satisfies a-Weyl's theorem.

Proof

If $T\in (p,k)$ -quasihyponormal, then T has SVEP, which implies that $\sigma(T^*)=\sigma_a(T^*)$ by [1, Corollary 2.45]. Then T satisfies Weyl's theorem i.e., $\sigma(T)\setminus \sigma_w(T)=\pi_0(T)=\pi_{00}(T)$ [13, Corollary 3.7].

Since
$$\overline{\sigma_{00}}\left(T\right) = \overline{\sigma_{00}}\left(T^*\right) = \overline{\sigma_{a0}}\left(T^*\right), \qquad \sigma\left(T\right) = \overline{\sigma}\left(T^*\right) = \overline{\sigma_a}\left(T^*\right)$$
 and
$$\overline{\sigma_w}\left(T\right) = \overline{\sigma_w}\left(T^*\right) = \overline{\sigma_{ea}}\left(T^*\right)$$
 by [3, Theorem 3.6 (ii)],
$$\overline{\sigma_a}\left(T^*\right) \setminus \overline{\sigma_{ea}}\left(T^*\right) = \overline{\sigma_{a0}}\left(T^*\right).$$
 Hence if $T \in (p,k)$ -quasihyponormal, then T^* satisfies a -Weyl's theorem.

If $T \in totally \ p \cdot (\alpha, \beta)$ - normal operator, then by [22, Theorem 2.9] T^* satisfies a-Weyl's theorem.

Corollary 2.5

$$\text{If } T \in \big(p,k\big) \text{-quasihyponormal } \bigcup \text{ } \textit{totally } p \cdot (\alpha,\beta) \text{ } \text{-} \textit{normal} \text{, then } \lambda \in \sigma_a \left(T^*\right) \setminus \sigma_{ea} \left(T^*\right) \Rightarrow \lambda \in \textit{iso } \sigma_a \left(T^*\right).$$

Lemma 2.6

If $T \in (p,k)$ -quasihyponormal \bigcup totally p - (α,β) -normal, then $asc(T-\lambda) < \infty$ for all λ .

Proof

Since $T - \lambda$ is lower semi-Fredholm, it has SVEP. We know that from [1, Theorem 3.16] that SVEP implies finite ascent. Hence the proof.

Lemma 2.7 [6, Proposition 3.1]

If σ is continuous at a $T^* \in B(H)$, then σ is continuous at T.

Lemma 2.8 [12, Theorem 2.2]

If an operator $T \in B(H)$ has SVEP at points $\lambda \notin \sigma_w(T)$, then σ is continuous at $T \Leftrightarrow \sigma_w$ is continuous at $T \Leftrightarrow \sigma_b$ is continuous at T.

Lemma 2.9

If $\{T_n\}$ is a sequence in (p,k)-qusaihyponormal or *totally p* - (α,β) - *normal* which converges in norm to T , then T^* is a point of continuity of σ_{eq} .

Proof

We have to prove that the function σ_{ea} is both upper semi-continuous and lower semi-continuous at T^* . But by [11, Theorem 2.1], we have that the function σ_{ea} is upper semi-continuous at T^* . So we have to prove that σ_{ea} is lower semi-continuous at T^* i.e., $\sigma_{ea}\left(T^*\right) \subset \liminf \sigma_{ea}\left(T_n^*\right)$.

Assume the contradiction that σ_{ea} is not lower semi-continuous at T^* . Then there exists an $\varepsilon>0$, an integer n_0 , at $\lambda\in\sigma_{ea}\left(T^*\right)$ and an ε -neighbourhood $\left(\lambda\right)_{\varepsilon}$ of λ such that $\sigma_{ea}\left(T_n^*\right)\cap\left(\lambda\right)_{\varepsilon}=0$ for all $n\geq n_0$. Since $\lambda\not\in\sigma_{ea}\left(T_n^*\right)$ for all $n\geq n_0$ implies $T_n^*-\lambda\in\Phi_+^-(H)$ for all $n\geq n_0$, the following implications holds:

$$\begin{split} &\inf\left(T_{\scriptscriptstyle n}^{\;*}-\lambda\right) \leq 0\,,\;\; \alpha\left(T_{\scriptscriptstyle n}^{\;*}-\lambda\right) < \infty \;\; \mathrm{and} \;\left(T_{\scriptscriptstyle n}^{\;*}-\lambda\right) H \;\; \mathrm{is\; closed} \\ & \qquad \Rightarrow \inf\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) \geq 0,\;\; \beta\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) < \infty \\ & \qquad \Rightarrow \inf\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) = 0,\;\; \alpha\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) = \beta\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) < \infty \\ & \qquad \Rightarrow \inf\left(T_{\scriptscriptstyle n}-\overline{\lambda}\right) \leq 0 \end{split}$$

(Since $T_n \in (p,k)$ -quasihyponormal \bigcup totally p- (α,β) - normal by Lemma 2.2 and Lemma 2.6)

for all $n \geq n_0$. The continuity of the index implies that $\operatorname{ind}\left(T-\overline{\lambda}\right) = \lim_{n \to \infty} \operatorname{ind}\left(T_n - \overline{\lambda}\right) = 0$, and hence that $\left(T-\overline{\lambda}\right)$ is Fredholm with $\operatorname{ind}\left(T-\overline{\lambda}\right) = 0$. But then $T^* - \overline{\lambda}$ is Fredholm with $\operatorname{ind}\left(T^* - \overline{\lambda}\right) = 0 \Rightarrow T^* - \lambda \in \Phi_+^-(H)$, which is a contradiction. Therefore σ_{ea} is lower semi-continuous at T^* . Hence the proof.

Theorem 2.10

If $\{T_n\}$ is sequence in (p,k)-quasihyponormal or totally p- (α,β) - normal which converges in norm to T, then σ is continuous at T.

Proof

Since T has SVEP by Lemma 2.2, we have $\sigma(T^*) = \sigma_a(T^*)$. Evidently, it is enough if we prove that $\sigma_a(T^*) \subset \liminf \sigma_a(T_n^*)$ for every sequence $\{T_n\}$ of operators in (p,k)-quasihyponormal or $totally \ p \cdot (\alpha,\beta)$ -normal such that T_n converges in norm to T. Let $\lambda \in \sigma_a(T^*)$. Then either $\lambda \in \sigma_{ea}(T^*)$ or $\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*)$.

If
$$\lambda \in \sigma_{ea}\left(T^{*}\right)$$
, then proof follows, since
$$\sigma_{ea}\left(T^{*}\right) \subset \liminf \sigma_{ea}\left(T_{_{n}}^{*}\right) \subset \liminf \sigma_{a}\left(T_{_{n}}^{*}\right),$$

If $\lambda \in \sigma_a\left(T^*\right) \setminus \sigma_{ea}\left(T^*\right)$, then $\lambda \in iso \ \sigma_a\left(T^*\right)$ by Corollary 2.5. Consequently, $\lambda \in \liminf \ \sigma_a\left(T_n^*\right)$ i.e., $\lambda \in \liminf \ \sigma\left(T_n^*\right)$ for all n by [17, Theorem IV 3.16] and there exists a sequence $\left\{\lambda_n\right\}$, $\lambda_n \in \sigma_a\left(T_n^*\right)$, such that λ_n converges to λ .

Evidently $\lambda \in \liminf \sigma_a\left(T_n^*\right)$. Hence $\lambda \in \liminf \sigma\left(T_n^*\right)$. By applying Lemma 2.7, we obtain the result.

Corollar 2.11

If $\{T_n\}$ is a sequence in (p,k)-quasihyponormal or $totally\ p$ - (α,β) - normal which converges in norm to T, then σ , σ_w and σ_b are continuous at T.

Proof

Combining Theorem 2.10 with Lemma 2.8 and Lemma 2.9, we obtain the results.

Let $\sigma_s(T) = \{\lambda : T - \lambda \text{ is not surjective}\}$ denote the surjective spectrum of T and let $\Phi_+^-(H) = \{\lambda : T - \lambda \in \Phi_-(H), ind(T - \lambda) \ge 0\}$. Then the essential surjectivity spectrum of T is the set $\sigma_{es}(T) = \{\lambda : T - \lambda \notin \Phi_+^-(H)\}$.

Corollary 2.12

If $\{T_n\}$ is a sequence in (p,k)-quasihyponormal or *totally p* - (α,β) - *normal* which converges in norm to T, then σ_{es} is continuous at T.

Proof

Since T has SVEP by Lemma 2.2, $\sigma_{es}\left(T\right)=\sigma_{ea}\left(T^*\right)$ by [1, Theorem 3.65(ii)]. Then by applying Lemma 2.9, we obtain the result.

Let $K \subset B(H)$ denote the ideal of compact operators, B(H)/K the Calkin algebra and let $\pi: B(H) \to B(H)/K$ denote the quotient map. Then B(H)/K being a C^* -algebra, there exists a Hilbert space H,, and an isometric *-isomorphism $v: B(H)/K \to B(H)$ such that the essential spectrum $\sigma_e(T) = \sigma(\pi(T))$ of $T \in B(H)$ is the spectrum of $v \circ \pi(T)$ $\Big(\in B(H) \Big)$. In general, $\sigma_e(T)$ is not a continuous function of T.

Corollary 2.13

If $\{\pi(T_n)\}$ is a sequence in (p,k)-quasihyponormal or totally p - (α,β) - normal which converges in norm to $\pi(T)$, then σ_e is continuous at T.

Proof

If $T_n \in B(H)$ is essentially (p,k)-quasihyponormal or $totally\ p$ - (α,β) - normal that is if $\pi(T_n) \in (p,k)$ -quasihyponormal or $totally\ p$ - (α,β) - normal, and the sequence $\{T_n\}$ converges in norm to T, then $v \circ \pi(T) \in B(H)$ is a point of continuity of σ by Theorem 2.10. Hence σ_e is continuous at T, since $\sigma_e(T) = \sigma(v \circ \pi(T))$.

Let $H(\sigma(T))$ denote the set of functions f that are non-constant and analytic on a neighbourhood of $\sigma(T)$.

Lemma 2.14

Let $T \in B(H)$ be a *totally p* - (α, β) - *normal* and let $f \in H(\sigma(T))$. Then $\sigma_{bw}(f(T)) \subset f(\sigma_{bw}(T))$, and if the B-Fredholm operator T has stable index, then $\sigma_{bw}(f(T)) = f(\sigma_{bw}(T))$.

Proof

Let $T\in B(H)$ be a *totally p* - (α,β) - *normal*, let $f\in H(\sigma(T))$, and let g(T) be an invertible function such that $f(\mu)-\lambda=(\mu-\alpha_1)....(\mu-\alpha_n)g(\mu)$. If $\lambda\not\in f(\sigma_{bw}(T))$, then $f(T)-\lambda=(T-\alpha_1)....(T-\alpha_n)g(T)$ and $\alpha_i\not\in\sigma_{bw}(T)$, i=1,2,...,n. Consequently, $T-\alpha_i$ is a B-Fredholm operator of zero index for all i=1,2,...,n, which, by [5, Theorem 3.2], implies that $f(T)-\lambda$ is a B-Fredholm operator of zero index. Hence $\lambda\not\in\sigma_{bw}(f(T))$,

Suppose that T has stable index, and that $\lambda \notin \sigma_{bw} \left(f\left(T\right) \right)$. Then $f\left(T\right) - \lambda = \left(T - \alpha_{1} \right).....\left(T - \alpha_{n} \right) g\left(T\right)$ is a B-Fredholm operator of zero index. Hence, by [4, Corollary 3.3], the operator $g\left(T\right)$ and $T - \alpha_{i}, \ i = 1, 2, ..., n$, are B-Fredholm and

$$0 = ind (f(T) - \lambda)$$
$$= ind (T - \alpha_1) + \dots + ind (T - \alpha_n) + ind g(T).$$

Since $g\left(T\right)$ is an invertible operator, $ind\left(g\left(T\right)\right)=0$; also $ind\left(T-\alpha_{i}\right)$ has the same sign for all i=1,2,...,n. Thus $ind\left(T-\alpha_{i}\right)=0$, which implies that $\alpha_{i}\notin\sigma_{bw}\left(T\right)$ for all i=1,2,...,n, and hence $\lambda\notin f\left(\sigma_{bw}\left(T\right)\right)$.

Lemma 2.15

Let $T \in B(H)$ be a *totally p* $-(\alpha, \beta)$ - *normal* has Single Valued Extension Property. Then $ind(T-\lambda) \leq 0$ for every $\lambda \in C$ such that $T-\lambda$ is B-Fredholm.

Proof

An operator $T \in \textit{totally p} - (\alpha, \beta)$ - normal has SVEP by [22, Theorem 2.1]. Then $T|_{M}$ has SVEP for every invariant subspaces $M \subset X$ of T.

From [4, Theorm 2.7] , we know that if $T-\lambda$ is a B-Fredholm operator, then there exists $T-\lambda$ invariant closed subspaces M and N of X such that $X=M\oplus N$, $(T-\lambda)\big|_M$ is a Fredholm operator with SVEP and $(T-\lambda)\big|_N$ is a Nilpotent operator. Since $ind(T-\lambda)\big|_M \le 0$ by [19, Proposition 2.2], it follows that $ind(T-\lambda) \le 0$.

REFERENCES

- [1] Aiena. P, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Acad. Pub., 2004.
- [2] P. Aiena, Classes of operators satisfying a weyl's theorem, Studia Math. 169,2(2005), 105 122.
- [3] Apostol. C, Fialkow. L. A, Herrero. D. A, Voiculescu. D, Approximation of Hilbert space operators, Vol. II, Research Notes in Mathematics., 102, Pitman, Boston (1984).
- [4] Berkani. M, On a class of quasi Fredholm operators, Inter. Equat. operator Theory., 34 (1999), 244 249.
- [5] Berkani. M, Index of B Fredholm operators and generalization of the Weyl theorem, Proc. Amer. Math. Soc., 130 (2002), 1717 - 1723.
- [6] Burlando. L, Noncontinuity of the adjoint of an operator, Proc. Amer. Math. Soc., 128 (2000), 479 486.
- [7] Caradus. S. R, Pfaffenberger. W. E, Bertram. Y, Calkin algebras and algebras of operators on Banach spaces, Marcel Dekker, New York, 1974.
- [8] Campbell. S. I, Gupta. B. C, On k quasihyponormal operators, Math. Japonic., 23 (1978), 185 189.
- [9] Djordjevic. S. V, On the continuity of the essential approximate point spectrum, Facta Math. Nis., 10 (1995), 69 73.
- [10] Djordjevic. S. V, Continuity of the essential spectrum in the class of quasihyponormal operators, Vesnik Math., 50 (1998), 71 74.
- [11] Djordjevic. S. V, Duggal. B. P, Weyl's theorem and continuity of spectra in the class of p hyponormal operators, Studia Math., 143 (2000),23-32.
- [12] Djordjevic, S. V, Han, Y. M, Browder's theorem and spectral continuity, Glasgow Math. J., 42 (2000) 479 486.
- [13] Duggal. B. P, Riesz projections for a class of Hilbert space operators, Lin. Alg. Appl., 407 (2005), 140 148.
- [14] B.P. Duggal, I. H. Jeon and I. H. Kim, Weyl's theorem in the class of algebraically p hyponormal operators, Comment. Math. Prace Mat., 40(2000), 49 56.
- [15] [15] Halmos. P. R, A Hilbert space problem book, Graduate Texts in Mathematics, Springer Verlag, New York, 1982.

- [16] Harte. R. E, Lee. W. Y, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115 2124.
- [17] Kato. T, Perturbation theory for Linear operators, Springer verlag, Berlin, 1966.
- [18] Luecke. G. R, A note on spectral continuity and spectral properties of essentially G₁ operators, Pac. J. Math., 69 (1977), 141 149.
- [19] Oudghiri, Weyl's theorem and Browder's theorem for operators satisfying the SVEP, Studia Mathematica., 163 (2004), 85 -- 101.
- [20] Rakocevic. V, On the essential approximate point spectrum II, Mat. Vesnik, 36(1) (1984), 89 97.
- [21] Rakocevic. V, Operators obeying a weyl's theorem, Rev. Roumaine Math. Pures Appl., 34 (1989), 915 919.
- [22] D. Senthilkumar and R. Santhi, Weyl's theorem for algebraically On totally p (α, β) normal operators, Communicated.
- [23] A. Sekar, C. V. Seshaiah, D. Senthil Kumar and P. Maheswari Naik, Isolated points of spectrum for quasi * class A operators, communicated.
- [24] J. L. Shen, F. Zuo and C. S. Yang, On operators satisfying $T^* \left| T^2 \right| T \ge T^* \left| T \right|^2 T$, Acta Math. Sinica (English Ser.) 6 (2010), 2109 2116.
- [25] Tanahashi. K, Uchiyama. A, Cho. M, Isolated points of spectrum of (p, k) quasihyponormal operators, Lin. Alg. Appl., 382 (2004), 221 229.
- [26] A.Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations operator theory.
- [27] Mc Carthy, Cp, Israel J. Math., 5, (1967), 249 271.
- [28] S.S.Dragomir and M.S. Moselehian, Some inequalities for (α, β) normal operators in Hilbert spaces, Ser.Math.Inform.23(2008),39 47.
- [29] P.R.Halmos, A Hilbert spaces problem book, Springer -Verlag, Berlin(1982).
- [30] M.S. Moselehian, On (α, β) normal operators in Hilbert spaces, Image 39(2007) problem 39 47.
- [31] Mi Young Lee and Sang Hung Lee, On (p,k) Quasiposinormal operators, J. Appl. Math and computing Vol.19(2005),No.1-2,PP 573 578.
- [32] Masou Itoh ,Characterization of posinormal operators, Nihonkai Math. J. Vol.11(2000),97 101.
- [33] D. SenthilKumar and Sherin Joy.S.M, On totally (α, β) normal operators, Far East J. of Mathematical Sciences., Vol 71, (2012),151 167.
- [34] D. SenthilKumar and Sherin Joy.S.M, Composition operators of (α, β) normal operators, Int. J. Functional Analysis and Operator Theory., Vol.2,(2010),125 132.
- [35] Wadhwa B.I, M-hyponormal operators, Duke Math. J., 41(3)(1974), 655-660.

Author' biography

SANTHI.R

24, P.V Krishnan Street,

Saibaba Colony,

Coimbatore-38

Age : 38 Years DOB : 20/04/1975

Mobile: 9894096414 Email id: santhinithyasena@yahoo.co.in

Total Years of Experience :14 Years 10 months

Educational Profile:

Sl. No.	Degree	Year	College / University	Class / percentage
1.	Ph.D	2009	Govt. Arts College , Coimbatore Bharathiar University	At the verge of completion
2.	M.Phil	1998	AvinashilingamDeemed University, Coimbatore	79% - I Class
3.	M.Sc.	1995-1997	Nirmala College for Women, Coimbatore.	79% - I Class
4.	B.Sc.	1992-1995	P.S.G.R Krishnammal College for Women, Coimbatore.	70% - I Class

Work Experience:

Maharaja Engineering College, Coimbatore : January 1999 – May 2000

Sri Ramakrishna Engineering College : June 2000 to till date.

Status of Ph.D:

Registered in the year: January 2009

Publication in International Journal : 04

Publication in National Journal : 01

Communicated in International Journal : 04

Published Papers:

- Weighted composition of N class A(k) operators, IJAM, Vol 24, no. 6, 2011, pp. 935 942.
- k Quasinormal operators, International J. of Math. and Computation, Vol 15, (2012), No. 2, pp. 99 105.
- Weighted composition of k quasiparanormal operators, Inter. J. of Mathematical Archiev, Vol. 3(2), 2012, pp.739 – 746. (Impact Factor: 5.09)
- Weighted composition of quasi paranormal operators, Far East J. of Mathematical Sciences, (FJMS), Vol. 72, Issue 2, pp 369 -383 (2013). (Impact Factor: 0.692)
- Composition of p- (α, β) normal operators, International J. of Math. Sci. & Engg. Appls. (IJMSEA), Vol. 7 No. V (September, 2013), pp. 117-122 (Impact Factor : 0.1752)

Communicated Papers:

- Weighted composition of quasi - paranormal operators, Communicated.
- On p- (α, β) normal operators, Communicated.
- Spectral Continuity : p- (α, β) normal operators and (p, k) Quasihyponormal operators. Communicated.
- Weyl's theorem for algebrically Totally p- (α, β) normal operators, Communicated.

