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ABSTRACT 

An operator ( )T B H is said to be p - ( , )  - normal operators for 0 < p  1 if
2 * * 2 *( ) ( ) ( ) ,p p pT T TT T T    

0 1    .  In this paper, we prove that continuity of the set theoretic functions spectrum, Weyl spectrum, Browder 

spectrum and essential surjectivity spectrum on the classes consisting of (p, k) - quasihyponormal operators and totally    

p - ( , )  - normal operators. 
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INTRODUCTION  

Let H  be an infinite dimensional complex Hilbert space and  B H  denotes the algebra of all bounded linear operators 

acting on H . Every operator T  can be decomposed into T U T  with a partial isometry U , where 
*T TT . In 

this paper, T=U|T| denotes the polar decomposition satisfying the kernel condition N(U) = N(|T|). 

An operator  T B H  is said to be normal if 
* *TT T T  and hyponormal if 

* *    T T TT . An operator T  is said 

to be Dominant if ran ( )T I  ran 
*( )T I  for all C or equivalently there exists a real number M  for each  

C  such that 
*( ) ( )T I x M T I x    for each x H . If there exists a constant M such that 

M M  for all C, then T  is called M – hyponormal and if M = 1, T  is hyponormal. The class of hyponormal 

operators has been studied by many authors. In recent years this class has been generalized , in some sense , to the 

larger sets of so called  p - hyponormal , log hyponormal ,Posinormal,etc          31 , 32 , 29 , 26 27 .and  

 An operator  T B H  is said to be  

   - p -hyponormal for 0 1p  iff    * *  
p p

TT T T , 

   - p -posinormal for 0 1p  iff    * 2 *  
p p

TT c T T , 

   - ( , )  - normal operators if 
2 * * 2 * ,T T TT T T   0 1    [30]. 

 The example of an M - hyponormal operator given by Wadhwa [35], the weighted shift operator defined by 

1 2 2 3, 2Te e Te e   and 1i iTe e  for 0i  , is not an p - ( , )   - normal, which is neither normal nor hyponormal. 

So it is clear that the class of p - ( , )   -  normal lies between hyponormal and M - hyponormal operators. Now the 

inclusion relation becomes 

                              Normal   Hyponormal   ( , )  - normal 

  p - ( , )  -  normal   M - hyponormal   Dominant 

S.S Dragomir and M.S.Moslehian [28] and [30] has given various inequalities between the operator norm and numerical 

radius of ( , )   - normal operators . Weyl type theorems and composition operators of ( , )   have been studied by 

D.SenthilKumar and Sherin Joy.S.M [33, 34]. As a generalisation of ( , )   - normal operators, we introduce p - ( , )   

-  normal operators. When  p = 1, this coincide with ( , )   - normal operators. An operator T  is called totally  p - 

( , )   - normal, if the translate T   is  p - ( , )   - normal for all C . 

An operator  T B H
 
is said to be  ,p k -quasihyponormal operator, for some 0 1p   and integer 1k   if 

 22* * 0
pk kp

T T T T  . Evidently, 

  1,a k  -quasihyponormal operator is k-quasihyponormal; 

  1,1a  -quasihyponormal operator is quasihyponormal; 

  ,1a p -quasihyponormal operator is k -quasihyponormal or   quasi- p -hyponormal  [8, 10], 

  ,0a p -quasihyponormal operator is p -hyponormal if 0 1p   and hyponormal if 1p  . 

If  T B H , we shall write  N T  and  R T  for the null space and the range of T  respectively. Let 

  1dim ( ) dim( (0))T N T T   ,   *dim ( ) dim( / ( ))T N T H T H   ,  T
 
denote the spectrum and 
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 a T  denote the approximate point spectrum. Then  T  is a compact subset of the set C of complex numbers. The 

function   viewed as a function from  B H
 
into the set of all compact subsets of C, with its Hausdroff metric, is known 

to be an upper     semi-continuous function by [15, Problem 103], but it fails to be continuous by [15, Problem 102]. Also 

we know that   is continuous on the set of normal operators in  B H  extended to hyponormal operators  [15,  

Problem 105]. The continuity of   on the set of quasihyponormal operators (in  B H ) has been proved by Djordjevic 

[10], the continuity of   on the set of p -hyponormal has been proved by Duggal [13] and Djordjevic [9], and the 

continuity of   on the set of 1G -operators has been proved by  Luecke [18]. 

An operator  T B H  is called Fredholm if it has closed range, finite dimensional null space and its range has finite co 

- dimension. The index of a Fredholm operator is given by i(T) = ( ) ( )T T  . The ascent of T , ascT , is the least 

non - negative integer n such that 
( 1)(0) (0)n nT T   and the descent of T , dscT , is the least non - negative integer 

n such that 
1( ) ( )n nT H T H . We say that T  is of finite ascent (resp., finite descent) if asc ( )T I   (resp., 

dsc ( )T I  ) for all complex numbers  . An operator T  is said to be left semi - Fredholm (resp., right semi - 

Fredholm), ( )T H  (resp., ( )T H ) if T H is closed and the deficiency index   1dim( (0))T T  is 

finite (resp., the deficiency index   dim( / ( ))T H T H   is finite); T  is semi - Fredholm if it is either left semi - 

Fredholm or right semi - Fredholm, and T  is Fredholm if it is both left and right semi - Fredholm. The semi - Fredholm 

index of T , ind (T ), is the number ind (T ) = ( ) ( )T T  . An operator T  is called Weyl if it is Fredholm of index 

zero and Browder if it is Fredholm of finite ascent and descent. Let C denote the set of complex numbers. The Weyl 

spectrum ( )w T  and the Browder spectrum ( )b T of T  are the sets ( ) { :w T C T     is not Weyl}  and 

( ) { :b T C T      is not Browder} .  

Let 0 ( )T  denote the set of Riesz points of T  (i.e., the set of C  such that T   is Fredholm of finite ascent and 

descent [7] and let 00 ( )T  and iso ( )T  denotes the set of eigen values of T  of finite geometric multiplicity and 

isolated points of the spectrum. The operator  T B H  is said to satisfy Browder's theorem if 

0( ) \ ( ) ( )wT T T    and T  is said to satisfy Weyl's theorem if 00( ) \ ( ) ( )wT T T   . In [16], Weyl's theorem 

for T  implies Browder's theorem for T , and Browder's theorem for T  is equivalent to Browder's theorem for 
*T . 

Berkani [5] has called an operatot  T B H  as B - Fredholm if there exists a natural number n  for which the induced 

operator : ( ) ( )n n

nT T X T X  is Fredholm. We say that the B - Fredholm operator T  has stable index if ind ( )T   

ind ( ) 0T    for every ,   in the B - Fredholm region of T . 

     The essential spectrum  e T  of  T B H
 

is the set    :  is not Fredholme T C T     . Let 

  acc T  denote the set of all accumulation points of  T , then 

         e w b eT T T T acc T        . Let   0a T  be the set of C  such that   is an isolated 

point of  a T  and   0 T    , where  a T  denotes the approximate point spectrum of the operator T . 

Then      0 00 0aT T T    . We say that a-Weyl’s theorem holds for T  if 

     0\aw a aT T T    

where  aw T  denotes the essential approximate point spectrum of T  (i.e.,       :aw aT T K K K H     

with  K H  denoting the ideal of compact operators on H ).  
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Let         :  and is closedH T B H T T H   
 

and       :H T B H T     

denotes the semigroup of upper semi-Fredholm and lower semi-Fredholm operators in  B H
 

and let 

      : 0H T H ind T

     . Then  aw T
 

is the complement in C of all those   for which 

   T H 

 
 
[20].  The concept of a-Weyl’s theorem was introduced by Rakocevic [21]. The concept states that 

a-Weyl’s theorem holds for T   Weyl’s theorem holds for T , but converse is generally false. Let  ab T
 
denote the 

Browder essential approximate point spectrum of T .   

            :  and ab aT T K TK KT K K H      

               :  or -C T H asc T  

      

then    aw abT T  . We say that T  satisfies a-Browder’s theorem if    ab awT T   [20]. 

An operator  T B H  is said to have the Single Valued Extension Property at 0 C  , if for every open disc 

0
D centered at 0 , the only  analytic function 

0
:f D H   which satisfies the equation 

    0T f   ; for all 
0

D  

is the function 0f  . Trivially, every operator T has SVEP at points of the resolvent ( ) / ( )T C T  . Also T  has 

SVEP at  iso  T . We say that T  has SVEP if it has SVEP at every C .  In this paper, we prove that if 

 nT is a sequence of operators in the class (p, k) - quasihyponormal operator or totally p - ( , )  - normal operators 

which converges in the operator norm topology to an operator T  in the same class, then the functions spectrum, Weyl 

spectrum, Browder spectrum and essential surjectivity spectrum are continuous at T . Note that if an operator T  has 

finite ascent, then it has SVEP and      T T       for all   [1, Theorem 3.8 and Theorem 3.4]. For a subset 

S  of the set of complex numbers, let   :  S S    where   denotes the complex number and   denotes the 

conjugate. 

MAIN RESULTS 

Lemma 2.1  

Let T  totally p - ( , )    - normal operator, if  *

00 T  , then it is a pole of the resolvent of 
*T . 

Proof  

If  *

000 T   , then   iso T   implies that   is a normal eigenvalue of T  [22, Lemma 2.4] and hence a 

simple pole of the resolvent of T  [22, Theorem 2.5]. If instead, 0   then  *dimker T    implies that 
* ran T  is 

closed and hence  *T H . Since both T  and 
*T  has SVEP at 0, it follows that,    asc T dsc T          

[2, Theorem 2.3]. Hence 0 is a pole of the resolvent of T  implies 0 is the pole of the resolvent of 
*T . 

Lemma 2.2  

 (i) If  ,T p k -quasihyponormal operator, then  asc T k   for all  . 

 (ii) If T  totally p - ( , )    - normal operator, then T  has SVEP. 

Proof  

(i) Proof follows [13, page 146] or [25]. 

 (ii) Proof follows from [22, Lemma 2.1]. 
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Lemma 2.3  

If  ,T p k -quasihyponormal   totally p - ( , )    - normal operator and   iso T  , then   is a pole of the 

resolvent of T . 

Proof  

Proof  follows from [25, Theorem 6] and Lemma 2.1. 

Lemma 2.4  

If  ,T p k -quasihyponormal   totally p - ( , )    - normal operator, then 
*T  satisfies a-Weyl’s theorem. 

Proof  

If  ,T p k -quasihyponormal, then T  has SVEP, which implies that    * *

aT T   by [1, Corollary 2.45]. Then 

T  satisfies Weyl’s theorem i.e.,        0 00\ wT T T T      [13,  Corollary 3.7 ].  

 Since      * *

00 00 0aT T T    ,      * *

aT T T      and 

     * *

w w eaT T T     by [3, Theorem 3.6 (ii)],      * * *

0\a ea aT T T   . Hence if  ,T p k -

quasihyponormal, then 
*T  satisfies a -Weyl’s theorem. 

If T  totally p - ( , )    - normal operator, then by [22, Theorem 2.9]  
*T  satisfies a-Weyl’s theorem. 

Corollary 2.5  

If  ,T p k -quasihyponormal   totally p - ( , )    - normal, then      * * *\  a ea aT T iso T       . 

Lemma 2.6   

If  ,T p k -quasihyponormal   totally p - ( , )    - normal, then  asc T    for all  . 

Proof  

Since T   is lower semi-Fredholm, it has SVEP. We know that from [1, Theorem 3.16] that SVEP implies finite ascent. 

Hence the proof. 

Lemma 2.7 [6, Proposition 3.1] 

If   is continuous at a  *T B H , then   is continuous at T . 

Lemma 2.8  [12, Theorem 2.2] 

If an operator  T B H  has SVEP at points  w T  , then   is continuous at wT   is continuous at 

bT   is continuous at T . 

Lemma 2.9   

If  nT  is a sequence in  ,p k -qusaihyponormal or totally p - ( , )   - normal which converges in norm to T , then 
*T  

is a point of continuity  of ea . 

Proof  

We have to prove that the function ea  is both upper  semi-continuous and lower semi-continuous at 
*T . But by [11, 

Theorem 2.1], we have that the function ea  is upper semi-continuous at 
*T . So we have to prove that ea  is lower 

semi-continuous at 
*T  i.e.,    * *liminfea ea nT T  . 
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Assume the contradiction that  ea  is not lower semi-continuous at 
*T . Then there exists an 0  , an integer 0n , a 

 *

ea T   and an  -neighbourhood  


  of   such that    * 0ea nT


    for all 
0n n . Since 

 *

ea nT 
 
for all 0n n  implies    *

nT H 

   for all 0n n , the following implications holds: 

 * 0nind T   ,   *

nT     and  *

nT H  is closed 

    0,  n nind T T        

      0,  n n nind T T T            

   0nind T     

(Since  ,nT p k -quasihyponormal   totally p - ( , )   - normal   by Lemma 2.2 and Lemma 2.6)  

for all 0n n . The continuity of the index implies that    lim 0n nind T ind T     , and hence that 

 T   is Fredholm with   0ind T   . But then 
*T   is Fredholm with 

   * *0ind T T H  

     , which is a contradiction. Therefore ea  is lower semi-continuous at 
*T . 

Hence the proof. 

Theorem 2.10  

If  nT  is sequence in  ,p k -quasihyponormal or   totally p - ( , )    - normal which converges in norm to T , then   

is continuous at T .  

Proof   

Since T has SVEP by Lemma 2.2, we have    * *

aT T  .  Evidently, it is enough if we prove that 

   * *liminfa a nT T   for every sequence  nT  of operators in  ,p k -quasihyponormal or  totally p - ( , )    - 

normal such that nT  converges in norm to T .  Let  *

a T  . Then either  *

ea T   or 

   * *\a eaT T   . 

                    If       *

ea T  , then proof follows, since 

             * * *liminf liminfea ea n a nT T T    , 

                      If    * *\a eaT T   , then  * aiso T   by Corollary 2.5. Consequently, 

 *liminf a nT   i.e.,  *liminf nT   for all n  by [17, Theorem IV 3.16] and there exists a sequence  n , 

 *

n a nT  , such that n  converges to  .  

Evidently  *liminf a nT  . Hence  *liminf nT  . By applying Lemma 2.7, we obtain the result. 

Corollar 2.11 

If  nT  is a sequence in  ,p k -quasihyponormal or  totally p - ( , )    - normal which converges in norm to T , then 

 , w  and b  are continuous at T . 

  Proof   
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Combining Theorem 2.10 with Lemma 2.8 and Lemma 2.9, we obtain the results. 

Let    :  is not surjectives T T     denote the surjective spectrum of T  and let 

      : ,  0H T H ind T  

       . Then the essential surjectivity spectrum of T  is the set 

    :es T T H   

   . 

Corollary 2.12 

If  nT  is a sequence in  ,p k -quasihyponormal or  totally p - ( , )    - normal which converges in norm to T , then 

es  is continuous  at T . 

Proof 

Since T  has SVEP by Lemma 2.2,    *

es eaT T   by [1, Theorem 3.65(ii)]. Then by applying Lemma 2.9, we 

obtain the result.  

Let  K B H  denote the ideal of compact operators,   /B H K
 

the Calkin algebra and let 

   : /B H B H K   denote the quotient map. Then   /B H K
 
being a 

*C -algebra, there exists a Hilbert space 

'
H , and an isometric *-isomorphism     : /

'
v B H K B H  such that the essential spectrum     e T T  

 

of  T B H  is the spectrum of      
'

v T B H  . In general,  e T  is not a continuous function of T . 

Corollary 2.13 

If   nT  is a sequence in  ,p k -quasihyponormal or   totally p - ( , )    - normal which converges in norm to 

 T , then e  is continuous    at T . 

Proof 

If  nT B H  is essentially  ,p k -quasihyponormal or   totally p - ( , )    - normal  that is if    ,nT p k  -

quasihyponormal or totally p - ( , )    - normal, and the sequence  nT  converges in norm to T , then 

   'v T B H   is a point of continuity of   by Theorem 2.10. Hence e  is continuous at T , since 

    e T v T    .  

Let   H T  denote the set of functions f  that are non-constant and analytic on a neighbourhood of  T . 

Lemma 2.14 

Let  T B H  be a totally p - ( , )   - normal and let   f H T . Then      bw bwf T f T  , and if 

the B-Fredholm operator T  has stable index, then      bw bwf T f T  . 

Proof 

Let  T B H  be a totally p - ( , )   - normal, let   f H T , and let  g T  be an invertible function such that 

       1 ..... nf g          . If   bwf T  , then        1 ..... nf T T T g T       

and   ,i bw T 
 

1,2,...,i n . Consequently, iT 
 
is a B-Fredholm operator of zero index for all 1,2,...,i n , 

which, by [5, Theorem 3.2], implies that  f T     is a B-Fredholm operator of zero index. Hence   bw f T  ,  
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Suppose that T  has stable index, and that   bw f T  . Then        1 ..... nf T T T g T       is a 

B-Fredholm operator of zero index. Hence, by [4, Corollary 3.3], the operator  g T  and ,  1,2,...,iT i n  , are B-

Fredholm and  

           0 ind f T    

                 1 ....  nind T ind T ind g T       .  

Since  g T  is an invertible operator,    0ind g T  ; also  iind T   has the same sign for all 1,2,...,i n . 

Thus   0iind T   , which implies that  i bw T   for all 1,2,...,i n , and hence   bwf T  . 

Lemma 2.15 

Let  T B H  be a totally p - ( , )    - normal has Single Valued Extension Property. Then   0ind T    for 

every C  such that T   is  B-Fredholm. 

Proof 

An operator T totally p - ( , )    - normal has SVEP by [22, Theorem 2.1]. Then MT  has SVEP for every invariant 

subspaces M X   of T .   

From [4, Theorm 2.7] , we know that if T   is a  B-Fredholm operator, then there exists T   invariant closed 

subspaces M  and N  of  X  such that X M N  ,   MT   is a Fredholm operator with SVEP and 

  NT   is a Nilpotent operator. Since   0Mind T    by [19, Proposition 2.2], it follows that 

  0ind T   . 
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