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ABSTRACT

In this paper, we present two families of third and fourth order iterative methods for solving nonlinear equations. The
efficiency index of the proposed schemes is 1.442 and 1.587. In order to compare the performance with some of the
existing schemes, several numerical examples are furnished here.
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INTRODUCTION

We begin with the following iteration scheme

. f(xn)+Bf(yn) f(zn)
f(zn)+7f(yn) f(zn)’

$ﬂ--|—l = TIn

where ,B and ¥ are parameters to be determined from the following convergence theorem.

Theorem 2.1: Leta €| be a simple zero of sufficiently differentiable function f : | - R for an open interval I. If X is

sufficiently close to &, where €, =X -a and C, = f “)(a)/k!. Then the methods defined by (1) are at least of
order three for f =y = 1, and of fourth-order convergence if f = —1 and y = 2.

Proof

Using Taylor expansion of f (X,) about a and taking into account that f (&) # 0, we have

flan) = f'(@)]en + 26} + cse) + caep + O(e))]. (2)

Furthermore, we have

f'(@n) = f(@)[1 4 2c0e, + 3cse + deqe, + O(e,)], (3)
and
flzn) 2 2 3 A3 a4 5 )
Pl en — Co€, + 2(c5 — c3)e;, + (Teacg — 4ey — 3ey)e,, + Ole)). (4)
Substituting (4)in Y - =X — f (Xa) ields
g ) y
Yn — 0 = €2 — 2(c3 — e3)ed — (Teacs — 45 — 3ey)er + O(el). (5)

Expanding f (y n) about o and using (5), we have

flun) = f'(@)[eael — 2(c3 — c3)es, — (Teaes — 5y — 3eq)ey, + Ofey)]. (6)

From (2) and (6), we get

f(xn) + Bf(yn) = f'(@)[e, + (1 + B)eaes + {—2Bc5 + (1 +28)cs}ed
+0(ey,)].

and
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f(-l'n) + ﬁff(yn) = ff(a)[en. + (1 + "}f)CgEf?l + {_QTC% + (1 + 27)63}631 (8)
+0(e)].

Upon dividing (7) by (8) and simplifying, we get

Ten)£B0n) — 1 1 (8 — y)exen + (8 — Y{~ (v + 3)G + 23} o

+0(e3).

Multiplication of (4) and (9) yields

f(xn)'f'sf{yn) f(:rn) —
flezn)+yf(yn) f(zn)

en —{c2 — (B —7)eater, +{(2—4(B— ) — (B —7))c3}en (10)
H{(7T—4(B —7))eacs + (5(8 —7) +7(B —7) — d)c3te;, + Oley).

We obtain the error equation

nsr = [z — (B —7)eale? = [(2— 4(8 —7) —4(B = 7)) Blel

) (11)
—[(7T—=4(B = 7))eaes + (5(8 =) +9(8 —7) —4)cilep + Oey).
This means that the methods defined by (1) is at least of order three for any ﬂ— y = lto get the error equation
. . 21.3 4
Ent1 = _[(2 - 4(5 - T) - ?(5 - ?))CQ]ER + O(en)' (12)
Its obviously thatif f = —1 andy = —2, then the error equation should be
eny1 = [C3 — 3cacy + 3cqlet + O(ed), (13)
which means that the methods defined by (1) is of order fourif f = —1 andy = —2.
This completes the proof of the theorem.
Some special cases
Infact, # = —1 and ¥y = —2 the well-known Traub-Ostrowski method (TOM) [10] is obtained.
Tyl =T, — f(ln)_f(yn) f(iz:n) (14)
" " f(i:n) — Qf(yﬂ) ff(xn)
If we choose # = 2 andy = 1, we get the third order method.
(@) +2F(Yn) f(2n) (15)

Tpt1 =y — y
T f(wa) + fya) ()
which introduced by Chun in [11]
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If f# = 0 andy = —1, then we obtain from (1), we obtain a third order method

f(g:ﬂ.) f(:l’,?l)

Tnyy = Tp — | (16)
" T f(@n) = f(ya) fl(n)
which was introduced by Xiaojian in [12].
If f = —3 andy = —4, then we obtain from (1) a new third-order method
Tyl = Ty — f(xn) — Sf(yﬂ} f(In) (17)
n4+1 — 4n .
f(-rn) - “1(9'?1) ff(lrn)
If f =1andy = 0 ,then we obtain from (1) a new third-order method
Tn)+ Y,

[ (zn)

1
We consider the definition of efficiency index [13] as P“ , where P is the order of the method and W is the number of

function evaluations per iteration required by the method. If we assume that all the evaluations have the same cost as
function one, we

have that the third order family has the efficiency index equal to 3 3/5 =1.442, which is better than the ones of the
Newtons method +/2 =1.414.

New families of fourth order methods

In this section, we apply the approach used in [14] to derive new families of fourth order by using the new third order
method in (1). Now, we consider the function ¢ defined in the following linear combination form

6(z) =z — [z — p(x)] — bl — ((2)] — B[z — (2], (19)

where 8 €R, i1 =123 6+ 6,+ 6,=1

Theorem 4.1: [14] Let a € | be a simple zero of sufficiently differentiable functionf :1 — R for an open interval | .

Let @, 1 = 1,2,3 be nonzero real numbers with 61 + @2+ 3= 1, and p, { and # be iteration functions of order three,
then the iteration function defined by (19) is of order at least three, and the iterative method defined by

Xpa = ¢(X n ) then satisfies the error equation
1 (1) ~(B) RE TR PR 4 ()
Enil = E[ﬁlp () + 02 () + O3m (a)]e;, + Ole,, ). (20)

Furthermore, the iteration function defined by (19) is of order at least four for each triple (€1, €2, &3 ) making the

coefficient of eﬁ in (20) zero, and the iterative method defined by Xn+1 = d)(Xn) then satisfies the error equation

1 (4 ; s
entl = ﬂ[ﬂmm(a‘) +65¢" () + 037 (a)]ep, + O(ep). (21)
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To construct the fourth-order iterative method via Theorem 4.1, we consider the third-order iteration functions o, { and n
defined in (16), (17) and (18).

By the help of Mathematica, we have

pP(a)=c,  pW(a) = =3¢ + 3leacs — 12¢4,
(Ba) = -2c2, (W(a)=3c} + 19csc3 — 12¢,, (22)
n®(a) =23, nW(a)=—9c + 35c5c3 — 12¢4,

By Theorem 4.1, we need to solve the system of equations

01+ 02+ 603=1,

_ _ (23)
010 () + 6% (@) + 637 (@) = 0,
for 01, 92 and 93 to construct fourth-order iteration functions via (19). Therefore, the system of equations
01+ 6+ 03 =1,
1 2 3 ) (24}
9103 — 292(‘% + 932[’% = 0,
to obtain
2—4p 1+
0 = —, b= i 3 = p3, (25)

3 3

Where,B € R . Thus, the iteration function defined by (19) gives a family of infinitely many new fourth—order iterative
methods

bt =y (%4) - (%0) - (5D), (26)

A o Fzn)=f(yn) f'(zn)’

C — f(xn)_af{'yn) f(xn)
] f(zn)=4f(yn) f'(zn)’

_ flen)+fyn)
D= fzn) 7

with error equation

143 29 1 58 h3 31 5
Ent+1 = ((T - 5)0203 - (g - ?)04 - (E - ﬁ.ﬁ)ﬁ’g) e + O(e”). (27)

This fourth order family has the efficiency index equal to Q/Z = 1.587, which is better than the ones of the Newtons

method «2 =1.414.
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From (26) we can get infinitely many forth order methods, for example for ,B = -1

Pla)+ W) 28)

P - 3@ ) — 2£() |
Tl = I T T (Fl) — AF () (29)

Numerical results

All computations were done using the Mathematica package using 64 digit floating point arithmetics. We accept an
approximate solution rather than the exact root, depending on the precision (E) of the computer. We use the following
stopping criteria for computer programs: /5(n+1 3 Xn/ < € and so, when the stopping criterion is satisfied, Xn+1 is taken as
the exact root a computed. We used the fixed stopping criterion € = 10-15.

The following test functions have been used. We employ the present methods to solve some nonlinear equations, which
not only illustrate the methods practically but also serve to check the validity of theoretical results we have derived.

filz) =2° +422 — 10, o = 1.3652300134140968457608068290,
)=sin?r — 22+ 1, o= 1.404491648215341,

) =22 — ¢ — 3z +2, a=0.2575302854308608,

) = cosT — 7. a = 0.73908513321516064165531208767,
V= (r—172 =2,  «=22:2599210498048731647672106073,
)

r)=(r+2)e" -1, o = —0.44285440100238858314132800000,

Displayed in Table 1 and Table 2 are the number of iterations to approximate the zero (N) and the number of function
evaluations (TNFE) counted as the sum of the number of evaluations of the function itself plus the number of evaluations
of the derivative.

We present some numerical test results for various iterative schemes in Table 1. Compared with the Newton method
(NM), the method of Chun (16)(CM), Xiaojian (XM)(16). and the methods (17)(OM1) and (18) (OM2) introduced in section
3. The test results in Table 1 show that for most of the functions we tested, the methods introduced in the present
presentation have at least equal performance compared to the other third-order method, and can also compete with
Newtons method.

In Table 2, we also present some numerical test results for various fourth order methods and the Newton method, were
the Newton method (NM), Jarratts method (JM)[15] defined by

3 f'(y) — f'(z) @) (30)

ITpyl =Ty — 11—

where Zn = Xn — 2f(X)/f* (X), Traub-Ostrowski method (TM)(14), and the methods (0S1)(28), (0S2)(29) introduced in
section 4.
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The results presented in Table 2 show that for most of the functions we tested, the variants introduced in the present
presentation have better performance as compared to the corresponding classical methods, and also converge more
rapidly than Newtons method.

g;kl;llzirison of various cubically convergent iterative schemes and Newtons method
f(z) N TNFE
NM CM XM OM1 OM2 NM CM XM OM1I OM2
fi,zo=3.0 6 4 1 ! 4 12 12 12 12 12
fa,z0=3.0 6 4 4 4 4 12 12 12 12 12
fa,xo = 1.0 ® 3 3 3 3 24 0 9 ] 0
fa,20=3.0 7 1 1 ! 3 14 12 12 12 0
fs,20=25 5 3 3 3 3 10 0 9 9 0
fe.xp=—-10 5 5 3 ! 4 10 15 9 12 12
fraxg=—-10 6 NC 4 1 6 12 NC 12 12 18

Table 2
Comparison of various fourth order schemes and Newtons method

f(z) N TNFE

NM JM TM 0S1 082 NM JM TM OSI 082
fi,zo=-03 53 74 60 7 44 106 222 180 21 132
fo,x0=30 6 6 3 3 3 12 12 9 0 0
fa,z0 =10 4 4 2 2 2 g 12 6 6 6
fo,z0=20 4 5 3 3 3 8 10 9 0 0
fs.xg=30 6 5 3 3 6 12 10 9 9 12
fe,x0=—-10 5 5 3 3 3 0 15 9 0 0
froag=20 6 4 3 4 4 12 12 9 12 12

Conclusions

We have proposed two families of iterative methods for solving nonlinear equations. Numerical results support the first
family to be cubically convergent and show that the number of iterations of the new method are always less than that of
the classical Newtons method and can be compared with other methods. We have obtained many new fourth-order
methods from third-order methods. Analysis of convergence of this family of methods is supplied in Theorem 2. Analysis of
efficiency shows that these methods are preferable to Newtons method and some classical fourth order methods. The
number of function evaluations of the new methods are comparable.
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