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ABSTRACT 

The results of investigation of the properties of new sequential methods of testing many hypotheses based on special 
properties of hypotheses acceptance regions in the constrained Bayesian tasks of testing many hypotheses are offered. In 
particular, some relations between the errors of the first and the second kinds in constrained Bayesian task and in 
sequential method of Bayesian type depending on the divergence between the tested hypotheses are given. Also 
dependences of the Lagrange multiplier and the risk function on the probability of incorrectly accepted hypotheses are 
presented. Theses results are necessary for computation of errors of made decisions at testing multiple hypotheses using 
offered new sequential methods of testing hypotheses. Computation results of some examples confirm the rightness of 
theoretical researches. 

Keywords: constrained Bayesian problem; decision rule; errors type I and type II; hypotheses testing; sequential 

analysis. 
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1 Introduction  

A short review of the works devoted to the classical problem of sequential analysis beginning from the fundamental work 
of the Wald is given in [18]. It must be noted that there are many other works where different concepts of multiple 
sequential comparisons are considered. For example, in [11] (Sections 6.8 and 7.5) sequential methods about multivariate 
parameters are described. To test a composite null hypothesis concerning a set of parameters against two tailed 
alternative hypothesis on the basis of sequentially obtained observations is considered in the works [4, 9, 10, 14, 15, 17 
(Chapter16), 27-30, 32, 36,37 (Chapter8)]. The methods of classification of the several available sets of models are 
described in [1, 3, 5, 8, 13, 24, 26, 31, 33] which are extensions of the classical Wald’s sequential probability ratio tests. 
More general problem is considered in [2, 6, 7, 12, 17 (Chapter 15), 25, 34, 35]. In particular, there are considered 
individual hypotheses about examined set of parameters of sequentially observed random vectors. In the present paper 
we bring some results of investigation of the method of sequential analysis of Bayesian type offered in [18, 19] which is 
quite universal approach allowing to test hypotheses of any types considered in the above mentioned works.  

2 Constrained Bayesian problems of testing multi-hypothesis 

   One of possible formulations of the constrained Bayesian problem has the following form [20, 22] 
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iH θθ : , is the hypothesis that the sample ),...,( 1 n

T xxx  is generated by distribution 
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i Hpxxpp xθx   , Si ,...,1 ; )( iHp  is the a priori probability of hypothesis iH ; 

 )(),...,(),()( 21 xxxx S   is the decision function where 1)( xi  if hypothesis iH  is accepted and 0)( xi  otherwise; 

i  is the region of acceptance of hypothesis iH , i.e.  1)(:  xx ii  ;   is the maximum allowed level of the averaged 

value of incorrectly accepted hypotheses. 

   For solving constrained optimization problem (1), (2) we shall use the method of indeterminate Lagrange multipliers, 
which gives [20, 22]:  
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where  , the same scalar value for all regions, is determined so that in (2) the equality takes place.            

   Task (1), (2) is one of possible formulations of the constrained Bayesian problem. In a similar manner, we can introduce 
and solve different constrained Bayesian tasks [20]. For simplicity, further we shall consider only the task (1), (2), though it 
is not difficult to be convinced that all results obtained below, after appropriate modifications, are true for all other tasks 
too.        

3 Properties of the hypotheses acceptance regions 

   In conventional stat.ements of the problem of statistical hypotheses testing, their acceptance regions are not intersected, 

i.e.   ji , ji  , and the union of all regions of acceptance of hypotheses coincides with the observation space, 

i.e. n
S

i
i R

 1
 [23]. These conditions break down at consideration of above-formulated constrained Bayesian task of 

hypotheses testing. In particular, in [21, 22] is proved that for any value of   ( 10  ), that is the same, for any value of 

  (  0 ), in the observation space nR  exist: the regions of unambiguous acceptance of the tested hypotheses, the 

regions of the suspicion on the validity of several (more than one) tested hypotheses (corresponding to sub-regions of the 
intersection of the regions of acceptance of corresponding hypotheses (3)) and the region of impossibility of acceptance of 

the tested hypotheses (corresponding to the region of the space nR , which do not belong to any of the regions of 

acceptance of hypotheses (3)). Accordingly, for any concrete observation result x , on the basis of which the decision is 

made, in the interval  1;0  there are such values )()( *
* xx    that for )]();([ *

* xx    the observation result x  belongs 

to only one of the regions of acceptance of hypotheses (3) and the corresponding hypothesis is accepted, respectively. At 

)(* x  , the observation result x  appears in a sub-region of intersection of two or several regions of acceptance of 

hypotheses (3), and it is impossible to make a simple decision. In that case, the appropriate hypotheses are suspected on 

the validity. At )(*
x  , the observation result x  appears in the region of the space nR  which does not belong to any of 
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the regions of acceptance of hypotheses (3). In this case, it is impossible to make the decision on the basis of the set 
observation result x . 

4 The method of sequential analysis of Bayesian type 

   Using the specificity of hypotheses acceptance regions (3), the sequential analysis method of Bayesian type is offered in 

[18, 19]. In particular, there are used the following designations: n
mR  is the sampling space of all possible samples of m  

independent n -dimensional observation vectors ),...,( 1 nxxx ; n
mR 1, , n

mR 2, ,..., n
SmR , , n
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mR  into 
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   The following decision rule is determined. If the matrix of observation results ),...,( 1 m
xxx   belongs to the sub-region 

n
imR , , Si ,...,1 , then hypothesis iH  is accepted, and, if ),...,( 1 m

xxx   belongs to the sub-region n
SmR 1,  , the decision is 

not made, and the observations go on until one of the tested hypotheses is accepted.  

   Let us designate the population of sub-regions of intersections of acceptance regions m
i  of hypotheses iH  ),...,1( Si   

in constrained Bayesian task of hypotheses testing with the regions of acceptance of other hypotheses jH , Sj ,...,1 ; 
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hypotheses acceptance regions. Then the hypotheses acceptance regions in the method of sequential analysis of 
Bayesian type are determined in the following way: 
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   Here regions ,m
i  ,m

iI  ,n
mE  Si ,...,1 , are defined on the basis of hypotheses acceptance regions (3).   

5 Investigation of the method of sequential analysis of Bayesian type 

5.1. Consistency and uniqueness 

   For clarity, from here on, by 1  and 1 , we shall designate the probabilities of errors of the first and the second kinds for 

sequential method of Bayesian type with m  sequentially obtained observation results, and, by   and  , the same 

quantities for constrained Bayesian task.  

The following statements are proved in [18]. 

Theorem 5.1. If the probability distribution )|( iHp x , Si ,...,1 , is such that an increase in the sample size m  entails a 

decrease in the entropy concerning distribution parameters θ  about which the hypotheses are formulated, then infinitely 

increasing number of repeated observations, i.e. m  in the sequential analysis method of Bayesian type, entails 

infinite decreasing probabilities of errors of the first and the second kinds, i.e. 01   and 01  .   

Lemma 5.1. In the conditions of Theorem 5.1, at increasing divergence ),( ji HHJ  between tested hypotheses iH  and 

jH , jiSji  ;,...,1, , Lagrange coefficient   in solution (3) decreases, and, in the limit, at 
 

),(min
,

ji
ji

HHJ , 0  

takes place for the given  . 

Lemma 5.2. In the conditions of Theorem 5.1, at infinitely decreasing divergence ),( ji HHJ  between tested hypotheses 

iH  and jH , jiSji  ;,...,1, , i.e. at 
 

0),(max
,
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HHJ   Lagrange coefficient   in solution (3) tends to a certain value 

from the interval: 
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depending on the value of  . 
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Corollary 5.1. In the conditions of Theorem 5.1 at the absence of a priori information about the validity of tested 

hypotheses, i.e. at SHp i /1)(  , Si ,...,1 , at 
 

0),(max
,

ji
ji

HHJ , )1(  S   is truth.    

Theorem 5.2. For any given sample size m  and as small errors of the first and the second kinds   and    as one likes, 

there always exists such a positive value *J  that, if the divergence between tested hypotheses is more than that value, 

i.e. 
 

*

,
),(min JHHJ ji

ji
 ,  )(1 J  and  )(1 J  hold true, i.e. the method of sequential analysis of Bayesian type 

rigorously surpasses the criterion with errors of the first and the second kinds equal to   and   , respectively.  

Theorem 5.4. For any value of   in constrained Bayesian task there always exists such an integer *m  that if the number 

of repeated observations m , in the method of sequential analysis of Bayesian type, is more than this value, i.e. *mm  , 

there will be accepted one of the tested hypotheses with the probability equal to unity.  

In addition to these properties the following one are also true.  

Theorem 5.3. At infinitely decreasing divergence between the tested hypotheses, i.e. at 
 

0),(max
,

ji
ji

HHJ , between the 

probabilities of errors of the first and the second kinds in constrained Bayesian task, there exists the following ratio 

  , where, in the general case   is the value different from one of the following character: at 1  or 0 , 

value 1  since, in these cases, 0  or 1  hold true, respectively.  

Proof. In accordance with Lemma 5.2, at 
 

0),(max
,

ji
ji

HHJ , coefficient   in hypotheses acceptance region (3) tends to 

a certain value from interval (5), i.e. its value is determined by a priori probabilities for given  . Moreover this tendency is 

such that the probability of fulfillment of inequality 
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is equal to )1(  . At 
 

0),(max
,
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ji

HHJ , 1)|(/)|( ji HpHp xx , ),...,1(,:, Sjiji  ; ji   takes place. Thus, for 

infinitesimal ),( ji HHJ , the difference between )|( iHp x and )|( jHp x  is also infinitesimal, i.e. these distributions 

coincide with high accuracy. Probabilities   and   are the probabilities of errors of the first and the second kinds, 

respectively (see Fig. 1). At 1)|(/)|( ji HpHp xx , ),...,1(,:, Sjiji  ; ji  , it is easy to guess that in interval (5) exists 

such a value  *  at which they become mutually complementary probabilities, satisfying condition 1  . At  * , 

the probabilities of errors of the first and the second kinds are no longer mutually complementary. Therefore, there could 

arise situations 1   or 1   depending on the value of  . At 1  or 0 , the probabilities of errors 

of the first and the second kinds become again mutually complementary because of a higher order of smallness of the 

difference between probability distribution densities )|( iHp x  and )|( jHp x  on the tails than in the vicinity of their modes, 

and therefore again condition 1   is satisfied.                                                                                    

Corollary 5.2. In the conditions of Theorem 5.3, at SHp i /1)(  , Si ,...,1 , 1   holds true, i.e., at 0 , 1  

hold true, and on the contrary, at 1 , 0  is fulfilled. In particular, at 5.0 , 5.0 .    

Proof. At SHp i /1)(  , Si ,...,1 , left-hand side of (6) approaches )1( S . In accordance with Corollary 5.1, the value of 

  from the right-hand side of (6), approaches )1( S  from above. Therefore, the difference between regions j  tends to 

zero and, accordingly, the probabilities   and   become mutually complementary up to one.   

   At 
 

0),(max
,

ji
ji

HHJ , the difference between likelihood functions is caused by the difference between a priori 

probabilities. Therefore, in the general case, 1  . At SHp i /1)(  , Si ,...,1 , likelihood functions are identical. 

Therefore 1   holds true.      
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a)                                                                        1  
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Fig. 1. Probabilities of errors of the first and the second types in constrained Bayesian method. 

Corollary 5.3. In the conditions of Theorem 5.3, at 1 , undetermined Lagrange multiplier   in hypothesis acceptance 

region (3) approaches the lower limit of interval (5), i.e. 
  


S

jii
ji

j
HpHp

,1
)(/)(min , and, at 0 , coefficient   

approaches the upper limit of interval (5), i.e. 
   


S

jii
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j
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,1
)(/)(max .     

Proof. In accordance with the proof of Theorem 5.3, the probability of inequality (6) is equal to )1(  . Hence it follows 

that, at 1 , i.e. at 0)1(  , coefficient   in (6) must approach its lower limit, which, in accordance with Lemma 5.2, 

is the value 
  

S

jii
ji

j
HpHp

,1
)(/)(min . Analogously, at 0 , i.e. at 1)1(  , for guaranteeing the fulfillment of the 

equality with probability )1(  , coefficient   must approach its upper limit, which, in accordance of Lemma 5.2, is the 

value 
   

S

jii
ji

j
HpHp

,1
)(/)(max , as we wished to prove.                                                                   

Corollary 5.4. In the conditions of Theorem 5.3, at 1 , there exist such a value )1;0(*  that, if *  ,  r  holds 

true; at 0 , there exists such a value *
*    ( )1;0(*  ) that, if *  ,  r  holds true; there exists such a value 

*  ( **
*   ) that, at  * ,  r  holds true, and the appropriate value of Lagrange multiplier   in decision rule (3) 

is within interval (5).  

Proof. From the proof of Theorem 5.3 the validity of the given corollary is evident.           

   The results of computation of concrete examples are given in Appendix 1 for illustration of the validity of Lemmas 5.1 
and 5.2, Corollaries 5.1, 5.2 and 5.3, Theorems 5.2 and 5.3. 

5.2 Relationship between the probabilities of errors of the first and the second kinds 
in constrained Bayesian task and in sequential method of Bayesian type   

   First we consider the case when the number of hypotheses is equal to two, i.e. 2S . 
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   Hereinafter, where this creates no difficulties in understanding, for simplicity, index m  to the hypotheses acceptance 

regions is omitted and the statistics on the basis of which is made the decision is simply designated by x . 

   For any sample size m , in sequential method of Bayesian type, the decision is made on the basis of hypotheses 

acceptance regions (3). Sequential analysis of Bayesian type ends when the matrix of repeated observation results 

appears in one of hypotheses acceptance regions 1  and 2 , which have the following form:  
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where )|(/)|( 12 HpHp xx  is the likelihood function. At 1 , we have: 
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at 1 , we have 
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and, at 1 , we have: 

)(
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1
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Hp

Hp
BA  . 

   By 1  and 2  are designated hypotheses acceptance regions in constrained Bayesian task corresponding to the 

statistics of observation results of size m . The following average risk corresponds to this statistics:  

                                                     


12

)|()()|()( 2211 xxxx dHpHpdHpHpr .                                        (9) 

   Let us suppose that 1 . Then the hypotheses acceptance regions in sequential method of Bayesian type are 

determined by ratios (7) and (8). Therefore expression (9) could be written down as follows: 

   12

])|(1)[(])|(1)[( 2211 xxxx dHpHpdHpHpr  

                                                            21

)|()()|()(1 2211 xxxx dHpHpdHpHp ,                                        (10) 

where  


21

)|()()|()(1 2211 xxxx dHpHpdHpHp  is the average probability of correct decision, i.e. it is the average 

power of sequential method of Bayesian type. 

   At )()( 21 HpHp  , if )|( iHp x , 2,1i , belong to the shift family of probability distribution laws, the validity of the 

following equality is obvious:  

  
1)|()|(

21

21 xxxx dHpdHp . 

   On the basis of condition (2), we write down: 

   21
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  
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2211 xxxx dHpHpdHpHp ,                                     (11)  
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where  


12

)|()()|()( 2211 xxxx dHpHpdHpHp  is the average probability of incorrect rejecting of hypotheses, i.e. the 

average probability of the first-kind errors for sequential method of Bayesian type.  

   It is also obvious that, at )()( 21 HpHp  , if )|( iHp x , 2,1i , belong to the shift family of probability distribution laws, the 

following equality takes place: 

   12

)|()|( 21 xxxx dHpdHp . 

   Let us consider the case 1 . In this case, we have: 11   and 22  . Therefore, the following is true: 

   12

)|()()|()( 2211 xxxx dHpHpdHpHpr  

                                                      12

)|()()|()( 2211 xxxx dHpHpdHpHp .                                         (12) 

   In this case, condition (2) takes the form:  
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   Let us consider the general case when the number of hypotheses S  is arbitrary. In this case, the hypotheses 

acceptance regions in sequential method of Bayesian type are determined as given in Item 4. Let us designate 
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*
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   Let us designate: im,  is the probability of no acceptance of hypothesis iH  at its validity in sequential method of 

Bayesian type after m  observations; im ,  is the probability of acceptance of hypothesis H  at validity of iH  in 

sequential method of Bayesian type after m  observations; m  is the average probability of the first kind error and mr ,  is 

the value of the risk function in constrained Bayesian task obtained on the basis of m  sequential observation results.  

Then, on the basis of formula (14), we write down: 
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
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It is not difficult to be convinced that at 2S  formulae (15) coincide with formulae (11).  

Let us find the expression analogous to (11) for m1 : 
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 At 2S , expression (16) takes the form which completely corresponds to formula (12). 

 On the other hand conditions (15) and (16) can be rewritten as follows: 
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and  
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   Let us introduce the designations:  
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   The quantities m  and m  are the average probabilities of errors of the first and the second kinds, respectively, in 

sequential method of Bayesian type.  

Then, on the basis of (15) and (16), we can write down: 

     mmm SSr  21,  , 

mm   11 . 

On the other hand, on the basis of (17) and (18), the followings are true: 

mmr  ,  and mm   ; 

i.e. finally we have: 

mmm r ,  . 

   Hence, for calculation of the average probabilities of errors of the first and the second kinds in sequential method of 
Bayesian type, we obtain:  
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 At )(*
x , we have:   
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It is not difficult to be convinced that at 2S  formulae (20) and (21) coincide with formulae (12) and (13), respectively. 

On the basis of (20) and (21), for the average probabilities of errors of the first and the second kinds in sequential method 
of Bayesian type, we obtain: 

mmr  , , 

                                                                                  mm   .                                                                            (22) 

In formulae (19) and (22), mr ,  and m  are the values of average risk and significance level of the criterion, respectively, 

in constrained Bayesian task as a result of its solution after obtaining the next, m th observation result. The ratio between 

mr ,  and c indicates which formulae (19) or (22) must be used for the estimation of m  and m  for the sequential method 

of Bayesian type (see Item 5.3).    

If it is necessary to know not average but all probabilities of errors of the first and the second kinds, we can act as follows. 
After testing hypotheses in the sequential method of Bayesian type on the basis of m  sequential observation results, for 

already determined value  , we can calculate probabilities im,  and im , , Si ,...,1,  , i , for example, by the Monte-

Carlo method.    

It is clear that, if mmr  ,  the offered sequential method of Bayesian type rigorously surpasses any other sequential 

method with errors of the first and second kinds   and  , satisfied the following condition  

                                                                                ,minm .                                                                   (23) 

   In particular, for the number of hypotheses equal to two, if ),( 21
* HHJ  is such divergence between the hypotheses that 

there takes place mmr  ,  then for any other hypotheses 1H   and 2H   for which the following ),(),( 21
*

21 HHJHHJ   is 

true the sequential method of Bayesian type rigorously surpasses the Wald method with errors of the first and the second 

kinds   and   satisfied the condition (23).            

5.3 Relations between the probabilities of errors of the first and the second kinds in 
constrained Bayesian task after obtaining m  sequential observation results 

   In constrained Bayesian task, for any sample size m , after testing hypotheses, the average probabilities of errors of the 

first and the second kinds are calculated as follows: 
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   As was mentioned above, at )(*
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Then, for the value of the risk function, we obtain:  
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 At )(*
x , the following takes place: 
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Therefore  the following inequality is true: 
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i.e. mmr  , . 

 At )(*
x , we have: 
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 Therefore the following inequality is true: 

                                                                              mmr  , ,                                                                      (26)
 

i.e. mmr  , . 

   In accordance with Lemma 5.2, at infinitely decreasing divergence ),( ji HHJ , between tested hypotheses iH  and jH , 

Sji ,...,1,  ; ji  , i.e. at 0),(max ji HHJ , the  interval of definition of Lagrange multiplier reduces to finite interval (5) 

which, at the absence of a priori information, i.e. at SHp i /1)(  , Si ,...,1 , degenerates into point )1(  S . According 

to corollary 5.4, if the value of   changes in this interval, the above-stated ratios between mr ,  and m  remain valid, i.e. 

in interval (5), there is such a value that, if   is more than this value, there takes place (25) and, if   is less than this 

value, inequality (26) is fulfilled.  

   As in sequential method of Bayesian type after obtaining every next observation result, constrained Bayesian task is 

solved for all observation results having obtained by the current moment, depending on the value of  , ratios (24), (25) or 

(26) between mr ,  and m , i.e. between the values of the risk function and the average probability of rejection of true 

hypothesis, in constrained Bayesian task solved on the basis of m  sequential observation results, remain true.        

   Using these values of mr ,  and m , with the help of ratios (19) or (25), depending on the value of  , there the values of 

average probabilities of errors of the first and the second kinds in sequential method of Bayesian type are calculated.   

6 Experimental research 

   For illustrating the correctness and the quality of the offered sequential analysis method of Bayesian type in practice, the 

computation results of five examples for the cases when sequentially accepted observation results are normally distributed 
independent random variables are given in [18]. For showing of practical applicability and usefulness of the results of 
Items 5.2 and 5.3, the computation results for two latest examples of the mentioned work are given below.  

Example 1 [18]. Tested hypotheses: 1,1,1: 1
3

1
2

1
11  H , 4,4,4: 2

3
2
2

2
12  H  and 8,8,8: 3

3
3
2

3
13  H . A 

priori probabilities of hypotheses: 3/1)( 1 Hp , 3/1)( 2 Hp , 3/1)( 3 Hp . The significance level of the criterion in 

constrained Bayesian task 05.0 . The parameters of sequentially incoming observation results as a three-dimensional 

normally distributed random vector with the mathematical expectation )4,4,4(θ  and the covariance matrix 



















1098

9109

8910

W . 

   The average probabilities of errors of the first and the second kinds in sequential method of Bayesian type at hypotheses 

testing are calculated by formulae (19) and are equal to: on the basis of two observations - 05.0m  and 

459.02045.0  m  ( 42.2 ); on the basis of three observations - 05.0m  and 253.01015.0  m  ( 98.1 ) and on 

the basis of four observations - 05.0m  and 131.005.0  m  ( 51.1 ), respectively. 

   For five, six and seven observation results by computation we have obtained: 05.0m , 06817.005.0  m ; 

041833.0m , 045.0m  ( mmr  , , 1 ) and 028967.0m , 034.0m  ( mmr  , , 1 ), respectively.   

Example 2 [18]. Tested hypotheses: 1,1: 1
2

1
11  H , 4,4: 2

2
2
12  H , 8,8: 3

2
3
13  H  and 12,12: 4

2
4
14  H . A 

priori probabilities of hypotheses: 4/1)( 1 Hp , 4/1)( 2 Hp , 4/1)( 3 Hp , 4/1)( 4 Hp . The significance level of the 

criterion in constrained Bayesian task is 05.0 . The parameters of sequentially incoming observation results as a two-
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dimensional normally distributed random vector with the mathematical expectation )4,4(θ  and the covariance matrix 











109

910
W . 

   The average probabilities of errors of the first and the second kinds in sequential method of Bayesian type at hypotheses 

testing are calculated by formulae (19) and are equal to: on the basis of two observations - 05.0m  and 

484.0128.0  m  ( 455.2 ); on the basis of three observations - 05.0m  and 256.0052.0  m  ( 925.1 ) and on 

the basis of four observations - 05.0m  and 126.005.0  m  ( 465.1 ), respectively. 

   For five and six observation results by computation we have obtained: 05.0m , 05915.005.0  m  and 034.0m , 

045.0m  ( mmr  , , 1890305.0  ), respectively.   

8 Conclusion 

   New results of investigation of the sequential analysis method of Bayesian type is offered in the work. In particular, some 
relations between the errors of the first and the second kinds depending on the divergence between the tested hypotheses 
are given. Also dependences of the Lagrange multiplier and risk function on the probability of incorrectly accepted 
hypotheses are presented. Relationship between the probabilities of errors of the first and the second kinds in constrained 
Bayesian task and in sequential method of Bayesian type and relations between the probabilities of errors of the first and 
the second kinds in constrained Bayesian task after obtaining m  sequential observation results are given. Computation 

results of the concrete examples completely confirm the rightness of theoretical researches.   
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Appendix 1. The results of computations for constrained Bayesian task, for the case when the number of hypotheses 

is equal to three, are given in Table A.1 for illustration of the validity of Lemmas 5.1 and 5.2, Corollaries 5.1, 5.2 and 5.3, 

Theorems 5.2 and 5.3. The values of coefficient   are computed depending on the change of divergence between the 

tested hypotheses. The following covariance matrices  











21

12
1W , 










5020

2050
2W , 










10020

20100
3W  and 










1.00

01.0
4W  

are used for all computed cases.  

   The value of risk function (1) is designated by r ;   is the value of probability in the restriction (2);    is the value of the 

Lagrange coefficient in solution (3). 

Table A.1. The computation results of hypotheses testing for Appendix 1. 

Tested Hypotheses Measu
rement 
results 

Cova-
riance 
matrix 

A priori probabilities Signifi-
cance 
level 

Risk Lagrange 
multiplier 

Accepted 
hypothesis 

1H  2H  3H  x  W  )( 1Hp  )( 2Hp  )( 3Hp    r    iH  

(1;1) (1.01; 

1.01) 

(1.02;
1.02) 

(1.1; 

1.1) 

1W  1/3 1/3 1/3 0.05 1.89
8 

2.029078 ( 1H , 2H , 3H ) 

0.0000
1 

2 2.099144 ( 1H , 2H , 3H ) 

0.6 0.78
253
3 

1.999936 ( 2H , 3H ) 

0.25 0.25 0.5 0.05 1.84
635 

3.028105 ( 1H , 2H , 3H ) 

0.0000
1 

1.99
96 

3.108955
1 

( 1H , 2H , 3H ) 

0.76 0.24
065 

0.999435 ( 3H ) 

2W  1/3 1/3 1/3 0.05 1.89
913
3 

2.006165 ( 1H , 2H , 3H ) 

0.0000
1 

1.99
986
7 

2.01568 ( 1H , 2H , 3H ) 

0.67 0.65
84 

1.999945 ( 3H ) 

0.5 1.07
553
3 

1.999999 ( 2H , 3H ) 

0.25 0.25 0.5 0.05 1.84
96 

3.006009 ( 1H , 2H , 3H ) 

0.0000
1 

2 3.027723 ( 1H , 2H , 3H ) 

0.74 0.25
73 

1.000084 ( 3H ) 

0.4 0.80
232
5 

2.997474 ( 3H ) 

3W  1/3 1/3 1/3 0.05 1.89
82 

2.005111 ( 1H , 2H , 3H ) 

0.0000
1 

1.99
98 

2.014145 ( 1H , 2H , 3H ) 
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0.67 0.65
966
7 

1.999956 ( 3H ) 

0.5 1.09
78 

2.00 ( 2H , 3H ) 

0.25 0.25 0.5 0.05 1.85
01 

3.004886 ( 1H , 2H , 3H ) 

0.0000
1 

1.99
985 

3.020386 ( 1H , 2H , 3H ) 

0.75 0.24
875 

1.00003 ( 3H ) 

0.4 0.80
002
5 

2.997896 ( 3H ) 

(1;1) (4;4) (8;8) (4.1; 

4.1) 

4W  1/3 1/3 1/3 0.05 0 192.51 e
 

( 2H ) 

0.0000
1 

0 192.51 e
 

( 2H ) 

0.99 0 192.51 e
 

( 2H ) 

0.25 0.25 0.5 0.05 0 192.51 e
 

( 2H ) 

0.0000
1 

0 181.00 e

 

( 2H ) 

0.99 0 192.51 e
 

( 2H ) 

 

The correctness of Lemmas 5.1 and 5.2, Corollaries 5.1, 5.2, 5.3 and 5.4, also Theorems 5.2 and 5.3 is obvious from the 
results of Table A.1.  

It is clear that when 3/1)( iHp , 3,2,1i , we have 

   
2)(/)(max)(/)(min

,1,1
  

S

jii
ji

j

S

jii
ji

j
HpHpHpHp  

and when 25.0)( 1 Hp , 25.0)( 2 Hp  and 5.0)( 3 Hp  we have  

 
1)(/)(min

,1
 

S

jii
ji

j
HpHp  and 

 
3)(/)(max

,1
 

S

jii
ji

j
HpHp . 

 


