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Combined effects of Hall current and variable Viscosity on Non-
Newtonian MHD flow past a stretching vertical plate  

Khaled K. Jaber 
Department of Mathematics, Faculty of Science and Information Technology 

Zarqa University, Zarqa, Jordan 

Abstract:   

 This paper investigate the effects of Hall currents on free-convective steady laminar boundary-layer flow, past a semi-
infinite vertical plate, for large temperature differences. A uniform magnetic field is applied perpendicular to the plate. The 
fluid thermal conductivity is assumed to vary as a linear function of temperature. The fluid viscosity is assumed to vary as 
a reciprocal of a linear function of temperature. The usual Boussinesq approximation is neglected. The nonlinear boundary 
layer equations governing the problem under consideration are solved numerically by applying an efficient numerical 
technique based on the shooting method. The effects of the magnetic parameter M, the density / temperature parameter 

n, the thermal conductivity parameter S, the viscosity temperature r  are examined on the velocity and temperature 

distribution as well as the coefficient of heat flux and shearing stress at the plate. 
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Nomenclature 

 

 

Introduction: 

      Free- convective flows driven by temperature differences are of great interest in number of industrial applications 
.Buoyancy is also of importance in an environment where differences between land and air temperature can give rise to 
complicated flow patterns, and in enclosures such as ventilated and treated rooms and reactor configurations. Pohlhausen 
[1] studied this problem, for the first time, using the momentum-integral method. A similarity solution for this problem was 
solved, firstly by Ostrich [2]. Since then, various effects, such as the effect of magnetic field on the free- convective flow 
past a vertical surface, which plays an important role in several engineering applications, have been studied. 

      Most of the problems concerning free-convection were solved assuming moderate temperatures. However, from a 
practical point of view, many modern industries, especially in nuclear engineering and space technology, depend strongly 
on very high temperatures and accordingly, requires considering radiative heat transfer as well as convective heat 
transfer. Nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites and space 
vehicles are examples of such engineering areas. In an ionized gas where the density is low/or the magnetic field is very 
strong, the conductivity will be tensor. The conductivity normal to the magnetic field is reduced due to the free spiraling of 
electrons and ions about the magnetic lines of force before suffering collisions and a current is induced in a direction 
normal to both electric and magnetic fields. This phenomenon is called Hall effect, in this case it is become more 
convenient to take Hall current effect into accounts, and so relevant works have been published (see, for instance, Abo-
Eldahab [3], Abo-Eldahab [4] and Popand Watanabe [5]. Abo-Eldahab [6] analyzed the problem of mixed convection heat 
transfer near an inclined isothermal stretching sheet in the presence of blowing/suction, internal heat 
generation/absorption and transverse magnetic field. In the present work we consider the MHD mixed convection heat 
transfer in the presence of a strong extended magnetic field, so Hall currents are included in the formulation. 

      Recently, Aboeldahab [7] studied the radiation effect on heat transfer in an electrically conducting fluid at a stretching 
surface with a uniform –free stream. 

      Previous studies of convective flow along vertical plates in the presence of radiation were restricted, in general, to the 
case where the temperature difference between the plate and the fluid was small. In this case, the fluid’s physical 
properties such as its viscosity and thermal conductivity may be taken as constant .Also, for small temperature 
differences, the Boussinesq approximation can be used to treat the fluid density as a constant in the continuity equation, 

fC  coefficient of skin friction U velocity component in  x-direction 

 pc  specific heat at constant pressure 

 

  velocity component in  y-direction 

 be  blackbody emissive power 

 

W velocity component in  z-direction 

 be  Planck’ function 

 

Greek Symbols 

f dimensionless stream function   thermal diffusivity 

g acceleration due to gravity 

 

  coefficient of thermal expansion 

 Gr  Grashof number 

 

  pseudo similar variable 

k thermal conductivity 

 

  wavelength 

 
K  absorption coefficient 

 

  Dynamical viscosity 

 
RK  Rosseland absorption coefficient 

 

  kinematical viscosity 

 L characteristic length 

 

  dimensionless temperature 

N radiation parameter 

 
r  viscosity/temperature parameter 

 Nu Nusselt number 

 

  Density 

   shearing stress 

 

  Stefan-Boltzmann constant 

   dimensionless streamwise coordinate 

 

X streamwise coordinate 

   stream function 

 

Subscripts 

n density temperature parameter W property at the wall 

 S thermal conductivity parameter 

 

  freestream condition 

 T Temperature 

 

Superscripts 

u velocity component in  x-direction 

 

 differentiation with respect to  only 
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energy equation,  and convective terms in the momentum equation and treat it as a variable only in the buoyancy term of 
the momentum equation . 

In situations where there is large temperature differences between the plate and the fluid, especially when radiative heat 
transfer takes place, the fluid's physical properties are affected by the high temperature and they can no longer be 
regarded as constant .Also, in this case, the Boussinesq approximation can no longer be used. 

     Some recent studies for radiating fluids have taken into account variations of the physical properties with temperature. 
For example, Aboeldahab [8] studied radiation and variable density effects on the free convective flow of a gas past a 
semi-infinite vertical plate and showed that for high-temperature differences the Boussinesq approximation leads to 
substantial errors in velocity and temperature distributions. Aboledahab and El Gendy[9]   studied the radiation effect on 
convective heat transfer in an electrically conducting fluid at a stretching surface with variable viscosity and  uniform free 
stream .They showed that the flow characteristics are markedly affected by the variation of viscosity with temperature . 
Aboeldahab and Salem [10] studied the radiation effect on the MHD free – convective flow of a gas past a semi-infinite 
vertical plate with variable viscosity. Also, they showed that the flow characteristics are markedly affected by the variation 
in viscosity with temperature. Recently, Jaber [11] studied the effect of chemical reaction, Ion and Hall currents over a 
moving cylinder. 

      Hence, in the present work, we study the combined effects of Hall currents and variable viscosity on the MHD free-
convective flow of an optically thin gray gas past a semi-infinite vertical plate with variable density, viscosity and thermal 
conductivity for high  temperature differences neglecting the Boussinesq approximation . The nonlinear boundary layer 
equations, governing the problem, are solved numerically by applying an efficient numerical technique based on the 
shooting method. The velocity and temperature distributions as well as the coefficient of heat flux and the shearing stress 

at the plate are determined for different values of the thermal conductivity parameter S, the viscosity-temperature 

parameter r , the magnetic field M, and the radiation parameter N 

 

 

                                             

 

 

 

 

2- Mathematical formulation  

A steady laminar free-convective flow of a viscous gray gas in the optically thin limit past an isothermal semi-infinite 

vertical plate is considered. The x-axis is chosen along the plate and the y –axis is taken as normal to it (see Fig.1 ). 

A uniform magnetic field is applied transversely to the direction of the flow. The magnetic Reynolds number is taken to be 
small enough so that the induced magnetic field can be neglected. 

The viscous dissipation ; the radiative heat flux in the x – direction, in comparison to the y-direction ; and the velocity of 

the gas far away from the plate are assumed to be negligible . 

The fluid thermal conductivity is assumed to vary as a linear function of temperature in the form (see [16]) 

     )(1   TTbk

Where b is a constant depending on the nature of the fluid . In general , b> 0 for fluids such as water and air , while b <0 

for fluids such as lubricating oils. 

The fluid viscosity is assumed to vary as a reciprocal of a linear function of temperature in the form (see Lai and Kulacki, 
ref. 17)   

 )(1
11


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 TT
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                                                                                (2) 
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Figure 1 Physical coordinate system 
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 rTTa 


1
                                                                                                    (3) 

Where  

a=



    and 



1
 TTr  

Where rT  and a are constants and their values depend on the reference state and the thermal property of the fluid . In 

general a > 0 for liquids and a < 0 for gases. 

Then the steady laminar two-dimensional free-convective flow in the presence of radiation is governed by the following 
boundary- layer equations: 
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The physical problem suggests the following initial and boundary condition  

u = v = w = 0, T = T    at y= 0  ; 

 u   0, w   0, T   T     as y                                                                     (8)  

Introducing the following dimensionless variables  
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The continuity equation is satisfied by   
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From (9) and (10) we find that  
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Using the above transformation the governing equations are reduced to: 
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The boundary conditions are transformed into  

0   : of \   , 1   , 023 








f
f   

    : of \ ,   0                                                                     (15) 

where  )(  TTns w  , 









TT

TT

w

r
r   

pC

sK
N


   , )(  TTgG wr    ,   






 LB
M oo

              

And primes denote differentiation with respect to   only 

The most important characteristics of the flow are shearing stress at the plate 
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And the rate of heat transfer at the plate (Nusselt number) 
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3- Results and Discussion  

Equation (12) - (14) with the boundary conditions (15) , are approximated by a system of nonlinear ordinary differential 

equations replacing the derivatives with respect to    By two – point backward finite differences with step – size h = 0.1 
this system is solved numerically by using the fourth-order Runge-Kutta method algorithm with a systematic estimation of 

),(// f , ),(// g   and ),(/    by the shooting technique to obtain ),( f , ),( g   and ),(  . 

The value of   at infinity is fixed at 2; the requirement that the variation of velocity and temperature distribution is less 

that 10
-9 

between any two successive iteration is employed as the criterion of convergence. We use the symbolic 
computational software Mathematica to solve this system.  

In view of Equations (12)-(14) density can be written in the form 
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Figure 1 and 2 show the effect of the Grashoff number Gr on the primary and secondary flow velocities within the 

boundary layer. In which the increasing of the Grashoff number Gr is to increase the dimensionless velocities f
/
 and g. 

Figure 3 and 4 present typical profiles for the primary velocity f
/
 and secondary velocity g for different values of magnetic 

parameter M. The increasing of the magnetic parameter M is to decrease the dimensionless primary velocity and to 

increase the dimensionless secondary velocity g. The decreasing of f
/
 is due to the increasing of the Lorentz force, which 

opposes the flow. Form Figures 5 it is observed that the dimensionless secondary velocity g decreases as the Hall 

parameter m increases.  

Figures 6 and 7 show as expected, that the dimensionless velocities f’ and g increase as the thermal conductivity 

parameter S increases. This is because as S increase the thermal conductivity of the fluid increase. This increase in the 
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fluid thermal conductivity increases the fluid temperature and accordingly the fluid velocity. Also, it is observed from 

Figures 8 and 9, that as the viscosity -temperature parameter r  increases the dimensionless velocities f’ and g 

increase. An increase in the density temperature parameter n means an increase of the velocity in the fluid particles due 

to an increase in the buoyancy forces (the density variation with temperature increases). Hence as n increases the fluid 
will be under two forces: the first force increase the velocity of the fluid due to the increase in the buoyancy forces and the 
second force decrease the velocity of the fluid due to the decrease in the temperature. 

 Table 1 shows that the dimensionless wall-velcioty gradient f " ( x ,0 ) increases as n ,S, r  , w  and N increase 

where as it decreases as M increases. Moreover, the dimensionless rate of heat transfer- ' 
' ( x ,0 ) increases as n 

and  r  increase as it decrease as S , M , w  , N increases.  

4- Concluding Remarks  

In this paper , we have studied the effects of radiation on the MHD free convective steady lamina boundary layer flow past 
an isothermal semi-infinite vertical plate , for high  temperature differences , the fluid is considered to be electrically 
conducting in the sence that it is ionized due to radiation . 

      This paper demonstrate the fact that the Boussinesq approximation gives substantial errors in the velocity and 
temperature distribution for high temperature differences.Therefore, to conclude more accurate results the density 
variation has  to be taken into consideration in the continuity equation , energy equation and all terms of the momentum 
equation. 

Besides, it is observed that: 

1) The increasing in the Hall currents yields to a decreasing in the fluid secondary velocity, the fluid temperature the 
dimensionless wall-velocity gradient and the rate of heat transfer from the plate to the fluid . 

2) The increasing in the magnetic parameter yields to an increasing in the fluid temperature the dimensionless wall-
velocity gradient and the rate of heat transfer from the plate to the fluid and a decreasing in the fluid velocity  

3) The increasing in the thermal conductivity parameter yields to an increasing in the fluid velocity, the fluid temperature 
the dimensionless wall-velocity gradient and the plate to the fluid. 

 4) The increasing in the viscosity-temperature parameter yields to an increasing in the fluid velocity . The dimensionless 
wall-velocity gradient and a decreasing in the fluid temperature and the rate of the heated transfer form the plate to the 
fluid. 

5) The increasing in the density -temperature parameter yields to an increasing in the fluid velocity .and  the dimensionless 
wall-velocity gradient and a decreasing in the fluid temperature and the rate of the heated transfer  form the plate to the 
fluid . 

6) the increasing in the Grashoff number yields to an increasing in the primary and secondary flow velocities, also to a 
decreasing in the fluid temperature and the rate of the heated transfer  form the plate to the fluid . 
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r n s Gr M m ),0('' f ),0(' g ),0('  

0.4 1.2 0.19 0.1 0.1 1 0.0695989 0.000289243 0.31365 

0.35 1.2 0.19 0.1 0.1 1 -0.0101006 0.0000665997 0.3172 

0.365 1.2 0.19 0.1 0.1 1 0.00711129 0.0000981729 0.316333 

0.4 1.2 0.19 0.1 0.1 1 0.0695989 0.000289243 0.31365 

0.4 6 0.19 0.1 0.1 1 0.0809877 0.000339247 0.318017 

0.4 15 0.19 0.1 0.1 1 0.0829863 0.000348511 0.318735 

0.4 1.2 0.01 0.1 0.1 1 0.0437672 0.000196894 0.286958 

0.4 1.2 0.2 0.1 0.1 1 0.0709943 0.000295669 0.315445 

0.4 1.2 0.25 0.1 0.1 1 0.0811126 0.000335957 0.324759 

0.4 1.2 0.19 0.01 0.1 1 0.00334127 0.0000129676 0.318956 

0.4 1.2 0.19 0.1 0.1 1 0.0695989 0.000289243 0.31365 

0.4 1.2 0.19 0.35 0.1 1 0.12623 0.000592708 0.30917 

0.4 1.2 0.19 0.1 0.1 1 0.0695989 0.000289243 0.31365 

0.4 1.2 0.19 0.1 1.5 1 0.056674 0.00328567 0.314713 

0.4 1.2 0.19 0.1 2 1 0.0532747 0.00403512 0.31497 

0.4 1.2 0.19 0.1 3 1 0.0477018 0.00522331 0.315365 

0.4 1.2 0.19 0.1 0.1 1 0.0695989 0.000289243 0.31365 

0.4 1.2 0.19 0.1 0.1 2 0.070312 0.000234604 0.313587 

0.4 1.2 0.19 0.1 0.1 3 0.070555 0.000176774 0.313567 

Table 1. Variation of dimensionless wall-velocity gradient and dimensionless rate of heat transfer at the 

plate with the dimensionless r, n, s, Gr, M and m. 

 

Fig.2. Effect of Gr on the secondary flow velocity 

profiles g with M = 0.1, n=1.2,  

s = 0.19, r =0.4 and m = 1 
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Fig.1 Effect of Gr on the primary flow  

velocity profiles f' with M = 0.1, n=1.2, 

 s = 0.19, r =0.4 and m = 1 
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Fig.3 Effect of M on the primary flow  

velocity profiles f' with Gr = 0.1, n=1.2, 

 s = 0.19, r =0.4 and m = 1 

 

Fig.5 Effect of m on the secondary flow  

velocity profiles f' with M = 0.1, n=1.2, 

 s = 0.19, r =0.4 and Gr = 0.1 
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Fig.4 Effect of M on the secondary flow  

velocity profiles f' with M = 0.1, n=1.2, 

 s = 0.19, r =0.4 and Gr = 0.1 
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Fig.6 Effect of s on the primary flow  

velocity profiles f' with Gr = 0.1, n=1.2, 

M= 0.1, r =0.4 and m = 1 

 

Fig.7 Effect of s on the secondary flow  

velocity profiles f' with M = 0.1, n=1.2, 

M = 0.1, r =0.4 and Gr = 0.1 
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Fig.8 Effect of r on the secondary flow  

velocity profiles f' with Gr = 0.1, n=1.2, 

M= 0.1, s = 0.19 and m = 1 
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Fig.9 Effect of r on the primary flow  

velocity profiles f' with Gr = 0.1, n=1.2, 

M= 0.1, s = 0.19 and m = 1 
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Fig.10 Effect of n on the secondary flow  

velocity profiles f' with M = 0.1, m = 1, 

r = 0.4, s = 0.19 and Gr = 0.1 
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Fig.10 Effect of n on the primary flow  

velocity profiles f' with Gr = 0.1,r = 0.4, 

M= 0.1, s = 0.19 and m = 1 

 


