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ABSTRACT

In this paper, we discuss the distributions of concomitants of record values arising from a polynomial-type single
parameter extension of general Farlie-Gumbel-Morgenstern bivariate distribution. We derive the single and the product
moments of concomitants of record values generally for any marginal distributions. The results obtained are applied to
two-parameters exponential marginal distributions. In this case, we show that the maximal positive correlation between the
two variables is approximately =.423. Best linear unbiased estimators based on concomitants of record values of some
parameters involved in the distribution are derived. Moreover, we obtain predictors of concomitants of record values by
two methods. Finally a numerical illustration is presented to highlight the theoretical results obtained.
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1 INTRODUCTION

The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions has found extensive use in practice especially in
lifetime tests and in the context of reliability. Balakrishnan and Lai (2009) showed several applications for the FGM in the
literature. The FGM family of distributions, was originally introduced by Morgenstern (1956) for Cauchy marginals, Gumbel
(1960) investigated the same structure for exponential marginals and further generalized by Farlie (1960). Johnson and
Kotz (1975) and (1977) studied the multivariate case and presented detailed analysis of probabilistic and statistical
characteristics. Huang and Kotz (1984) extended the bivariate FGM distribution in their attempts to increase the
dependence between the underlying variables by introducing an additional parameter. The FGM distribution is

characterized by the marginal distribution functions Fy and R, of random variables X and Y , respectively, and the
association parameter ¢ . The cumulative distribution function (cdf) Fy Y (x,y) of the FGM distribution is given by

Fx.y (% y) = Fx (OF () L+ al-Fx (0)A-Fy ()}

The generalizations of FGM family of bivariate distributions received a great deal of attention of many researchers. For
example, Huang and Kotz (1999) considered a polynomial-type single parameter extension of FGM bivariate distribution
with uniform marginals. The cdf, which they considered is

H,(%Y) = xy {l+a@-xP)1-yP)}, p>1, 0<x,y<], 1)

where the admissible range of a is — (max{l, p})_zﬁas p_land the range for correlation coefficient is

—-(p+ 2)_2 min{l, p2} <p<3p(p+ 2)_2. The maximal positive correlation for (2) p=3/8 is attained for p=2, an
improvement over the case p =1 for which p=1/3.

In the present article, we study the records and their concomitants of a general form of Huang and Kotz (1999) extension,
where the joint cdf and the joint pdf of X and Y are given respectively by

Fouy)= Fx(OF (WL +a(-Fx P ()A-FK P ()} p 21, @

foxy)= fx( fy (N{L+al(p+1)Fx P()-U(p+DR P (y) -1} p 21 ®3)
To our knowledge there are no studies concerning the records and their concomitants of the general form in (2) and (3).
Let {(X(i),Y[i]),i >1} be independent and identically distributed random variables from some continuous bivariate

distribution. Let {X(n),n > 1} be the sequence of upper record values arising from the sequence of X 's. Then the Y -

variable paired with the X -value which is qualified as the nth record is called the concomitant of the nth record value and
is denoted by Y[n]. In many situations the only available observations are bivariate record values, i.e., records and their

concomitants, and hence we must make inferences based on records and their concomitants. Such situations often occur
in life time experiments, sporting matches, weather data recording and some other experimental fields. Some properties of
concomitants of record values were discussed in Houchens (1984), Arnold et al. (1998) and Ahsanullah and Nevzorov
(2000). For a general review of concomitants of ordered random variables see Ragab et al. (2002). However, the
concomitants in case of record values have not been extensively studied as compared with the concomitants of order
statistics. This branch is relatively new in the field of ordered random variables.

If {X(n) ,n > 1} is the sequence of upper record values then the probability density function (pdf), g,(.) , of the nth upper
record value can be obtained by using the following expression given by Ahsanullah (1995)

n (9 = —[-loglt— F ()™ fx (), @)

where fy (x)and Fy(x) are the pdf and the cdf of X respectively. Then the pdf of the concomitant Y[n] of the nth upper

record value, for n >1, is given by

i) = [ frx (v 1900000, ©)

—00

where fY\X (y| x) is the conditional pdf of Y given X = x of the parent bivariate distribution. Ahsanullah (1995) has given

the joint distribution of mth and nth upper record values for m < nas
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[logl—Fy )" [Floglt—Fy () +logl— Fx ()" ™ 1 () fx (%) , _ ©)
[ 2-
I'm T'(h—m) 1-Fyx (%)

Om,n (X, X2) =

The joint pdf of concomitants of mth and nth upper record values for m < nis given by

0 X,

fimm ) = [ [ frix 02130 fyx (V2 150)8m 0 (4 )bt ™

—00 —00

The rest of this paper is organized as follows: In Sections 2 and 3, we derive the distribution of concomitants of record
values arising from the general form in (2) and thier single and product moments. In Section 4, we investigate the results
obtained in Sections 2 and 3 for the two-parameter exponential marginal distributions. Best linear unbiased estimators
(BLUES) based on concomitants of record values of some parameters involved in the distribution are derived in Section 5.
In Section 6, we present two different methods for obtaining predictors of future concomitants of record values. Finally, in
Section 7, numerical illustrations are presented to highlight the theoretical results obtained.

2 Concomitants of Record Values

In this section, we drive the distribution of concomitants of record values arising from the general form in (2).
Theorem 1 Let (X(i),Y[i]),i =1,2,.. be a sequence of independent observations from (2). If Yin] is the concomitant of the

nth record value on the X sequence of observations, then the pdf of Yin] is given by

j-1 _
. [ Te-9c]

fr () = fy (N {1+ alp+ L+ p) Y =L—0c—T1+ p)F, P(v)-1}- (8)
S i ¢ ,Z:;‘ rG+)" Y
proof The conditional pdf of Y given X = xis given by

fly1x) = fy(y) {L+al(p+)Fx P (0 -U(p+DFR " (y) -1} ©)

Using (9) and (4) in (5) we get
iy () =% j fx () fy (¥) {1+ al(p +1)Fyx P (x) ~1[(p + DRy P (y) ~113}- logl - Fx (x))]" tdx.

Using the transformation — Iog(l— Fy (x)) =t,

tn—le—t
n

f(¥) = fy (Y {1-ol(@+ p)Fy p(y)—l]}j =
0

2 o 1ot
dt+a(L+ [+ PR () -1[ a-e™)° ——d,
0

Applying the binomial theorem, and after simplifications the proof is complete.m

Putting p=1, in (8) we get the same result of the classic FGM distribution as Houchens (1984).
Theorem 2 Let (X(i),Y[i]),i =12,.. be a sequence of independent observations from (2), then the joint pdf of Y[m] and

Y[n]for m < nis given

frmn (V) = fy () fy (v2) [L+ {0+ p)1y ~TH(@+ PRy P (y2) ~ B+ {1+ p) 1, ~TH(+ PRy P (y2) -1

(10)
+a?{(1+ p)? 13— 1+ p)ly — 1+ p) 1, +TH(A+ p)Ry P (y2) ~B{(+ P)Ry P (y2) -,
where
t-1
k-
=1+% 22 11
' +tZ:1: tit+1)" (1)
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t-1
e

=1 1=0 , 12
+Z tit+1)" 42
and
i-1 . t-1
[Te-bent JTe- e
ly=ly 41 =0 J=0 -1 13
2Tt 2+§ ini+)"™" S (rie)” =
proof By using (6) and (9) in (7), and noticing that j J.gm’n(xl,xz)dxldxz =1, we get
fim.ny () = fy (y0) Ty (¥2) [1+ a{(1+ p)I; ~BH(A+ )Ry P (y1) - B+ a{(1+ p) I ~-BH{(1+ p)Fy P (v2) -3 (14)
+a?{(1+ p)? I3 — 1+ p)Iy — 1+ p)I, +THA+ p)Ry P (y1) -~ TH{(A+ p)FRy P (y2) -,
where

= I J.F)P(Xi)gm,n(xleZ)dXZXm: i=12,
ooX

JS i J‘ J‘F;) (Xl)Ff (XZ)gm,n(XllXZ)dXdel.

—0 Xp

Using (6) and applying the transformations —log1-Fy (%))=u, —log1l-Fy (X;))=Vv, we get

J = ;“.(H e PuM (v —u)™M e Vdvdu
I'mI’(n—m) °
u

Using the transformation v—u=s, and the binomial theorem, we get

t-1
P [ [CEICIC

1 j=0 -1.n-m-1,-s-u
J =—“‘ 1+ ) um™ s e~S~Udsdu
! FmF(n—m)OO( tZ:I: t! )

Integrating with respect to s and u, and after simplifications we obtain J; =1;. Proceeding in a similar manner we get
J, =1, and J3 = I3. Upon substituting the values of J,, J, andJ3 the proof is complete.m

Putting p =1in (10) we get the same result as Chacko and Thomas (2006) for the classic FGM distribution.
Notice that, if p is an integer number, the pdf of the largest order statistic of a random sample of size p+1, Yp+1:p+l,
arising from marginal distribution of Y , will be

foitpra(y)= (p+1)FYp(y) fy (¥),

Consequently the pdf of the concomitant of the nth upper record value and the joint pdf of the concomitants of the mth and
nth upper record values can be written in terms of marginal pdf of Y and the pdf of the largest order statistic of a random

sample of size p-+1as follows:

: e
fr (y) = fy (y) —afl -1+ p)z Y —— Hfppu( - (MH (15)

and
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fimn (V) = Ty (y2) fy (y2) + o+ p)1y —BH f papia (Vo) = fv (Yo v (¥2)
+o{(+ p)ly —T{fpurpa(v2) - fy (Y2 )}y (1) (16)

+a? {1+ p)? 13 =@+ P)ly — @+ P2 +IH Fpapia (V1) = Fy (VDK Fpazpia (¥2) = Fy (2O},
where |4, I, and I3 are defined in (11)-(13) respectively.

3 The Moments of Concomitants of Record Values

From (8) the kth moment of the concomitant of the nth upper record value is given by

j1 _
S [GEDIGL -

L) 1= ratps @ p)) 0N D) [yt R P ady-u, a7
=1 ) —o0

where y(k) = E[Yk].
Putting p =1in (17), we get the same result as Houchens (1984) for the classic FGM distribution.

From (10), the product moment of concomitants of the mth and nth upper record values for m<n is given by

ElmyYing] = p? + o1+ p)ly+ L+ p)lo — 2H(p+1) jyfy (VRS (y)dy— 1}
Ri . (18)
+a {1+ p)?13 - L+ p)ly — L+ p)1, +TH{(p +1) fyfy(y)FY"(y)dy—u}z,

where p=E[Y].

Notice that, if p is an integer number, the kth moment of the concomitant of the nth upper record value and the product
moment of concomitants of the mth and nth upper record values for m<n are given respectively by

p p
p ( .](—1)J
L0 T =4 - D)),
i=0 (j+D

ED ¥l = 2% + @+ p)ly + @+ )l = 2Kty g — 143
+ {1+ p)? 13— 1+ p)ly = U+ P) o + Tt gy — 1Y
where yg:)l:pﬂ = E[Yékjl:pﬂ] and 15,1 =E[Ypi1p.al, as for p=1 we get the same result as Chacko and Thomas
(2006) for the classic FGM distribution.
4 Exponential Marginals

In the present and the subsequent sections, we shall investigate concomitants of record values for the bivariate random
variable (X,Y), having bivariate pdf given by (2) with two-parameter exponential marginals, with density functions,

1 —(x— 1 —(y-
fx (X) = l—em(%), xz and fy(y)= ﬂ—eXp(%), Y2 up. (19)
1 1 2 2
The correlation coefficient between the two variables X,Y is given by
j-1 )
B CEDICL

p=a| p+(+p)) =0

j=1

2

D)2 =ay (say) (20)
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2

j-1 _
L Je-9e!
where y=| p+(1+ p)z s=0

& iG+?

Notice from (20) that p depends only on ¢andp.

Since 0<Fy (x)<land 0< K/ (y) <1, we can easily see from (2) that the admissible range of «is — p2<a<p’t

Now, we shall discuss the influence of p>1 on p. From (20), we find that for a specific value of p, the range of p is
—pHy<p<pt

Table 1 shows the admissible values of the dependence parameter « and the correlation coefficient p for the
exponential marginal distributions with respect to different values of p>1 . We find that the strongest positive correlation
coefficient p=.422872 is attainted for p=6.06074, while the negative lower bound of correlation coefficient for this value
is -069775 which is weaker than the negative lower bound at p=1. From Figure 1, we see that the upper bound of the
positive correlation coefficient p=.25 is attended for both values p=21and p=4895. However the upper bound of the
positive correlation coefficient for pin the interval (1, 4895) is greater than 0.25. We see also that the upper bound of

the positive correlation coefficient decreases as p tends to infinity while the admissible ranges of p and « shrinks as p
increases.

Table 1. The admissible values of a and p

a P
p Lower bound | Upper bound | Lower bound | Upper bound
1 -1 1 -.25 .25
1.5 -.444444 .666667 -.205736 .308604
4 -1/16 1/4 -.102934 411736
5.2 -.036982 .192308 -.081033 421372
6 -1/36 1/6 -.070478 .422866
6.06047 | -.027226 .165004 -.069775 422872
7 -1/49 1/7 -.060225 421576
10 -.01 1/10 -.0407990 407990
2y
0.4 -
0.5
0.2 —
0.1 +
o T T
10 =0 A0 S0 an
1 P
0.1- -
0.z2-

Figure 1 Bounds of correlations coefficient p as a function of parameter p.
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Now, Let U =(X —z4)/ ZandV =(Y —u»)/ 1, be the standard exponential random variables. Clearly upon substitution

with F; (u)=(1-e™")and R, (v)=(-e") into (8) and (10), we obtain the pdf of the concomitant of the nth upper record
value and the joint pdf of the concomitants of the mth and nth upper record values with standard exponential margins,

respectively.
We have,
J' e, (R p(v)dv:jvke"’(l—e"’)pdv
-0 0
i-1 , (21)
L [ Te-9cy
_ s=0
_k!(“;—n(nl)k” ), k>1,
and
1M =gk =kt (22)

Substituting (21) and (22) into (17), we obtain the kth moment of the concomitant of the nth upper record value

j-1 _ i—1 _
L [ e-9¢ . [ Ie-9¢'

E[V) I=K@+alp+@+p) Y S0 Jp+A+p) Y =0 J)=¢, (say)  (23)
m i le: i+ ; T

Thus the variance of Vi is given by

j-1 i i-1 ) -1 )
L Je-oe" | Te-9" | [Je-9-'
vartin) = L+ 2a(p+Dp - 4+ ) S:Oj!(j+1)” 93 s:oi!(i+1)3 3 S:Oi!(i+1)2

-1 i-1 i=1

2 (24)

j-1 \ i-1 ]
L -9 L e-9!
- s=0 s=0 - !
alp+(@+ p); e LA DY, oo | [~ Pantsay)

i=1

From (18), the product moment of concomitants of the mth and nth upper record values for m<n is given by

i-1
. [ [e-9eD

EVjm Vo] =1+ @+ Py + @+ )1 - ZH{p+ 1+ p) )50

0 1)\2
Y il(i+1) ) 5)
L -9
+ @ {1+ )13 =L+ Py~ W+ Pl +IH{p+ (L )Y S0 Y

—~ili+1)°

Hence, the covariance of VjjandVp,;,m<n is given by

i—1
L -9
COVWmVim) = {1+ a{(L+ P)ly + A+ )l 2K p+ 1+ p) Y <=2
i=1

it(i+1)? Fra® {1+ Pl -+ )l (L4 )l +1}
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i1 j-1 i1
L [ Te-9cy I CEDICL L [ Te-9cy

x{p+ L+ p);HH(T}Z ~{l+alp+ Q@+ p)jZ_;S‘OT][MH p)z =0

(j+pm ~ili+1)? ]

(26)

j-1 ) i1 )
L [ Te-9c! L [ Te-9cy!

x 1+a[p+(1+p)250( o LA p)Z“’ gE =P )

and 14,1, and I3 are defined in Equations (11)- (13) respectively.

Putting p=1and g4 =u, =0, in (24) and (26) we get the same result as Mohammed(2011), for the standard FGM
distribution with exponential marginals (Gumbel's bivariate exponential distribution model I1).

5 Estimation of The Location and Scale Parameters of The Exponential Margins

In this section we discuss the estimation of the location and the scale parameters 4, 4 and u,, A, when the association
parameter « is either known or unknown.

Ahsanullah (1980) derived the BLUEs of g4 and4, based on the first n record values drawn from the marginal
distribution of X as

A 1
Mer— (NX@) = X(n)): (27)
and
n 1
(= — (X 3X0)- (28)

Now we want to estimate x,andA, using the concomitants of record values.
5.1 Estimation of x, and 4, When «is Known

Let Y[n] denote the vector of concomitants of the first n record values, that is Y[n]=(Y[1],Y[2],...,Y[n])', where
Yii) = AMjij + 42, 1 =1..n. From (23), we can write

E[Yinl= 480 + 121, (29)

where g, =(&g,..., gn)' denotes the column vector of expected values of the concomitant of upper record values from the
standard exponential distribution and 1 is nx1 vector whose components are alll's.

The variance covariance matrix of Yp,; is given by
D[Yjy]=4%
where X=(p;;),and p; j are determined by (24) and (26), i, j =1...n.
Clearly e, pp n, @and py, , are known constants provided that « ,mandn are known.

Proceeding as in David and Nagaraja (2003), the BLUEs s, of u, and iz of 1, are given by

n
fp ==&l Yy = Zai Yiip» (30)
i1
. . n
A =1 T'Yy :ZbiY[i]: (31)
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where T=="(1e, —¢£,1)/A A=1A= )€, = %,)-1="%,)?, and a,b,i=12..n are constants.
The variances and covariance of u,andA, are given respectively by
var(i) = 3e,5" len /A var(iy) =231 5~ /A, (32)
and
cov(iy, Ap) = —/1%8}12_ /A
5.2 Estimation of p. and A. When a is Unknown

Following Chacko and Thomas (2006), if a is unknown, we may replace a in (30) and (31) by a rough moment type
estimator. If r is the sample correlation coefficient between X andYj;,i=12,..., then the rough moment type estimator

aforais obtained by equating r with the correlation coefficient given by (20). Thus

—p? ifrs< —yp‘z
a=4pt  ifrept (33)
ryt otherwise.

6 Predictors of Concomitants of Record Values

One would wish to use past data for predicting a future observation. In this section we discuss the prediction of future
concomitants of record values. Let (X, Yip)i=12,..n represent the first observed n upper record values and their

concomitants. We present two different methods for obtaining the mth predicted concomitant, m>n. For the first method,
we obtain the best linear unbiased predictor (BLUP) Y[fn] of Yimj» m>n, while the second method we use the conditional

distribution of Yjy, given X[p,;; for obtaining the predictor which we call the conditional predictor Y[fn] '

Using the generalized linear regression model, see Goldberger (1962), the BLUP Y[fn] of Yjmp.m>n is
Vi) = il +Apen +WE (Y — i1 =Jpep), (34)

where & is the expected value of Y[fn], [, and iz are the BLUE of u,andl,, respectively, w is the vector of
covariances of the prediction observation with the vector of observed concomitants of record values. i.e. (2 m, Pnm) » =
is the standard variance-covariance matrix, Y[n] is the vector of observed concomitants of record values, and ¢, is the
vector of expected values of the concomitant of record values from the standard exponential distribution.

6.2 The Conditional Predictor of Yy

Another method for obtaining a predicted value Y[*m] of the mth concomitant Y;,;,m>n, can be applied by using the
predicted mth record value and the conditional cdf of Y givenX =x . Ahsanullah (1980) derived the BLUP of mth record

value, sz), m>n, based on the first n record values drawn from the marginal distribution of X as

* 1
X(my = m{(m DXy —(Mm-n)Xay}- (35)
The conditional cdf of Y givenX =x is given by

F(yI0 = R (+al(p+DFL 00 -UIFL ™ (y) - R ()} (36)

Let U, Viip), 1=12,..n represent the first observed n upper record values from the standard exponential distribution
and their concomitants. The cdf of V givenU =u is given by

Fvu)= (-e")+al(p+DLe”)P —1[-e™)P —(1e")] (37)
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Suppose that the mth predicted record value and its concomitant is (X (), Ypm) Where m>n. Setting F (Vi |Umy) =R,

where R is a random number, we can solve (37) in vfm] given uzrm) , Where

Umy = (Xgmy — £0)/ A1, (38)
and

me] = (Y[*m] _ﬁZ)/ij (39)
Substituting with (27), (28) and (35) in (38) we find that

Uzm) =m.

Notice that the value of vfm] depends on the value of the random number R, and since 0<R<1, so we can replace R by

its mean (05). Thus substituting with uzm) =m, and R=05in (37), we get

Ffm Im) = (1-¢"™)+ of(p+1)(1-e™)P —1[a-e™ ™ )PHL _ 16V ) = 0.5, (40)

thus solving (40) in vfm] and substituting with its value in (39), we obtain the predicted value

y[*m] 3 jQVEm] + . (41)
Remarks:

e If ais unknown, we can replace it in (40) by its estimate given in (33).

e For improving y[*m] and reducing the sensitivity of vfm] to R, we apply the following algorithm, using a variance

reduction technique (see, Wilson (1984)),
Algorithm 1:
1-Generate a sequence of s paired random numbers (R;1-R;)...(Rs1—Rg).

2-Solve (40) for R=R;to obtain vi*[m] and for R=1-R,; to obtain vi'[m] .

Vi*[m] y V5[m]

3-Compute Vijy; = 3

. 1Ix
4- V[m] ZEZVi[m] .
i=1

7 Numerical lllustration

We calculated the coefficients a; and b; in the BLUEs 4, and iz of u, and A,, respectively, given by (30) and (31) for

i =1(1)10 and taking arbitrary values for « in the admissible range (-02,01,015), for p=6.067=6 (the strongest positive
correlation coefficient case). The results are presented in Tables 2-4.

From Tables 2&3, we can see tha var(a,) and var(iz) decreases as the value of the association parameter «
and the number of concomitants increase.

In order to illustrate numerically the estimators obtained and the predicted concomitants, we generated 9
observations of record values and their concomitants from (2) with exponential margins in (19) with
a=015 4 =4, 11 =2, 15 =10, 4, =5, as follows: (7.8691,12.4961), (8.5810,12.0865), (10.6856,26.3902),

(14.5684,17.8104), (16.4118,20.9911), (20.6285,19.5828), (21.9594,20.1107), (23.4171,12.1424), (25.5482,20.3680).

We assume that we have only 8 or 6 observations and we require to predict the 9th concomitant value
(m=n+1 or m=n+3). For calculating the BLUP in (34) or the conditional predictor in (41) we must first calculate s, and

Ay . Assuming « is known, using (30), (31) and the coefficients a; andb;,i=1,.,n given in Tables 2&3 for o =0.15,we get

forn=8, i, =9.0036 and A, =4.2225,
forn=6, /i, =6.9433and 1, =5.6185.
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First method (BLUP):

Calculating Sg,Wl,z_l ande, and substituting with the corresponding 4, and/iz in (34) we get

forn=8, Yo =19.2345,
forn=6, Yy =21.6544.

Second method (The conditional predictor):
Using (40) and (41), we get

forn=8, Y =18.4741,

forn=6, Y[;] =21.1913.
while using Algorithm 1, with s=50 , we have

forn=8, Y[;] =19.4517,

forn=6, Y[g] =22.1582.

We see from the above results that the predicted values of the 9th concomitant using both methods are almost the
same and near the true value of the 9th observation.

We may conclude that the conditional predictor is simple to apply and requires less calculations than the BLUP and
gives satisfactory results. Moreover it can be improved by applying Algorithm 1.
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Table 2.The coefficients aj,i =1,., nin the BLUE /i, = ilai Vi -

; a a, a3 ay as ag ay ag ag Ao | var@)/ 2
n
-0.02 | -1.5929 | -1.5120 697.696
01 | -1.5929 | -1.9970 44.0073
2 0.15 | -1.5929 | -2.1991 21.3527
-0.02 | -8.9471 | -0.2502 | 10.1973 162.952
0.1 | 3.0742 | -0.1234 | -1.9508 15.399
’ 0.15 | 23702 | -0.0564 | -1.3138 8.1959
-0.02 | -5.7026 | -5.7025 | 23214 | 6.4324 70.393
0.1 | 2.3536 | 0.4447 | -0.5937 | -1.2046 8.9246
! 0.15 | 1.0874 | 03342 | -0.3776 | -0.8306 5.0799
-0.02 | -4.2864 | -2.1891 | 03137 | 2.6616 | 4.5003 41.410
0.1 | 2.0043 | 0.5820 | -0.1624 | -0.5844 | -0.8395 6.4755
° 0.15 | 1.6332 | 04272 | -0.0851 | -0.3845 | -0.5909 3.8824
-0.02 | -3.5610 | -2.1114 | -0.3873 | 1.2262 | 2.4879 | 3.3455 29.174
0.1 | 1.8119 | 0.6227 | 0.0179 | -0.3143 | -0.5104 | -0.6278 5.2986
° 0.15 | 15026 | 0.4534 | 0.0328 | -0.1957 | -0.3457 | -0.4474 3.3094
-0.02 | -3.1476 | -2.0233 | -.6899 | 0.5551 | 1.5270 | 2.1871 | 2.5915 22.97
0.1 | 16966 | 0.6360 | 0.1078 | -0.1752 | -0.3387 | -0.4352 | -0.4912 4.6472
’ 0.15 | 1.4260 | 04611 | 0.0890 | -0.1020 | -0.2217 | -0.3008 | -0.3526 2.9976
-0.02 | -2.8927 | -1.9538 | -.8432 | 0.1918 | 0.9986 | 1.5459 | 1.8811 | 2.0722 19.42
0.1 | 16229 | 0.6405 | 0.1586 | -0.094 | -0.2382 | -0.3219 | -0.3701 | -0.3971 4.250
’ 0.15 | 1378 | 04631 | 0.1193 | -0.0498 | -0.1516 | -0.2172 | -0.2586 | -0.2836 2.8118
-0.02 | -2.7255 | -1.9026 | -0.9311 | -0.0274 | 0.6761 | 1.1530 | 1.4448 | 1.6111 | 1.7016 17.181
0.1 | 15732 | 0.6420 | 0.1903 | -0.0434 | -0.1742 | -0.2494 | -0.2924 | -0.3164 | -0.3294 3.9906
? 0.15 | 13471 | 04634 | 0.1375 | -0.0178 | -0.1083 | -0.1652 | -0.2007 | -0.2219 | -0.234 2.6930
-0.02 | -2.6102 | -1.8649 | -0.9868 | -0.1711 | 0.4633 | 0.8928 | 1.1555 | 1.3052 | 1.3866 | 1.4296 | 15.679
0.1 | 15382 | 0.6423 | 0.2115 | -0.0087 | -0.1306 | -0.1999 | -0.2393 | -0.2611 | -0.2730 | -0.2793 | 3.8106
10 0.15 | 13256 | 0.4632 | 0.1492 | 0.0031 | -0.0796 | -0.1306 | -0.1620 | -0.1806 | -0.1912 | -0.1969 | 2.6126
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Table 3. The coefficients bj,i=1..,nin the BLUE j, = %biy[i] .
i=1

o by by bs by bs bs by bg by bio | vartar
-0.02 | 1.5929 | 1.5929 736.01
01 | 1.5929 | 1.5929 35.628

2 | o5 | 15929 | 15929 15.853
-0.02 | 9.7696 | 0.6133 | -10.3829 181.63
01 | -2.1861 | 03522 | 1.8339 10346

* | 015 | 14682 | 02568 | 1211 4.6667
-002 | 64117 | 24771 | -2.2318 | -6.6570 82.495
0.1 | -1.5386 | -0.1583 | 06145 | 1.0824 5.1180

* | 015 | 10352 | 00839 | 03947 | 0.7285 2.2955
-0.02 | 49266 | 2.6218 | -0.1264 | -2.7027 | -4.7193 50.621
0.1 | -1.2345 | -02779 | 02390 | 0.5424 | 0.7309 3.2614

* | o5 | -08328 | 01622 | 01487 | 03493 | 0.a970 1.4482
-0.02 | 41584 | 25395 | 06160 | -1.1826 | -2.5881 | -3.5431 36.898
01 |-1.0705 | -0.3127 | 0.0853 | 03122 | 0.4505 | 0.5351 2.4064

® | o | -0.7254 | -01837 | 0.05170 | 0.1941 | 02955 | 03677 1.0612
-0.02 | 3.7175 | 2.4454 | 09387 | -0.4669 | -1.5635 | -2.3078 | -2.7636 29.846
0.1 | -0.9736 | -0.3238 | 0.0098 | 0.1953 | 03061 | 03733 | 0.4129 1.9462

" | 015 | -06634 | -01900 | 00062 | 01183 | 01951 | 0.2490 | 02846 0.8567
-0.02 | 3.4444 | 23711 | 11029 | -0.0777 | -9973 | -1.6208 | -2.0024 | -2.2200 25.762
0.1 | -09122 | -0.3275 | -0.0326 | 0.1281 | 02224 | 0.2789 | 0.3120 | 0.3308 1.6708

® | 05 | 06252 | 01916 | -0.0180 | 00764 | 01389 | 0819 | 02101 | 02275 0.7372
-0.02 | 3.2648 | 23160 | 11974 | 0.1579 | -0.6509 | -1.1986 | -1.5337 | -1.7246 | -1.8284 23.183
0.1 | -0.8710 | -0.3287 | -0.0588 | 0.0857 | 0.1694 | 0.2189 | 0.2477 | 0.2640 | 0.2729 1.4926

| 015 | -06003 | -0.1918 | 00325 | 00509 | 0.10a4 | 0.1404 | 01639 | 04783 | 0.1866 0.6617
-0.02 | 3.1406 | 2.2755 | 12574 | 0.3125 | -0.4217 | -0.9186 | -1.2223 | -1.3953 | -1.4893 | -1.5389 | 21.443
0.1 | -0.8421 | -0.3291 | -0.0764 | 0.0571 | 0.1333 | 0.1780 | 0.2038 | 0.2184 | 0.2263 | 0.2306 | 1.3699

1 015 | 0831 | 01916 | 00818 | 0.0342 | 00816 | 04130 | 04331 | 01455 | 0.1526 | 0465 | 06108

Table 4. cov(iy, i)/ 22.

n 2 3 4 5 6 7 8 9 10

a =-0.02 | 716.353 | 171.88 | 76.089 | 45.695 | 32.737 | 26.124 | 22.312 | 19.912 | 18.295

a= 01 39.318 | 12.424 | 6.606 4.474 3.470 2.923 2.592 2.377 2.229

a =0.15 18.103 5.971 3.253 2.245 1.775 1.522 1.373 1.278 1.215
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