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ABSTRACT 

In this paper, we discuss the distributions of concomitants of record values arising from a polynomial-type single 
parameter extension of general Farlie-Gumbel-Morgenstern bivariate distribution. We derive the single and the product 
moments of concomitants of record values generally for any marginal distributions. The results obtained are applied to 
two-parameters exponential marginal distributions. In this case, we show that the maximal positive correlation between the 
two variables is approximately ≈.423. Best linear unbiased estimators based on concomitants of record values of some 
parameters involved in the distribution are derived. Moreover, we obtain predictors of concomitants of record values by 
two methods. Finally a numerical illustration is presented to highlight the theoretical results obtained. 
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1 INTRODUCTION  

The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions has found extensive use in practice especially in 
lifetime tests and in the context of reliability. Balakrishnan and Lai (2009) showed several applications for the FGM in the 
literature. The FGM family of distributions, was originally introduced by Morgenstern (1956) for Cauchy marginals, Gumbel 
(1960) investigated the same structure for exponential marginals and further generalized by Farlie (1960). Johnson and 
Kotz (1975) and (1977) studied the multivariate case and presented detailed analysis of probabilistic and statistical 
characteristics. Huang and Kotz (1984) extended the bivariate FGM distribution in their attempts to increase the 
dependence between the underlying variables by introducing an additional parameter. The FGM distribution is 

characterized by the marginal distribution functions XF  and YF  of random variables X  and Y , respectively, and the 

association parameter  . The cumulative distribution function (cdf) ),(, yxYXF  of the FGM distribution is given by 

}.{ )()(  ))(1))((1(1),(, yFxFyFxFyxF YXYXYX    

The generalizations of FGM family of bivariate distributions received a great deal of attention of many researchers. For 
example, Huang and Kotz (1999) considered a polynomial-type single parameter extension of FGM bivariate distribution 
with uniform marginals. The cdf, which they considered is 

,1,01)1)(1(1),(  yx  pyxxyyxH pp   ,},{                                                      (1) 

where the admissible range of   is 
12

}),1(max{





 pp  and the range for correlation coefficient is 

2
)2(3}

2
,1min{

2
)2(





 pppp  . The maximal positive correlation for (2) 8/3  is attained for 2p , an 

improvement over the case 1p  for which 3/1 .  

In the present article, we study the records and their concomitants of a general form of Huang and Kotz (1999) extension, 

where the joint cdf and the joint pdf of X  and Y are given respectively by 

,, pyFxFα(y)(x)F  F(x,y)F
p

Y
p

XYXp 1(1))((1(1{  ))}                                                 (2) 

., pyFp(x))Fpαyf(x  f(x,y)f
p

Y
p

XYXp 1]}1)()1][(11[(1){()                                  (3) 

   To our knowledge there are no studies concerning the records and their concomitants of the general form in (2) and (3). 

    Let }1),,{( ][)( iYX ii  be independent and identically distributed random variables from some continuous bivariate 

distribution. Let }1,{ )( nX n be the sequence of upper record values arising from the sequence of X 's. Then the Y - 

variable paired with the X -value which is qualified as the nth record is called the concomitant of the nth record value and 

is denoted by ][nY . In many situations the only available observations are bivariate record values, i.e., records and their 

concomitants, and hence we must make inferences based on records and their concomitants. Such situations often occur 
in life time experiments, sporting matches, weather data recording and some other experimental fields. Some properties of 
concomitants of record values were discussed in Houchens (1984),  Arnold et al. (1998) and Ahsanullah and Nevzorov 
(2000). For a general review of concomitants of ordered random variables see Raqab et al. (2002). However, the 
concomitants in case of record values have not been extensively studied as compared with the concomitants of order 
statistics. This branch is relatively new in the field of ordered random variables. 

    If }1,{ )( nX n  is the sequence of upper record values then the probability density function (pdf), (.)ng , of the nth upper 

record value can be obtained by using the following expression given by Ahsanullah (1995) 

   ),()(1log
1

)(
1

xfxF
n

xg X
n

Xn





                                                                 (4) 

where )(xfX and )(xFX  are the pdf and the cdf of X respectively. Then the pdf of the concomitant ][nY  of the nth upper 

record value, for 1n , is given by 

,)()|()( |][ 




 dxxgxyfyf nXYn                                                                                     (5) 

where )|(| xyf XY  is the conditional pdf of Y given xX   of the parent bivariate distribution. Ahsanullah (1995) has given 

the joint distribution of mth and nth upper record values for nm  as 
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The joint pdf of concomitants of mth and nth upper record values for nm  is given by 

,),()|()|()(

2

2121,22|11|],[  


 



x

nmXYXYnm dxdxxxgxyfxyfyf                                                    (7) 

The rest of this paper is organized as follows: In Sections 2 and 3, we derive the distribution of concomitants of record 
values arising from the general form in (2) and thier single and product moments. In Section 4, we investigate the results 
obtained in Sections 2 and 3 for the two-parameter exponential marginal distributions. Best linear unbiased estimators 
(BLUEs) based on concomitants of record values of some parameters involved in the distribution are derived in Section 5. 
In Section 6, we present two different methods for obtaining predictors of  future concomitants of record values. Finally, in 
Section 7, numerical illustrations are presented to highlight the theoretical results obtained. 

2 Concomitants of Record Values 

In this section, we drive the distribution of concomitants of record values arising from the general form in (2). 

Theorem 1 Let ,...2,1),,( ][)( iYX ii  be a sequence of independent observations from (2). If ][nY  is the concomitant of the 

nth record value on the X  sequence of observations, then the pdf of ][nY  is given by  
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proof   The conditional pdf of Y given xX  is given by 

 }.{1 )(  ]1)()1][(1)()1[()|(  yFpxFpyfxyf
p

Y
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XY                                          (9) 

 Using (9) and (4) in (5) we get 
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Applying the binomial theorem, and after simplifications the proof is complete.■ 

Putting p=1, in (8) we get the same result of the classic FGM distribution as Houchens (1984). 

Theorem 2 Let ,...2,1),,( ][)( iYX ii  be a sequence of independent observations from (2), then the joint pdf of ][mY  and 

][nY for nm  is given 
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proof   By using (6) and (9) in (7), and noticing that ,1),(

2
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 Integrating with respect to s and u, and after simplifications we obtain 11 IJ  . Proceeding in a similar manner we get 

22 IJ   and .33 IJ  Upon substituting the values of 321  and , JJJ  the proof is complete.■ 

 Putting 1p in (10) we get the same result as Chacko and Thomas (2006) for the classic FGM distribution. 

Notice that, if p  is an integer number, the pdf of the largest order statistic of a random sample of size 1p , 1:1  ppY , 

arising from marginal distribution of Y , will be 

),()()1()(1:1 yfyFpyf Y
p

Ypp   

Consequently the pdf of the concomitant of the nth upper record value and the joint pdf of the concomitants of the mth and 

nth upper record values can be written in terms of marginal pdf of Y  and  the pdf of the largest order statistic of a random 

sample of size 1p as follows: 
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where 321  and , III are defined in (11)-(13) respectively. 

3 The Moments of Concomitants of Record Values 

From (8) the kth moment of the concomitant of the nth upper record value is given by 
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where ].[)( kk YE  

Putting 1p in (17), we get the same result as Houchens (1984) for the classic FGM distribution. 

From (10), the product moment of concomitants of the mth and nth upper record values for nm  is given by 

,})()()1}{(1)1()1()1{(

})()()1}{(2)1()1{(][

2
213

22

21
2

][][




















dyyFyyfpIpIpIp

dyyFyyfpIpIpYYE

p
YY

p
YYnm

              

 

                         (18) 

where ].[YE  

Notice that, if p is an integer number, the kth moment of the concomitant of the nth upper record value and the product 
moment of concomitants of the mth and nth upper record values for nm  are given respectively by  
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pp YE    and  ][ 1:11:1   pppp YE , as for 1p  we get the same result as Chacko and Thomas 

(2006) for the classic FGM distribution. 

4  Exponential Marginals 

In the present and the subsequent sections, we shall investigate concomitants of record values for the bivariate random 

variable ),,( YX  having bivariate pdf given by (2) with two-parameter exponential marginals, with density functions, 
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The correlation coefficient between the two variables YX , is given by 
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Notice from (20) that  depends only on pand . 

Since 1)(0 and1)(0  yFxF YX , we can easily see from (2) that the admissible range of  is 12 .  pp   

 Now, we shall  discuss the influence of  1p   on  . From (20), we find that for a specific value of p , the range of   is  

12 .  pp   

    Table 1 shows the admissible values of the dependence parameter   and the correlation coefficient  for the 

exponential marginal distributions with respect to different values of  1p  . We find that the strongest positive correlation 

coefficient  .422872  is attainted for 060746.p  , while the negative lower bound of correlation coefficient for this value 

is , -.069775 which is weaker than the negative lower bound at 1p . From Figure 1, we see that the upper bound of the 

positive correlation coefficient  .25 is attended for both values 95481 .pp   and . However the upper bound of the 

positive correlation coefficient for p in the interval  ) ., ( 95481 is greater than . .250 We see also that the upper bound of 

the positive correlation coefficient decreases as p  tends to infinity while the admissible ranges of  and  shrinks as p  

increases. 

Table 1. The admissible values of α and ρ 

 

p  

    

Lower bound Upper bound Lower bound Upper bound 

1 -1 1 - .25 .25 

1.5 -.444444 .666667 - .205736 .308604 

4 -1/16 1/4 - .102934 .411736 

5.2 -.036982 .192308  -.081033 .421372 

6 -1/36 1/6  -.070478 .422866 

6.06047 -.027226 .165004 -.069775 .422872 

7 -1/49 1/7  -.060225 .421576 

10 -.01 1/10  -.0407990 .407990 

 

 

Figure 1 Bounds of correlations coefficient ρ as a function of parameter p. 
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    Now, Let 2211 /)(/)(   YVXU  and  be the standard exponential random variables. Clearly upon substitution 

with )1()()1()( v
V

u
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    We have, 
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and 
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Substituting (21) and (22) into (17), we obtain the kth moment of the concomitant of the nth upper record value 
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Thus the variance of ][nV is given by 
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From (18), the product moment of concomitants of the mth and nth upper record values for m<n is given by 
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Hence, the covariance of nmVV nm ,][][  and   is given by 
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    and 21, II and 3I  are defined in Equations (11)- (13) respectively. 

Putting ,021   and1p  in (24) and (26) we get the same result as Mohammed(2011), for the standard FGM 

distribution with exponential marginals (Gumbel's bivariate exponential distribution model II). 

5   Estimation of The Location and Scale Parameters of The Exponential Margins 

    In this section we discuss the estimation of the location and the scale parameters 2211 ,,   and when the association 

parameter  is either known or unknown. 

    Ahsanullah (1980) derived the BLUEs of 11  and based on the first n record values drawn from the marginal 

distribution of X as 

),(
1

1
ˆ )()1(1 nXnX

n



                                                                                  (27) 

and 

  ).(
1

1ˆ
)1()(1 XX

n
n 


                                                                                     (28) 

Now we want to estimate 22  and using the concomitants of record values. 

5.1  Estimation of 2  and 2 When  is Known 

    Let ][nY  denote the vector of concomitants of the first n record values, that is '
][]2[]1[][ ),...,,( nn YYYY , where 

....1,2][2][ niVY ii    From (23), we can write 

1εY 22][ ][   nnE ,                                                                                    (29) 

where '
1 ),...,( nn ε  denotes the column vector of expected values of the concomitant of upper record values from the 

standard exponential distribution and 1  is n×1 vector whose components are all1's. 

The variance covariance matrix of ][nY is given by 

ΣYD 2
2][ ][ n  

where i,ji,j ρ),(ρ  andΣ are determined by (24) and (26), .,...1, nji    

Clearly nmnn ρρ ,, ,,  andnε  are known constants provided that  , n m  and  are known. 

Proceeding as in David and Nagaraja (2003), the BLUEs 2̂  of 2  and 2̂  of 2 are given by 
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where 21'11''1 )())((,/)( nn
'
nn

'
n εΣ1εΣε1Σ11ε1εΣΓ   , and niba ii ,...,2,1,,   are constants. 

The variances and covariance of 22  and are given respectively by 

,/)ˆvar(,/)ˆvar( 2
22

2
22  1Σ1εΣε -1-1 ''  nn                                                      (32) 

and  

                                                             ./)ˆ,ˆcov( 2
222  1Σε -1'

n  

5.2  Estimation of μ₂ and λ₂ When α is Unknown 

  Following Chacko and Thomas (2006), if α is unknown, we may replace α in (30) and (31) by a rough moment type 

estimator. If r is the sample correlation coefficient between ,...2,1,][)( iYX ii and , then the rough moment type estimator 

  f or~ is obtained by equating r with the correlation coefficient given by (20). Thus 
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6   Predictors of Concomitants of Record Values 

One would wish to use past data for predicting a future observation. In this section we discuss the prediction of future 

concomitants of record values. Let niYX ii ,...2,1),,( ][)(   represent the first observed n upper record values and their 

concomitants. We present two different methods for obtaining the mth predicted concomitant, nm  . For the first method, 

we obtain the best linear unbiased predictor (BLUP) *
][mY  of nmY m ,][ , while the second method we use the conditional 

distribution of ][mY given ][mX for obtaining the predictor which we call the conditional predictor *
~

][mY . 

6.1  The BLUP of ][mY   

Using the generalized linear regression model, see Goldberger (1962), the BLUP *
][mY  of nmY m ,][  is  

),ˆˆ(ˆˆ 22][
1'

22
*

][ nnmm wY ε1Y                                                               (34) 

where m  is the expected value of *
][mY , 2̂  and 2̂  are the BLUE of ,22  and  respectively, 'w  is the vector of 

covariances of the prediction observation with the vector of observed concomitants of record values. i.e. ),...,( ,,1 mnm  ,   

is the standard variance-covariance matrix, ][nY  is the vector of observed concomitants of record values, and nε  is the 

vector of expected values of the concomitant of record values from the standard exponential distribution. 

6.2 The Conditional Predictor of  ][mY   

Another method for obtaining a predicted value *
~

][mY  of the mth concomitant nmY m ,][ , can be applied by using the 

predicted mth record value and the conditional cdf of x XY  given . Ahsanullah (1980) derived the BLUP of mth record 

value, nmX m ,*
)( ,  based on the first n record values drawn from the marginal distribution of X as 

}.)()1{(
1

1
)1()(

*
)( XnmXm

n
X nm 


                                                           (35) 

The conditional cdf of x XY  given is given by 

.)()(   ])(][1)()1[()|(
1

yFyFxFpyFxyF Y
p

X
p

XY 
                                (36) 

    Let niVU ii ,...2,1),,( ][)(   represent the first observed n upper record values from the standard exponential distribution 

and their concomitants. The cdf of u UV  given is given by 

.)()()()(   ]11][11)1[(1)|( 1 -vp-vp-u-v -e-e-ep-euvF                                              (37) 
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Suppose that the mth predicted record value and its concomitant is ),( *
~

][
*

)( mm YX  where nm  . Setting RuvF mm )|( *
)(

*
][ , 

where R  is a random number, we can solve (37) in *
][mv  given *

)(mu , where 

,ˆ/)ˆ( 11
*

)(
*

)(  mm xu                                                                    (38) 

and 

,ˆ/)ˆ( 22
*
~

][
*

][  mm yv                                                                   (39) 

Substituting with (27), (28) and (35) in (38) we find that 

.*
)( mu m   

Notice that the value of *
][mv  depends on the value of the random number ,R  and since , R 10  so we can replace R by 

its mean .. )50(  Thus substituting with ,*
)( mu m   and 50.R  in (37), we get 

,5.0]11][11)1[(1)|( 1*
][   )()()()(   

*
[m]

*
[m]

*
[m] -vp-vp-m-v

m -e-e-ep-emvF                               (40) 

thus solving (40) in *
][mv  and substituting with its value in (39), we obtain the predicted value 

.ˆˆ
2

*
][2

*
~

][   mm vy                                                                      (41) 

Remarks: 

 If  is unknown, we can replace it in (40) by its estimate given in (33). 

 For improving *
~

][my and reducing the sensitivity of *
][mv  to ,R  we apply the following algorithm, using a variance 

reduction technique (see, Wilson (1984)), 
    Algorithm 1:     

1-Generate a sequence of s paired random numbers )1)...1 11 ss R,RR,R  (( . 

2-Solve (40) for iRR  to obtain *
][miv and for iRR 1 to obtain '

][miv . 

3-Compute 
2
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][
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][
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mimi
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v


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4- 
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s

i

mim v
s

v

1

][
*

][

1
. 

7  Numerical Illustration 

We calculated the coefficients ii ba  and  in the BLUEs 2̂  and 2̂  of 2  and 2 , respectively, given by (30) and (31) for 

10)1(1i and taking arbitrary values for   in the admissible range  ),( 1501002 .,.,-. for  66.067p   (the strongest positive 

correlation coefficient case). The results are presented in Tables 2-4. 

    From Tables 2&3, we can see tha )ˆvar( 2  and )ˆvar( 2  decreases as the value of the association parameter   

and the number of concomitants increase. 

    In order to illustrate numerically the estimators obtained and the predicted concomitants, we generated 9  

observations of record values and their concomitants from (2) with exponential margins in (19) with 

51024150  2211  , , , ,  . , as follows: (7.8691,12.4961), (8.5810,12.0865), (10.6856,26.3902), 

(14.5684,17.8104), (16.4118,20.9911), (20.6285,19.5828), (21.9594,20.1107), (23.4171,12.1424), (25.5482,20.3680). 

    We assume that we have only 8 or 6 observations and we require to predict the 9th  concomitant value 

(  nm 1 or 3 nm ). For calculating the BLUP in (34) or the conditional predictor in (41) we must first calculate 2̂  and 

2̂ .  Assuming  is known, using (30), (31) and the coefficients  and ,..,niba ii 1,   given in Tables 2&3 for 0.15, we get 

5.6185.  and 6.9433    6,n f or

4.2225,  and  9.0036   8,n f or





22

22

ˆˆ

ˆˆ




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First method (BLUP): 

Calculating nw εand1'
9 ,,  and substituting with the corresponding 22

ˆˆ  and in (34) we get 

21.6544.   6,n f or

19.2345,   8,n f or





*
]9[

*
]9[

Y

Y
 

Second method (The conditional predictor): 

Using (40) and (41), we get 

21.1913.   6,n f or

18.4741,   8,n f or





*
~

]9[

*
~

]9[

Y

Y
 

while using Algorithm 1, with s=50 , we have 

22.1582.   6,n f or

19.4517,   8,n f or





*
~

]9[

*
~

]9[

Y

Y
 

    We see from the above results that the predicted values of the 9th concomitant using both methods are almost the 
same and near the true value of the 9th observation. 

   We may conclude that the conditional predictor is simple to apply and requires less calculations than the BLUP and 
gives satisfactory results. Moreover it can be improved by applying Algorithm 1.  
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Table 2.The coefficients niia ,...,1,  in the BLUE 


n

ii
i

ya
1

][2̂ . 

n 

 

  
1a  2a  3a  4a  5a  6a  7a  8a  9a  10a  2

22 /)ˆvar(   

 

2 

-0.02 

0.1 

0.15 

 -1.5929 

-1.5929 

-1.5929 

-1.5120 

-1.9970 

-2.1991 

        

697.696 

44.0073 

21.3527 

 

3 

-0.02 

0.1 

0.15 

-8.9471 

3.0742 

2.3702 

-0.2502 

-0.1234 

-0.0564 

10.1973 

-1.9508 

-1.3138 

       

162.952 

15.399 

8.1959 

 

4 

-0.02 

0.1 

0.15 

-5.7026 

2.3536 

1.0874 

-5.7025 

0.4447 

0.3342 

2.3214 

-0.5937 

-0.3776 

6.4324 

-1.2046 

-0.8306 

      

70.393 

8.9246 

5.0799 

 

5 

-0.02 

0.1 

0.15 

-4.2864 

2.0043 

1.6332 

-2.1891 

0.5820 

0.4272 

0.3137 

-0.1624 

-0.0851 

2.6616 

-0.5844 

-0.3845 

4.5003 

-0.8395 

-0.5909 

     

41.410 

6.4755 

3.8824 

 

6 

-0.02 

0.1 

0.15 

-3.5610 

1.8119 

1.5026 

- 2.1114 

0.6227 

0.4534 

-0.3873 

0.0179 

0.0328 

1.2262 

-0.3143 

-0.1957 

2.4879 

-0.5104 

-0.3457 

3.3455 

-0.6278 

-0.4474 

    

29.174 

5.2986 

3.3094 

 

7 

-0.02 

0.1 

0.15 

-3.1476 

1.6966 

1.4260 

-2.0233 

0.6360 

0.4611 

-.6899 

0.1078 

0.0890 

0.5551 

-0.1752 

-0.1020 

1.5270 

-0.3387 

-0.2217 

2.1871 

-0.4352 

-0.3008 

2.5915 

-0.4912 

-0.3526 

   

22.97 

4.6472 

2.9976 

 

8 

-0.02 

0.1 

0.15 

-2.8927 

1.6229 

1.378 

-1.9538 

0.6405 

0.4631 

-.8432 

0.1586 

0.1193 

0.1918 

-0.094 

-0.0498 

0.9986 

-0.2382 

-0.1516 

1.5459 

-0.3219 

-0.2172 

1.8811 

-0.3701 

-0.2586 

2.0722 

-0.3971 

-0.2836 

  

19.42 

4.250 

2.8118 

 

9 

-0.02 

0.1 

0.15 

-2.7255 

1.5732 

1.3471 

-1.9026 

0.6420 

0.4634 

-0.9311 

0.1903 

0.1375 

-0.0274 

-0.0434 

-0.0178 

0.6761 

-0.1742 

-0.1083 

1.1530 

-0.2494 

-0.1652 

1.4448 

-0.2924 

-0.2007 

1.6111 

-0.3164 

-0.2219 

1.7016 

-0.3294 

-0.234 

 

17.181 

3.9906 

2.6930 

 

10 

-0.02 

0.1 

0.15 

-2.6102 

1.5382 

1.3256 

-1.8649 

0.6423 

0.4632 

-0.9868 

0.2115 

0.1492 

-0.1711 

-0.0087 

0.0031 

0.4633 

-0.1306 

-0.0796 

0.8928 

-0.1999 

-0.1306 

1.1555 

-0.2393 

-0.1620 

1.3052 

-0.2611 

-0.1806 

1.3866 

-0.2730 

-0.1912 

1.4296 

-0.2793 

-0.1969 

15.679 

3.8106 

2.6126 
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Table 3. The coefficients niib ,...,1,  in the BLUE 


n

ii
i

yb
1

][2̂ . 

n 
 

  
1b  2b  3b  4b  5b  6b  7b  8b  9b  10b  2

22 /)ˆvar(   

 

2 

-0.02 

0.1 

0.15 

1.5929 

1.5929 

1.5929 

1.5929 

1.5929 

1.5929 

        

736.01 

35.628 

15.853 

 

3 

-0.02 

0.1 

0.15 

9.7696 

-2.1861 

-1.4682 

0.6133 

0.3522 

0.2568 

-10.3829 

1.8339 

1.2114 

       

181.63 

10.346 

4.6667 

 

4 

-0.02 

0.1 

0.15 

6.4117 

-1.5386 

-1.0352 

2.4771 

-0.1583 

-0.0839 

-2.2318 

0.6145 

0.3947 

-6.6570 

1.0824 

0.7245 

      

82.495 

5.1180 

2.2955 

 

5 

-0.02 

0.1 

0.15 

4.9266 

-1.2345 

-0.8328 

2.6218 

-0.2779 

-0.1622 

-0.1264 

0.2390 

0.1487 

-2.7027 

0.5424 

0.3493 

-4.7193 

0.7309 

0.4970 

     

50.621 

3.2614 

1.4482 

 

6 

-0.02 

0.1 

0.15 

4.1584 

-1.0705 

-0.7254 

2.5395 

-0.3127 

-0.1837 

0.6160 

0.0853 

0.05170 

-1.1826 

0.3122 

0.1941 

-2.5881 

0.4505 

0.2955 

-3.5431 

0.5351 

0.3677 

    

36.898 

2.4064 

1.0612 

 

7 

-0.02 

0.1 

0.15 

3.7175 

-0.9736 

-0.6634 

2.4454 

-0.3238 

-0.1900 

0.9387 

0.0098 

0.0062 

-0.4669 

0.1953 

0.1183 

-1.5635 

0.3061 

0.1951 

-2.3078 

0.3733 

0.2490 

-2.7636 

0.4129 

0.2846 

   

29.846 

1.9462 

0.8567 

 

8 

-0.02 

0.1 

0.15 

3.4444 

-0.9122 

-0.6252 

2.3711 

-0.3275 

-0.1916 

1.1029 

-0.0326 

-0.0180 

-0.0777 

0.1281 

0.0764 

-.9973 

0.2224 

0.1389 

-1.6208 

0.2789 

0.1819 

-2.0024 

0.3120 

0.2101 

-2.2200 

0.3308 

0.2275 

  

25.762 

1.6708 

0.7372 

 

9 

-0.02 

0.1 

0.15 

3.2648 

-0.8710 

-0.6003 

2.3160 

-0.3287 

-0.1918 

1.1974 

-0.0588 

-0.0325 

0.1579 

0.0857 

0.0509 

-0.6509 

0.1694 

0.1044 

-1.1986 

0.2189 

0.1404 

-1.5337 

0.2477 

0.1639 

-1.7246 

0.2640 

0.1783 

-1.8284 

0.2729 

0.1866 

 

23.183 

1.4926 

0.6617 

 

10 

-0.02 

0.1 

0.15 

3.1406 

-0.8421 

-0.5831 

2.2755 

-0.3291 

-0.1916 

1.2574 

-0.0764 

-0.0418 

0.3125 

0.0571 

0.0342 

-0.4217 

0.1333 

0.0816 

-0.9186 

0.1780 

0.1130 

-1.2223 

0.2038 

0.1331 

-1.3953 

0.2184 

0.1455 

-1.4893 

0.2263 

0.1526 

-1.5389 

0.2306 

0.1565 

21.443 

1.3699 

0.6108 

 

Table 4. .2222 /)ˆ,ˆcov(   

n 2 3 4 5 6 7 8 9 10 

 -0.02 716.353 171.88 76.089 45.695 32.737 26.124 22.312 19.912 18.295 

   0.1 39.318 12.424 6.606 4.474 3.470 2.923 2.592 2.377 2.229 

 0.15 18.103 5.971 3.253 2.245 1.775 1.522 1.373 1.278 1.215 

 

 

 

 


