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ABSTRACT   

 In this paper, we consider the vibrations of an inhomogeneous damped wave under distributed disturbing force. The 
well-possedness of the system is studied. We prove that the amplitude of such vibrations is bounded under some restriction 
of the disturbing force. Finally, we establish the uniform exponential stabilization of the system when the disturbing force is 
insignificant. The results are achieved directly by means of an exponential energy decay estimate.  
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1 Introduction    

In this paper, we consider the mechanical vibrations of a clamped inhomogeneous string of length L  governed by 
general one-dimensional wave equation 

 ,)(0,),,(=)()(2)(  Lontxfuuxuxuxm xxttt   (1) 

 where the parameters ),(xm  )(x  and )(x  respectively denote mass per unit length, coefficient of damping, the 

square of the natural frequency of the motion at the point x  and ).(0,=   We assume that all the above functions 

are positive and continuous up to second order partial derivatives over ].[0,L  For a general inhomogeneous string they 

belong to ].[0,2 LC  The distributed force   )(0,: Lf  is the uncertain disturbance appearing in the model, 

which is continuously differentiable for all 0.t   

For a clamped string, the boundary conditions are 

 
ontLutu 0=),(0,=)(0,  (2) 

and let initially the string is set to vibrate with 

 

 ).(0,)(=0),(),(=0),( 10 Lonxuxuxuxu t  (3) 

    The mathematical theory of stabilization of distributed parameter system is currently a topic of interest in view of 
application of vibrating control of various structures like string, beams, plate etc. The study of the stabilization is significant in 
the sense to suppress the vibrations to assure a good performance of the overall system.  

   The vibrations of exible structures are usually governed by nonlinear partial differential equation. Transverse vibrations of 
such equation is treated by Nayfeh [18] for a spatial variable beam. As the non-linear study of such structures is rather 
cumbersome for analytical treatment, linearized mathematical model are chosen just for simplicity and concise result. The 
question of energy decay estimates in context of boundary stabilization of a wave equation has earlier been studied by 
several authors (cf. Chen [1], [2], Gorain [4], Lagnese [11], [12], Komornik and Zuazua [8], and the reference therein). Chen 
[1] first established explicitly the exponential energy decay rate for the solution of wave equation by considering certain 
geometries of the domain. The theory of boundary stabilization of wave equation has been improved by Lagnese [12] and a 
faster energy decay rate is obtained by Komornik [9] constructing with a special type of feedback. There are different types of 
stability for the vibrations of exible structures and the most important of all these is the uniform stability. The question of 
uniform stabilization or point-wise stabilization of Euler-Bernoulli beams or serially connected beams has been studied by a 
number of authors (cf. K. Liu and Z. Liu [13], Lions [14] and references therein). Recently, Gorain [7] has established the 
uniform stabilization of longitudinal vibrations of inhomogeneous clamped beam. A bounded-input and bounded-output 
stability of a damped non-linear string is obtained by Shahruz [20], whereas Smyshlyaev et al. [21] discussed about the 
bounded stabilization of a 1-D wave equation with a in-domain antidumping.  

   Our aim in this work is to study the stability results of different types for the solutions of the mathematical problem (1) 
subject to the boundary (2) and initial condition (3). To achieve the results, we adopt a direct method by constructing suitable 
Layapunov functional associated with the energy functional of the system.  

Lemma 1 For every solution of (1) - (3) , the total energy 
 :E  is defined at time t  by 

 






  dxuxmdxuxdxutuE t

LL

x

L
2

0

2

0

2

0
)()(

2

1
=))((   (4) 

 

 satisfies  

 .)(2=))((
0

2

0
fdxudxuxtuE

dt

d
t

L

t

L

    (5) 

Proof. We multiply (1) by .tu  Integrating with respect to ],[0,Lx  using the boundary condition (2), the result follows. 

Remark 1 We have 0,
))((


dt

tudE
 it follows from (5)  that the system is not energy conserving. On the other hand, 

when the uncertain disturbing force is not present, that is, 0),(= txff  for all ),(0,)(0,),(  Ltx  the system 

(1) - (3)  is energy dissipating.  
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Integrating(5) with respect to t  over ][0,t , we get 

 0,])),()(([2=(0))())(( 2

00
  tfordxdxuxuEtuE

Lt

   (6) 

where 

 .])()([
2

1
=(0))(

2

0

2

0

2

1
0

dxuuxuxmuE
x

L

   (7) 

In view of (6) and (7), we may conclude that )(0,1

00 LHu   and )(0,2

1 LLu  , where 

 )}(=0=(0))(0,:{=)(0, 11

0 LandLHLH    

 is the subspace of the classical Sobolev space 

                   )}(0,),(0,:{=)(0, 221 LL
dx

d
LLLH 


  

 of real valued function of order one. Then obviously 

                   0.<(0))())((  tforuEtuE  (8) 

 Now, we have to study bounded-input and bounded-output stability of the system in presence of uncertain input disturbance 

),( txf . We introduce two function spaces as specified in Gorain [6] 

 }<][sup:)(0,:),({: 2

1

2

0
 



 dxLtxX
L

t




  (9) 

 

 }|<|supsup:)(0,:),({:
)(0,




 
Lxt

LtxY


  (10) 

with 
  |<|supsup=<][sup=

)(0,

22

1

2

0


LxtY

L

tX anddx   . From (9) and (10), it is clear 

that XY   as )(0,)(0, 2 LLLL 
.  

2 Setting of the Semigroup  

 In this section, we obtain the existence and uniqueness of solution for the initial-boundary value problem (1)-(3). We will use 

the standard )(0,2 LL
 
space, the scalar product and norm are denoted by 

 .=,=, 2

0

2

)(0,2
0)(0,2 dxuudxvuvu

L

LL

L

LL    

We have the Poincaré inequality 

 

 ),(0,, 1

0

2

)(0,2

2

)(0,2 LHuallforuCu
LLxpLL

   

 

where pC  is the Poincaré constant.  

Taking ,= vut  the initial boundary problem (1)-(3) can be reduced to the following abstract initial value problem 

 0,>=(0)),,()(=)( 0 tallforUUtxFtAUtU
dt

d
  (11) 

with 
TvutU ),(=)(  and ,),(= 100

TuuU  where the linear operator  )(:  is given by  
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  (12) 

Now, we introduce the phase space )(0,)(0,= 21

0 LLLH   endowed with the inner product given by 

 ,)()(=),(),,( 1
0

1
0

1
0

11 dxvvxmdxuuxdxuuvuvu
LL

xx

L

  


 

 for ),,(= vuU  ),(= 11 vuU


 and the norm by 

 .=),( 2

)(0,2

2

)(0,2

2

)(0,2

2

LLLLLLx vmuuvu     

We can easily show that the norm   is equivalent to usual norm in .  Instead of dealing with (1), we will consider (11) 

in the Hilbert space ,H  with the domain )(  of the operator A  given by 

 )}.(0,)(0,;),{(=)( 1

0

2 LHLHuHvuAD   (13) 

Firstly, we show that the operator   generates a 0C -semigroup of contractions on the space .   

Proposition 1 The operator   generates a 0C -semigroup )(tS  of contractions on the space .   

Proof. We will show that   is a dissipative operator and 0  belongs to resolvent set of ,  denoted by ).(  Then 

our conclusion will follow using the well known Lumer-Phillips theorem (cf. [19]). We observe that if ),(),(= DvuU   

then 

       dxuvdxvuxvxu
xm

xmUU xx

L

xx

L

 
00

))()(2(
)(

1
)(=,   

    dxuvx
L

)(
0
  

 dxvuxdxvxdxvu
LL

xx

L

)(||)(2=
0

2

00
    

 dxuvxdxuv
L

xx

L

)(
00
   

 dxvuuvxdxvuuv
L

xxxx

L

)()()(=
00

    

 dxvx
L

2

0
||)(2   

 dxuvxImidxuvImi
L

xx

L

)(22=
00
   

 .||)(2 2

0
dxvx

L

  

 

 Taking the real part, we have 

 0.||)(2=, 2

0
  dxvxUURe

L

  (14) 

 Thus   is a dissipative operator. Now, we show that ).(0 A  In fact, given ,),(= 11  gf  we must show 

that there exits a unique )(),(= vuU  such that  =U , that is, 
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                         1= fv  (15) 

 .)(=)()(2 1gxmuxvxuxx    (16) 

In view of (15), we have from (16) 

 .)(2)(=)( 11 fxgxmuxuxx    (17) 

 It is known that there is a unique )(0,2 LHu  satisfying (17). It is easy to show that .HH FCU     

From proposition 1 and theorem 2.4 in Pazy (cf. [19], page 107), we can state the following result (cf. [19]).  

Theorem 1 For any HU 0 ,
 
there exists a unique solution ),(=)( tuutU  of the system (1) - (3)  satisfying  

 )).(0,[;([0,))(0,[;([0, 211

0 LLCLHCu   

Moreover, if ),(0 U  then 

 )).(0,[;([0,))(0,[;([0, 211

0 LLCLHCu   

3 Stability Results  

On account of uncertain disturbance force ),( txf  as a input-disturbance, the system evolves from its initial state 

),( 10 uu  to  tuu,  at an instant .t  The result of the bounded-output solution for the restriction of ),( txf  is in the 

following theorems.  

Theorem 2   If ),( txu  be the solution of the system (1) - (3)  with ,Xf   then Yu  for every set of initial 

values ).(0,)(0,),( 21

010 LLLHuu    

Theorem 3 Let ),( txu  be the solution of the system (1) - (3)  corresponding to the initial value 

)(0,)(0,),( 21

010 LLLHuu   then for every 0>T   

 ,(0))())((
2

)(0,2
00

dtfuEdttuE
LL

TT

    (18) 

where   and   are positive constant given by (55) .  

 In an ideal case, when the uncertain disturbance force is not present in the system (1)-(3), then the energy function given by 
(4) is a dissipative function of time. So naturally a question arises as to whether the energy decay with time is exponentially  
or not and the answer of this question is found in the following theorem.  

Theorem 4 If ),( txu  be the solution of the system (1) - (3)  with 0),( txf  and )(0,))(0,),( 21

010 LLLHuu   

then the solution 0  exponentially as time ,t  that is, the energy function satisfies  

 
  tallforuEeAtuE t (0)),())(( 

 (19) 

 for some reals 0>  and 1.>A   

To prove the above theorems, we need the following inequalities and few lemmas. 

I. For any real number 0> , we have Young’s Inequality (cf. [16])  

 .
||

||
2

1 2
2














g
fgf  (20) 

II. Poincaré type Scheeffer’s inequality (cf. [16])  

 ,2

04

4
2

02

2
2

0
dxu

L
dxu

L
dxu xx

L

x

LL

 


 (21) 
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 as ),( txu  satisfies boundary condition in (2).  

III. The Cauchy – Schwartz inequality for integral calculus (cf. [16])  

 .
2

1

2

0

2

1

2

00 









  dxgdxfdxgf

LLL

 (22) 

By Mean value theorem of integral calculus, there are reals ,1  ,2  ,1  2  and ][0,L  satisfying the following 

results : 

 

 dxumdxuxm
LL

2

0
1

2

0
)(=)(    (23) 

 dxumdxuxm t

L

t

L
2

0
2

2

0
)(=)(    (24) 

 dxudxux
LL

2

0
1

2

0
)(=)(    (25) 

 .)(=)( 2

0
2

2

0
dxudxux t

L

t

L

   (26) 

 

Moreover, we define  

 .
)(

)(
:,)(2:=,)(:

2

2
22

2

1110











m

L
m

L
  (27) 

  It is obvious that ),( 1m  ),( 2m  )( 1  and )( 2  are all positive and they are bounded above by their 

corresponding upper bound over ].[0,L   

Next, we need to established the following lemmas.  

Lemma 2   For every solution ),(= txuu  of the system (1) - (3) , the time derivative of the functional ))(( tuG  defined 

by  

  dxuxuuxmtuG t

L
2

0
)()(:))((    (28) 

 

satisfies 

 )).((2)(2=))((
0

2

0
tuEfdxudxuxmtuG

L

t

L

   (29) 

Proof. Differentiate (28) with respect to ,t  we get  

      .)(2)()(= 2

0
dxuuxuxmuuxm

dt

dG
tttt

L

  (30) 

Using (1) and applying conditions in (2), we get from (30) 

 .)()(= 2

0

2

0

2

00
dxuudxuxmuxfdxu

dt

dG
x

L

t

LLL

    (31) 

 Using (4) in (31), we get 

 )).((2)(2= 2

00
tuEdxuxmfdxu

dt

dG
t

LL

   (32) 

Hence the lemma is proved.  
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Lemma 3 The functional ))(( tuG  given by (28)  satisfies the inequality  

 0.))(()())(())(( 100  tfortuEtuGtuE   (33) 

Proof. From (4), (21), (25) and (27), we get  

 dxu
L

dxudxux x

LLL
2

02

2

1

2

0
1

2

0
)()(=)(  


  

                          0.))((=))(()(2 12

2

1  tfortuEtuE
L




                         (34) 

Also, using (4), (20), (21), (23) and (27), we get 

  dxuxmuxmdxuuxm t

L

t

L

)()(=)(
00   

 












  dxuxmm

L
dxuxm

mL
t

LL
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0
1

2

0
1

)()()(
)(

1

2

1





 

 







  dxuxmm

L
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L
t

L

x

L
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0
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2

0
1 )()()(

2
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  dxuuxmm
L

xt

L
22

0
1 )()(

2

1
= 


 

 )).((=))(()( 01 tuEtuEm
L




  (35) 

From (28), (34) and (35), we get, 

 0.))(()())(())(( 100  tfortuEtuGtuE   

Hence the lemma is proved.  

We are now ready to prove the above theorems. For this, we proceed like Komornik [10], Gorain [4], [6]. Let us introduce an 

energy like Layapunov functional denoted by ))(( tuV  and is defined by 

 0,))(())((:))((  tfortuGtuEtuV   (36) 

where 0>  is a small real number given by (42). The lemma 3 yields for ))(( tuV  that estimates 

 0,))((])([1))(())(()(1 100  tfortuEtuVtuE   (37) 

where we choose 

0

1
<


  such that 0.0))((  tfortuV   

From (20) and (21), we can estimate 
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p
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          .
4

= 2

02

2
2

0
dxf

p

L
dxup

L

x

L

 


 (38) 

Moreover, using (20) and (21), we can estimate 

 







  dxf

mp
dxumpfdxu

L

t

L

t

L
2

0
2

2

0
2

0 )(2

1
)(2

2

1


  

           ,
)(4

1
)(= 2

0
2

2

0
dxf

mp
dxuxmp

L

t

L

 


  (39) 

where p  is a real number satisfying 1.<<0 p   Now, taking time derivative of (36) and applying (5) and (29) with the 

inequalities (38) and (39), we get 

 

     
dt

dG

dt

dE

dt

dV
=  

 ))((2)(2)(2= 2
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0
tuEdxuxmfdxufdxudxux t
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L

    

 dxuxmpdxuxmtuEdxux t
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L
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0
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2

0 4)(4
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   dxuxmdxuuxmptuE t
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0
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22

0
)()(2)())((2=     

   dxf
p

L

mp

L
2

02
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)
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 ,)()(2))(()(12 2

0

2

0
2 dxfCdxuxmtuEp

L

t

L

    (40) 

where 

       .
)(

1

4

1
=

2

2

2















L

mp
C  (41) 

 

Since 0>  is small, we assume that 

 

 .,
1

:=<<0 2

0

0












 min  (42) 

 

Hence, from (40), we get the differential inequality 

 
2

)(0,2))(()(12
LL

fCtuEp
dt

dV
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      ,))((
)(1

)(12 2

)(0,2

10
LL

fCtuV
p










 

in view of (37). Thus we have  

 ,
2

)(0,2 LL
fCV

dt

dV
   (43) 

where 

 0.>
)(1

)(12
=

10 






 p
 (44) 

Multiplying (43) by 
te
 and integrating over ][0,t  for any 0t , we get 

 .(0))())((
2

)(0,2
0

 defCuVtuVe
LL

t
t

  

Thus we have 

                 .(0) )())((
2

)(0,2
0 



  

  defCuVetuV
LL

t
t

 (45) 

Using (37) into (45), we get 

 

 ,(0))())((1
)(1

1
))(( )(2

)(0,2
0

10

0




 


 

 


 defCeuEtuE t

LL

t
t

 (46) 

where (0))(uE  is given by (7).  

Proof of theorem 2 Let Xf   such that .<sup=
)(0,2  LLtX

ff   Putting  =t  in (46) , we get 

 ](0))())([(1
1

1
))((

2

0
10

0




 defCeuEtuE
X

t
t 




  

 ](0))())([(1
1

1

0

2

10

0




 defCeuE
X

t 







  

 .](0))()(1[2
)(1

1 2

0




 tforfCuEp
X




 (47) 

Hence 

 


<))((sup tuE
t 

 (48) 

for every set of initial value )(0,))(0,),( 21

010 LLLHuu   and for every .Xf   Thus the energy of the system 

(1)-(3) is uniformly bounded function of time.  

Again from (2), we have 0=)(0,tu  so we can write 

 ,1|=),(|
2

1

2

0

2

1
2

1

2

0

2

1

2

00

















  dxuLdxudxdxutxu x

L

x

LL

x

x

 (49) 

for all .)(0,),(  Ltx  Thus, in view of (4) 

                    <))((2|),(| 2

0

2 tuELdxuLtxu x

L

 (50) 



ISSN 2347-1921 
 

1314 | P a g e                             M a r c h  3 1 ,  2 0 1 4  
 

for every .)(0,),(  Ltx  Hence 

                                   ,Yu  (51) 

for every set of initial values )(0,))(0,),( 21

010 LLLHuu   and for every .Xf    

Hence the theorem is proved.  

Remark 2 Thus the above result shows that if the output solution u  is Y -bounded for every X -bounded input 

disturbance f . Thus the system is bounded-input bounded-output stable.  

Proof of theorem 3 Integrating (46) over ][0,T  for 0>T  we get  

 ,)((0))())((1
1

1
))((

00
10

0
0 



 


 

 dttFeCdteuEdttuE t
T

t
TT




 (52) 

where 

 .=)(
2

)(0,2
0

 deftF
LL

t

  (53) 

Integrating (52) by parts, we have 
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)(12

1

1
))((

2

0
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T
T

euE
p

dttuE 






 

  











 

 dt
dt

dF
etFeF

C t
T

T 

 0
)((0)  

         )(1(0))(= TeuE    

   







 

 dt
dt

dF
etFeF t

T
T 

0
)((0)  

 ,(0))(
2

)(0,2
0

dtfuE
LL

T

   (54) 

 

where 

 .
)(1

=
)(1

)(12
=

00

2 









 C
and

p
 (55) 

 

Since 0=(0)F   and  .=
2

)(0,2 LL

t fe
dt

dF 
  

Hence the theorem is proved.  

Remark 3 Thus the above result shows that if ),( txu  is a solution of the system (1) - (3)  with 

))(0,,(0, 22 LHTLf   then the solution )).(0,,(0, 1

0

2 LHTLu  The factor   in (55)  may be defined as the 

tolerance factor of this disturbing force f  on the total energy over ].[0,T   

Proof of theorem 4  When the disturbing force ),( txf  is not taking into our account in the equation (1), the result 

(5) shows that the energy ))(( tuE  of the system (1)-(3) is a non-increasing function of time. Consequently, the terms in 

(38) and (39) are insignificant following (5) and (29). Thus we can get rid off the terms involving p  in (40) and hence 

differential inequality (43) becomes 
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 0,0  tforV
dt

dV
  (56) 

where 

          .
)(1

2
=

10 





 (57) 

Multiplying (56) by 
te  and integrating over ][0,t  for any 

t  we get 

                   (0)).())(( uVetuV t  (58) 

Using (37) into (58), we get 

 (0)).(
1

)(1
))((

0

10 uEetuE t



 




  

Thus 

 (0)),())(( uEeAtuE t  

where 

        1.>
1

)(1
=

0

10








A  (59) 

Hence the theorem is proved.  

Remark 4 Thus the above result shows that the solution of the system (1) - (3)  decay exponentially with time and 

0),( txu  as t  for every ).(0,))(0,),( 21

010 LLLHuu    

Remark 5 The exponential stability result (19)  can be obtain directly by setting 0f  in (46) . In that case, the 

exponential decay rate of energy would be   which is less than   by an amount 




)(1

2

10 

p
. Thus the exponential 

energy decay rate   given by (57)  is a stronger one. Again, since 

   ,
)(1

2
=

10 





 

we have 

 0.>
)(1

2
=

10 



d

d
 

Thus the exponential decay rate   as a function of   will be maximum for the largest admissible value of   satisfying 

the constraint (42) . An upper bound of which is followed by 0  that depends explicitly on 0  and ,2  as defined by 

(27) . It signifies that the decay of energy will be slower for a longer string.  

4 Conclusion  

   This study deals with different types mathematical stability results of a vibrating clamped string medelled by general 
inhomogeneous wave equation (1). We have established the boundedness of output solution under boundedness of input 
disturbances. Here we also estimate the total energy of the system over any time interval with a tolerance level of input 
disturbance. We have also prove that the energy of the system decay exponentially with time whenever the input 
disturbance is not so important.  
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