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ABSTRACT

The stability analysis of Gompertz tumour growth model Parameter with respect to the tumour volume size leads us
to conclude the constancy of Gompertz tumour growth parameter.
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INTRODUCTION

The serial determination of tumour volume is one of the few ways to study tumour behaviour and the analysis of growth
curves from such data provides important theoretical and practical information for clinical and experimental oncology.

The Gompertz model of growth has been widely and successfully used as a simple, yet adequate descriptor of tumour
growth curves [1-11]. Possible theoretical bases of this model have been addressed in the literature from various points
of view, and it remains to be a topic of investigation [9,12-24]. Most of the authors have attempted to derive the
Gompertz model as an approximation (or a special case) of more general models, which are deemed to be based on
accepted biological foundations. The Gompertz model is postulated (based on it empirical justification) and then the
more general model is specified to yield the Gompertz model. Some complex models with more free parameters than
the Gompertz model could not fit some tumour growth data adequately [9]. In fact many of those more complex
models were not validated against data, as it is tacitly assumed that they have enough free parameters to _t simple
sigmoidal growth curves. The Gompertz model have been almost universally used to describe the growth of organisms
tissues, and populations of single cell organisms. Additionally the biological assumptions and mathematical generality
of the Gyllenberg-Webb model [16] are sufficient to warrant its application to growth in general.

The approach to tumour growth presented in this paper uses a Gompertz tumour growth model parameter and it
was introduced by Benjamin Gompertz (1825) [25] to analyse population dynamics and to determine life contingencies.
Later, the Gompertzian model was found to fit well for diverse growth phenomena in nature, including tumour and
embryonic growth. To the best of our knowledge, there have been few attempts to give biological, theoretical
grounding to the Gompertz model ( [1,26-39]) in spite of its extensive use in biological and medical research. Especially
in experimental oncology, the Gompertzian model is most widely used to describe in vivo tumour growth and expressed
it mathematically by the equation if V (t) is the size of the tumour cell at time t, then

av(t) i
— AV(t) — BV(t) InV*(t) (1)

where A, the intrinsic growth rate of the tumor, is a parameter related to the initial mitosis rate and B, the growth
deceleration factor is related to the antiangiogenic processesand ¥ *(t) =V (t)/V; define V(0) =V, is the

volume at time t = 0. From a biological point of view, a greater ﬁ value means a stronger association constant
between drug and angiogenic protein and/or a greater bio availability of the drug; a smaller A value means a slower
initial grow rate of the tumor. Therefore, a greater ﬁ value or a smaller A value indicates a greater antitumoral effect

of the therapy [40]. The growth deceleration factor, is related to the antiangiogenic processes. The solid tumour growth
may be termed avascular or vascular, with angiogenesis facilitating the transformation form avascular to vascular
growth. Avascular stage can be characterised by diffusion limited growth, with the tumour receiving vital nutrients and
eliminating waste products via diffusion across its outer boundary and this stage tumours are usually harmless. To
escape from the restriction of avascular growth a tumour must undergo angiogenesis. Once vascularised the rumour
has access to an almost limitless supply of nutrients and is potentially life-threatening. However, it should be stressed
that quite often discrepancies exist between clinical data and theoretical predictions, due to more or less intense
environmental fluctuations.

This paper is organized as follows. In section 2, we outline the main features of the Gompertzian model and estimated
the Gompertz parameters, given a uniqueness theorem for Gompertz parameters, in subsections we checked the
existence of solid gompertz tumour growth parameter by theoretical, numerical methods. In the section 3, we checked
the stability of Gompertz tumour growth parameter. In section 4, we given a conclusions.

2 ESTIMATION OF PARAMETERS

The Gompertz function describes an symmetrical type of sigmoidal growth is given by a Gompertz equation (1) of
the following form

A _gBt
V() =V,ef "’ (2)

where V (t) is the volume of clonogenic tumour cell at time t; Vg is the volume of clonogen number at time t = 0: A
and B(> 0) are the Gompertz growth parameters. For tumour, size can be measured by volume, biomass or number of
cells, since the number of tumour cells is equivalent to the volume of the tumour cells in a Gompertz tumour growth model
[37]. For convenience, we will use volume (V (t)) as the measure of size of tumour cells.

Qualitatively, this model gives exponential growth at early time periods which then saturates at later time periods
(decelerating growth). Using data obtained from a sequence of sampling times, the Gompertz parameter A and 3 have
been estimated by various statistical methods like maximum likelihood, linear regression, non-linear regression [40].

In the following, we discussed the need to estimate the parameters A and (3, also the details of a procedure for the
estimation of parameters A and B in the absence of maximum volume data of the tumour cells then given the
condition to exists such parameters. This method utilizes the cumulative volume rate (V¢)(i.e., defined by

V.= _IDI Vo (t)dt, where V*(t) =V(t)/V, ) and the maximum lifetime of tumour cells (tm) (at this time
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the tumour reaches its maximum size of volume or maximum number of cells before disintegration and final effects).

The doubling time is a key parameter for assessing the impact of delays in cancer treatment. Most of the
information about tumour growth rates comes from studies performed long ago and not known clearly the maximum
volume size of individual tumours and groups of tumours. In general the time the tumour takes to double itself varies
widely, such that in case of histological type of tumour the time distribution for tumour doubling itself is normally long
[41-45]. The Gompertz model presents a doubling time (Molume Rate Doubling time (VRD)) which depends only on .
Comparisons of volume data of tumours in tumour growth model are aided by calculation of the VRD, because VRD
changes in the same direction as lifespan of tumour cells. Solving equation (2) for VRD gives

1 B
VRD = -~In [1 ——:mz,-] (3)
8 A

The above equation(3) fully depends on f3; so we have to estimate § to calculate VRD in the absence of specific volume
data of solid tumour cells , since VRD changes in the same direction as lifespan of tumour cells.

To estimate B, using equation (1) we get an exact mathematical descriptionof Gompertz model in the form of
equation(2). Equation(2) gives

FITE Fa
4 ].ﬂ|l_[' WLy a0
— _— 4

= 4 _ -y L)
.E Il.j' g’ .-'I

where V*(t) = V(t},-"VD. Using the equation(4) we can find easily the value of unique A through the estimated
unique B. The equation(4) depends more on measured tumour size V* (£} the ratio of Volume of tumour between initial
and maximum size, so we must know the value of V*(t}.

Table-1 Computations of Theoretical Gompertz Functions in terms of VRD(Volume Rate Doubling time) using
equation(3).

Tumor A B VRD
Mouse:
Krebs 5.25 0.411 0.1357 hours
Ehrlich 0.078 0.009 9.26 hours
MC1M,low dose 0.119 0.0147 6.09 hours
6C3HED,high dose 0.0397 0.012 19.6 hours
6C3HED, low dose 0.0626 0.0116 11.9 hours
DBA lymphoma 0.276 0.0238 2.59 hours
Elg,low dose 0.207 0.019 3.46 hours
Elg, high dose 0.172 0.023 4.23 hours
EO771 0.666 0.063 1.08 days
Osteosarcomas 1.02 0.159 0.7191 days
Rat:
Walker, W26b1 0.220 0.0218 3.26 days
Walker, W12a7 0.342 0.0205 2.07 days
Walker, W10a6 0.362 0.039 1.99 days
Walker, W10b4 0.132 0.003 5.29 days
R39 Sarcoma, R3a7 1.28 0.124 0.56 days
R39 Sarcoma, R4c4 0.540 0.078 1.35 days
R39Sarcoma, a7R3 0.737 0.063 0.97 days
Flexner-Jobling 0.394 0.049 1.84 days
Rabbit:
Brown-Pearce 1.262 0.0169 0.576 days

The source of data for each species is given in [1,7].

Since tumour size can be measured by volume, biomass or number of cells, in a Gompertz tumour growth model [46], we
assume V(t,, ] that maximum volume of tumour cells (where £, is the time at which the tumour contains a cell number

which is one less than its maximum i.e., one cell less to death, and which approximates the maximum lifespan of tumour
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cells £,,,). Thus
4

e Bm
V(técm]:VDEIE‘i g )]

(5)

after a few algebraic manipulations we get the formula to calculate the maximum lifespan of the tumour cell
(approximate size at the time of death)

. 1 g V(t*,,.) .
t* = —=hnfl-=-In| ——— (6)
i A Va

From equation (6) we calculate the approximate time of death, and maximum volume of the tumour can be
calculated using equation(5). In the next step we estimate the growth rate of § of equation(1). The cumulative

intrinsic volume rate V; of the Gompertz model of equation(2), is already defined by
Vo= I, ve(tade.
Substitute the value of V* () from the equation(2) in the above equation and apply a little algebra we get the
following equatiaon
1 -4 -
i "
—f=—e B[ a—dz (7)
Ve —
y g
A _
Where 2 = —EE‘ Be

The above equation(7) is derived for the estimated term B by Gompertz tumour growth model. This estimation
value B is substitute in equation(3) we will get the value of VRD and volume of the tumour. Clearly, the above

integral in equation(7), exists, ¥ f £ .
Table-1 Computations of Theoretical Gompertz Functions in terms of VRD(Volume Rate Doubling time) from equation

©F

2.1 Uniqueness
The basic equation (7) is transcendental, involving an exponential integral, hence, its solution may not be unique. It thus
becomes necessary to investigate the uniqueness of solution of equation(7).

2t
Theorem 1: Equation(7) has auniquesoluﬁon,ime <1 forf =0
o

Theorem 2.: To have unique solution of Equation(7), it is necessary that

tm
e . 1
Voln [V (£)] forf >0

From the above, we have proved the necessary condition for getting unique B through theorem 1 and theorem 2.

In order to examine the existence of Gompertz tumour growth model parameter by theoretically and satisfies the above
conditions, we have used the results of experi-ments on the growth of tumours of different types of species Mouse, rat
and rabbit in table-11.

Biological implication: The cumulative volume V- is always greater than initial volume and towards maximum
lifespan at time &_,. If this condition satisfies then only the theoretical existence is possible. For example, In
table-Il  Mouse-Enrlich has A = 0.078, V. = 1.2883844 x 10° and DBA Ilymphoma has A = 0.276,
V- = 20.71879 x 10° also Elg low dose- Mouse, Osteosarcomas-Mouse and all data's given in the table-1 satisfies
the condition.

We observed that, from theorem 1, it follows that to have a unique independent parameter A, it is necessary that

1
— = A
Ve

From theorem 1, the condition of unique B does not depends on tumour size ¥~ (f)but from theorem 2 the

necessary condition for unique B depends on the tumour size 7" (), hence theorem 1 is more useful than theorem 2.

This property is very important, since even we do not know the maximum size of tumour, it is possible the check the
existence of model and validity.

We verified the numerical solution values through the values of Table-11 for the existence and validity of the data's of the
parameter B. The numerical values from table-11 were well fitted with growth curve and existing theoretically as well as
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bio-logically. Hence the existence of solid Gompertz tumour growth parameter is justified.

Next section of this paper, we have proved a theorem on stability of time-dependent parameter B with respect to the

volume size V().
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3STABILITY OF GOMPERTZ TUMOUR GROWTHPARAMETER

Let f34,/;be time-dependent parameters with volume of tumour size ¥, ¥ respectively, then

~Ini¥ {e)) —=

_ oo g%
— _ a(l-gFitm) _
ho=e j-1n=F1'=Zr?'?' ;9
[1-e=F1btm)
—q bl e =%
g, = — pl1-s—Fatm) d=
27y W) gz
[1-s=Fztm)
Consider
—1 el e—5+x1 el e—.':+xg
By — By = U dz _j ciz]
I'{: xi Z x3 Z
—1 ™ N 1 1
=— g ¥ — 1,
Ve Jo utx; Ut (8)
- Inf¥* :::_"J . . " y - .
Where x; = m fori = 1.2 andu = |z —x;)fori = L2asoe ™ = 1,¥u = [.
Setxg =S4 BN _ntnnon 0
Xy Txg f . Xy —Xeg | :
Note that —— is the arithmetic mean and — is the perturbation term of x4, X,

£ =

Substitution of (9) into the equation (8), gives

= [ 1 1 J
By — B2 —?E N v_l_xl—xz_ X1 "% ¥
2 I 2 < 2
(10)
xy +x,
where vy =u+ .
On the RHS of equation(10), the expression
pri—Fa, ,, _X1- %2y 2y ¥ 2y
& 2 - 2 (11)
can be approximated to -(L‘_f“} by neglecting higher order perturbation terms in each expression on the RHS of (11),
5

since x";x“ | < 1. On account of (11), equation (10) becomes
x,txy
—1 o2 X1 — Xo
Bl = S
161 — B2l |(VC)L1+7¢2[ 2 ] ¥y
z

1 = oy |-
- —_— X, — + _—
7(V)| i le_rxlsz[yz]

Upon integration we get

|ﬁl_ﬁzl—v_c x x|
2 (12)

Retrieving X; from (12) and substituting into equation (16), we get
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—In(v, *(t) + In(vy " (t))
| | < 1 | a-eFP1tm) {1_9—32tm]2
b1 — Bzl = Ve | —Invyt@)  Inwp ()
(1—e=P1tmy (1—e B2tm)
2

1 |In(y " (8)e~F2imIn(iy* (£))e"FLEmIn(¥ " (£))+In(¥ " (1)) .
Ve | Iy’ e Pebmaingy ' ene F1tm iy t)+Ingry* () (13)
2 2

setffy = 31;‘32 n 31;32' B, = 31‘;32 _ 31;32

(14)

Sustitution of (14) into (13) and after a little algebra we obtain
2 ln(Vl"[fJJ p=In(V," ()Y _ 2n In(V;"(t) — In(V,"(t)
_ 1| In(Vy (t) +In(V; (1)) In(V:" (1) + In(V, " (1))

In(V,"(t)) ¢ + In(V,"(t)
In(V,"(t)) + In(V,"(

(15)

Since Ei(Tftm 214 (%] tm (16)

(by neglecting higher order terms in §5 — [32)

Substituting (16) into equation (15) and simplifying we obtain
() ~ () (BB (ﬁ, - ﬁn)t
| InfV; *(£)) J;IH(V:'(fJJ A2 "

TV (B 4 (Bim £, ()~ In (0)
(”(' y )+( 52t R TR

(17)
In (17) the last term in the denominator is a product of two perturbation terms. Weneglect this higher order term to get
LI (g)) =In(V:"(5) | , ¢ Bi=F;

N A RO G0 R ( (E——Ea})
2 1—g* ¢

(18)
Let
o/ Ve <1
_('Ea +E=}[m
1-e 1
(19)
_{5:+31‘}[m - -
ThenO < e * = 7™ <1--% whichistrue when~ < 1.
‘e -
If :—m < 1 | further we have
c
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By + 5, L
-(=== Jr,,_{lnm—ﬁj
Which gives )
2 1 1
(M] tr" = —In
2 oty lq_lm

Note that the above estimation is independent of the volume size [L‘] Clearly the term % is the mean of the time-

.
&

dependent parameter.

3.1 Necessary for stability

[
Theorem-3 The time-dependent parameter B is stable for any volume size (t:] provided r—m =<1
‘o

Proof: When (19) holds, from (18) we get

1 [y @) - oy )

1By — Bl = C— ; :
! V. | In(¥3 "(£)) + In(V {fIlIll
! (20)
1
Where . = = (). Hence it follows from (20) that B is stable for any V(t:].
1— tm/ Ve
_(ﬁ’lﬂh]t
1-e Z m
Remark: When:T"'l =1, we get
o
e
_('E-wz}[ B
1—g ' ! & (21)

1
Since the function " = 1 for every positive X and asymptotically goes to 1 (see figure 1)

(]
|

[¥]
|

T T T T T T T
o 2 4 6 8 10

vealus of x

FIGURE:1: Graph of the function y=1/(1-e™)
When (21) holds, it follows from (18).
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Theorem 4.: The time-dependent parameter B to be stable with respect to the population size V (t), it is
necessary that § be a constant.

Corollary 1. Since B is a constant, it is clear that B is stable also with respect to the maximum life span tm.

4 CLOSING COMMENTS

The purpose of this discussion has been to address the issue of parameter stability of a new method for estimating
the time-dependent growth rate B of the Gompertz tumour growth rate model with deceleration factor. Such a method is
necessary when attempting to estimate Gompertz tumour growth parameter coefficients in the absence of specific
volume data of large number of tumour cells at particular time.
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