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Abstract

The aim of this paper is to present coincidence point and common fixed point results for three self mappings satisfying

generalized contractive conditions. The results presented in this paper generalize and extend several well-known results in
the literature.
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1. Introduction and Preliminaries

In 2007, Huang and Zhang [1] introduced the concept of cone metric spaces which is a generalization of metric
spaces, by replacing the set of real numbers by on ordered Banach space and proves some fixed point theorems for some
contractive maps in normal cone metric spaces. Subsequently, some other authors [2,3,4] studied fixed point results of
mappings satisfying contractive type condition in cone metric spaces, however there exists non-normal cone metric
spaces [5].

Recently, Stojan Radenovic [6] has obtained coincidence point results for two mappings in cone metric spaces which
satisfies new contractive conditions. The same concept was further extended by M. Rangamma and K. Prudhvi [7],
Malhotra et al. [8] and proved coincidence point results and common fixed point results for three self mappings. The
purpose of this paper is to generalize, extend and improves the results of [7] and [8].

We recall some definitions and properties of cone metric spaces[1].

Definition 1.1[1]. Let E be a real Banach space and P be a subset of E. The set P is called a cone if :

i) P is closed, non-empty and P # {0g}, here O is the zero vector of E;
ii) a,b€R,a,b=20,x,y€EP =>ax+Dby€P;
iii) x€Pand —x €EP = x = 0.

Given a cone P c E, we define a partial ordering < with respectto P by x < yifandonlyif y —x € P. We write x <y to
indicate that x < y but x # y, while x < y if and only if for y — x € int P, where int P denotes the interior of P.

Let P be a cone in a real Banach space E, then P is called normal, if there exist a constant K > 0 such that for all x,y, € E,
0 < x < y implies ||x|| < K|ly|l.
The least positive number K satisfying the above inequality is called the normal constant of P.

Definition 1.2[1]. Let X be a non-empty set, E be a real Banach space. Suppose that the mapping d:X XX - E

satisfies
0] 0 < d(x,y) forall x,y € X and d(x,y) = Og if and only if x = y;
(i) d(x,y) =d(y,x) forall x,y € X;

(iii) d(x,y) <d(x,z) +d(z,y)forall x,y,z € X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.3[1]. Let (X,d) be a cone metric space. Let {x,} be a sequence in X and x € X.

i) If for every ¢ € E with 0 < ¢ there is a positive integer ny such that d(x,,x) «< ¢ for all n > ny,then the
sequence {x,} is said to be convergent and converges to x. We denote this by lim,,_,.x, = x or x, - x as
n— o,

i) If for every ¢ € E with 0 < c there is a positive integer n, such that, d(x,,x,,) < c for all n, m > ny, then the

sequence {x,} is called a Cauchy sequence in X.
(X,d) is called a complete cone metric space, if every Cauchy sequence in X is convergent in X.

Lemma 1.1[1]. Let (X,d) be a cone metric space, P be a normal cone with normal constant K. Let {x, } and {y, } be two
sequences in X.

i) {x,} is a Cauchy sequence if and only if d(x,,x,,) = 0 as n - <.
i) If x, = x,v, »y,asn— =, then d(x,,y,) = d(x,y) asn - «.

Remark 1.1[4]. Let P be a cone in a real Banach space E with zero vector 0z and a, b, ¢ € P, then;

a) If asbandb L cthena < c.

b) If a«<bandb < cthena < c.

c) If 0 Su<«Kcforeachc € intPthenu=0;.

d) If c € int P and a,, — 0 then there exist ny € N such that, for all n > n, we have a,, < c.
e) If0; <a, <b,foreachnanda, - a,b, - bthena<b.

f) Ifa< Aawhere 0 <A<1thena=0g.

Let E, B be two real Banach spaces, P and C normal cones in E and B respectively. Let"<"and" <" be the partial
orderings induced by P and C in E and B respectively. Let @: P - C be a function satisfying:

i) If a,b € P with a < b then @[a] < k@[b], for some positive real k;
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i) @la + b] < @la] + @[b] forall a,b € P;
iii) @ is sequentially continuous i.e. if a,,a € P and lim,_.a, = a, then lim,_,.®[a,] = @[a];
iv) If [a,] - 0p then a, - 05, where 0; and 03 are the zero vectors of E and B respectively. We denote the set

of all such functions by ®(P,C) i.e. ® € ®(P,C) if @ satisfies all above properties. It is clear that @[a] = 05 if
and only if a = 0.

Let (X, d) be a cone metric space with normal cone P and @ € ®(P,(C). Since d(x,y) < d(x,z) +d(z,y) forallx,y,z € X,
therefore

Old(x, )] < k@ld(x, 2)] + k@ldz, )] e (1.1)

Example 1.1[8]. Let E be any real Banach space with normal cone P and normal constant K. Define ¢:P — P by
@la] = a,foralla e P. Then ¢ € ®(P,C)with E=B,P=Cand k =1.

2. Main Results

Theorem 2.1. Let (X,d) be a cone metric space and P a normal cone with normal constant K. Suppose f, g, h be self
maps of X satisfy the condition

old(fx,gy)] < a@ld(hx, hy)] + b@[d(hx, fx) + d(hy,9p)] e 2.1

for all x,y € X, where @ € ®(P,(C) and a,b are nonnegative reals with a+2b < 1. If f(X) U g(X) € h(X) and h(X) is
complete subspace of X, then the maps f, g and h have a unique point of coincidence in X. Moreover, if (f,h) and (g, h)
are weakly compatible pairs then f, g and h have a unique common fixed point.

Proof. Suppose x, be any arbitrary point of X. Since f(X) U g(X) € h(X), starting with x, we define a sequence {y,}
such that

Von = fXon = hXopyq and Vo114 = gXony1 = hxopyp, for alln = 0. We shall prove that {y,} is a Cauchy sequence in
X.

If y,, = y,,41 for some n e.g. if y,, = ¥2,,41, then from (2.1) we obtain
OldVzn+2, Yan+1)] = Old(fx2n12, 9%2n+1)]
adld(hxzny2, hxan1)] + bO[d(hxzn 42, fXon12) + d(hX2p 11, 9X2n41)]
aBld(yzn+1,Y2n)] + bO[Ad(Van+1, Van+2) + AVan, Yon+1)]
Since y,, = ¥a2n41, it follows from above inequality that,

Old(Yan+2, Yan+1)] < bOId(Yan+1, Yan+2)]-
As b < 1from (f) of remark 1.1, we obtain

IA

OldYVan12,V2ns1)] = 05 also @ € @(P, €) therefore we have
dV2n+2,Y2n+1) = Op i-€. Yan42 = Yon+1-
Similarly we obtain that
Yon =¥Y2n+1 = Y2n+2 = == - =9 (say).
Therefore {y, } is a Cauchy sequence.

Suppose y,, # y, 41 foralln. Then from (2.1) it follows that
Old(Van, Y2n+1)] = Old(fX2n, GX2n+1)]
< a@[d(hxzn, hxzn11)] + bO[d(hxzy, fX20) + d(hX2n 41, 9X2n41)]
= a@ld(Yon-1,Y2n)] + bBlA(V2n—1,¥2n) + A(V2n, Y2n+1)]
i.e Old(Y2n, Y2n+1)] < %Q)[d(hn—phn)]

= 20[d(Y2n-1,Y2n)]
a+b

Where A=
1-b

< 1(sincea+2b <1).

Writing d,, = 8[d (¥, ¥5.41)], We obtain
dyn <Adpy e (2.2)
Again

1279 |Page March 26, 2014



@)

Bld(Van+2, Yon+1)] = Old(fxon 42, 9X2n+1)]
< a@ld(hxzy 42, hXop1)] + bO[d(hX2n 12, fX2n12) + A(hX2p 41, 9Xon41)]
= a@ld(Von+1, Yan)] + DO Vo s1, Yon+2) + AY2ns Yon41)]

a+b

i.e. Old(Van42) Yans1)] < 5 9 [d(Van+1, Y2n)]

= uBld(y2n+1, Yan)]

Where U= % < 1(since a + 2b < 1).
Therefore don+1 Sudyy e (2.3)
From (2.2) and (2.3) we get
doyn < Adpy—g S Apdzyp < ————<A"u"d,
and
dons1 S pdyy < Apdyy_ g < — — ——< ' d,.
Thus
N R L7 S — 2.4)
and
dons1 + dpnly S QA+ Ddy e (2.5)

Let n,m € N, then for the sequence {y,} we consider @[d (y,, V)] in two cases.

If n is even and m > n, then using (1.1) and (2.4) we obtain

Q[d()’n;ym)] < k Q[d(yn'yn+1)] + k@[d(yn.'.l; yn+2)] +
_______ + kq)[d(ym—l' ym)]
=< k[dn h dn+1 + dn+2 a3 dn+3 iaiT __]

n on n+2 n+4+2
<k[AZp?(A+ W do+A 2 p 2 (L+pdo+ —— -]

n/2
O[d G, ym)] < S d,

If n is odd and m > n, then again using (1.1) and (2.5) we obtain
Bld (Y, Y] < kLA (Vs Ynr1)] + KOLA (Y41, V2] +
_______ + ko[d(ym—l'ym)]
< k[dn + dn+1 + dn+2 + dn+3 +—t= __]
n—=1 n-1 1 n+l n+l 1
Sk[Azpz "A+Ddo+A2z pz A+ Ddy+ —— -]

n-1

kQu) 2 (1+2) d

Q)[d(yn' y‘m)] < 1-2u 0-

Since 1 < 1,u < 1 therefore A u < 1, so in both the cases 8[d(y,, y,)] = 0z as n - «, and since @ € ®(P, C) we have
d(Yn, Ym) = 0g @asn — . So by lemma 1.1, {y,} = {hx,_,} is a Cauchy sequence.

Since h(X) is complete, there exists 3 € h(X) and u € X such that lim,, .y, = 9 and 9 = hu.
We shall show that u is a coincidence point of pairs (f, h) and (g, h) i.e. fu = gu = hu.
If fu # hu then 0 < d(fu, hu). Using (2.1) we obtain
Old(fw, yant1)] = B[d(fu, gx2n41)]
< a@[d(hu, hxyp11)] + bB[d(hu, fu) + d(hxzn 41, GX2n41)]
= a@[d(hu, y2,)] + b@[d (hu, fu) + d(Vzn, Yan+1)]
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Since y,, = hu,dy, = 0p,d(fu, ¥2,41) = d(fu, hu) as n —» « and @ € @ (P, C), therefore letting n — « in above inequality
and using remark 1.1 we get

Bld(fu, hw)] < b@[d(hu, fu)]
< @ld(hu, fu)] (since b < 1),
a contradiction. Therefore fu = hu. Similarly it can be shown that gu = hu.
Therefore fu=gu=hu=9 e (2.6)
Thus ¥ is point of coincidence of pairs (f, h) and (g, h). We shall show that it is unique.
Suppose w is another point of coincidence of these pairsi.e. fz = gz = hz =w for some z € X.
Then from (2.1) it follows that
Pld(w,9)] = Bld(fz, gu)]
< a@ld(hz, hu)] + b@[d(hz, fz) + d(hu, gu)]
= a@ld(w,9)] + bB[d(w,w) + d(I,9)]
= a@[d(w,9)].
Since a < 1, by remark 1.1 we obtain
Bld(w,9)] = 0z i.e. w=19. Thus point of coincidence is unique.

If pairs (f,h) and (g, h) are weakly compatible, from (2.6) we have f9 = fhu = hfu = hd and g9 = ghu = hgu = h9,
therefore f9 = g9 = hd = p (say). This shows that p is another point of coincidence, therefore by uniqueness, we must
have p =9 i.e.

f9=g9=nh9=29.
Thus ¥ is unigue common fixed point of self maps f, g and h.

Corollary 2.1. Let (X,d) be a cone metric space and P a normal cone with normal constant K. Suppose f, g, h be self
maps of X satisfy the condition

old(fx, gy)] <x @[d(hx, hy)] + fO[d(hx, fx)]
+y@[d(hy, gy)] forallx,y € X

where @ € ®(P,C) and «, 8,y are non negative reals with < +8+ y < 1. If f(X) U gX) € h(X) and h(X) is complete
subspace of X, then the maps f, g and h have a unique point of coincidence in X. Moreover, if (f,h) and (g, h) are weakly
compatible pairs then f, g and h have a unique common fixed point.

Proof. The symmetric property of d and the above inequality imply that
+
old(fx, gy)] S Bld(hx, hy)] + L o[d(hx, f2) + d(hy, gy)]
By substituting oc= a and ﬁzﬂ = b in above inequality, we obtain the required result as given in Theorem 2.1. It is also the
Theorem 2.1 of [8].

Corollary 2.2. Let (X, d) be a cone metric space and P be normal cone with normal constant K. Suppose the self maps
f, g, h of X satisfy the condition

old(fx, gy)] < adld(hx, hy)] + b@[d(hx, gy) + d(hy, fx)] for all x,y € X,

where @ € ®(P, C) and a, bare nonnegative reals with a + 2b < 1. If f(X) U g(X) € h(X)and h(X) is a complete subspace
of X, then the maps f,g and h have a unique point of coincidence in X. Moreover, if (f,h) and (g, h) are weakly
compatible pairs then f, g and h have a unique common fixed point.

Theorem 2.2. Let (X,d) be a cone metric space and P a normal cone with normal constant K. Suppose f, g, h be self
maps of X satisfy the condition

O[d(fx, gy)] < a®[d(hx, hy)] + b@[d(hx, gy) + d(hy, fx)]
+c@[d(hx, fx) + d(hy,gy)] forallx,ye e 2.7)

where @ € @(P,C) and a,b,c are nonnegative reals with a +2b+ 2c < 1. If f(X) U g(X) € h(X) and h(X) is complete
subspace of X, then the maps f, g and h have a unique point of coincidence in X. Moreover, if (f,h) and (g, h) are weakly
compatible pairs then f, g and h have a unique common fixed point.
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Proof. Suppose x, be any arbitrary point of X. Since f(X) U g(X) c h(X), starting with x, we define a sequence {y,}
such that

Yon = fXon = hxppiq @and ¥, 401 = X241 = hXy, 42, for alln = 0.We shall prove that {y,} is a Cauchy sequence in X.
If ¥, = yn41 for some n, e.g. if y,, = ¥,,,4+1, then from (2.7) we obtain
Old(Van+2) Yan+1)] = Old(fXan12, G20 41)]
< a@ld(hxzn 42, hxan 1)1 + bB[d(hx2n 42, GX2n+1) + A(RXzn 11, fX2n42)]
+c@d(hxzn 12, fXon+2) + d(hXan 41, 9%2n+1)]
= aBld(Van+1,Y20)] + DBLA(Van 41, Yon+1) + AW2n, Yan+2)]
+c@ld(Von+1, Yon+2) + AVan, Yan+1)]

Since y,, = yon41, it follows from above inequality that,
Old(Van+2: Yon+1)] < DOIA(Van 11, Yan+2)] + cBlAd(Van 11, Yan+2)]

= (b + )B[d(Yan+1) Yan+2)]
As b + ¢ < 1 from (f) of remark 1.1, we obtain
Bld(Yan+2, Yoans1)] = 0p also @ € @ (P, C) therefore we have
A(V2n+2,Y2n+1) = Op 1.8 Yani2 = Yanoi1-
Similarly we obtain that

Yon = Von+1 = Von42 = — — — — — =9 (say).
Therefore {y,} is a Cauchy sequence.

Suppose ¥, # Y, 41 forall n. Then from (2.7) it follows that
OldV2n, Yan+1)] = Old(fxan, 9%2n+1)]
< a@[d(hxap, hxzn41)] + bB[d(hXan, 9X2n+1) + d(hXon 1, fX2,)]
+c@[d(hxan, fx2n) + d(hX2n 41, 9X2n41)]
= a@[d(yz2n-1,Y20)] + bOIA(Y2n—1,Y2n41) + A(V2n, Y2n)]
+cB[d(Van-1,Y20) + A(V2n) Y2n+1)]

a+b+c

i.e ¢[d(YZn'y2n+1)] < 1-p 8 (Z)[d(}’Zn—l'YZn)]
= A0[d(Y2n-1,Y2n)],

a+b+c
1-b—c

Where A= < 1(sincea+2b+2c<1).

Wwriting d,, = @[d (¥, ¥, +1)], we obtain
dyn <Ay e (2.8)
Again
OldYVon+2, Yon+1)] = Old(fX2n42, 9X2n+1)]
< a@ld(hxzn 2, hxani1)] + bO[d(hxzn 2, 9X2n41) + d(hXan 1, fX2042)]
+c@[d(hxzn12, fX2n12) + d(hXzn 41, 9X2n11)]
= a@ld(yzn+1, Y2n)l + bO[A(V2n 11, Yont1) + AVons Yan+2)]

+c@[d(V2n+1,Yoan+2) + AYVon, Yons1)]
a+b+c

i.e. Old(Vant2 Vons)] < T D [dY2n+1,Yon)]
= u@ld V241, Yan)]

where U= % < 1(since a+2b+ 2c < 1).
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Therefore dpns1 Sudpy e (2.9)
From (2.8) and (2.9) we get

dyy < Adyy_q < Audy, 5 < — — ——< 1"u"d,,
and
dons1 < pdyy < Apdy,_ < — — ——< 1Muttld,,.
Thus
dyp +dppyg <AW" +wdy e (2.10)
dyni1 + dopiy < Y4+ Ddy e 2.11)

Let n,m € N, then for the sequence {y,} we consider @[d (y,, y,)] in two cases.

If n is even and m > n, then using (1.1) and (2.10) we obtain
Bld s Ym)] < kBlAd (Y, Yn+1)] + KOLA(YVis1, Yna2)] +

_______ + k@[d(Yim—1,Ym)]
<kld,+dy41+dp2+dyz+ ————]

n

n n+2 n
< k[ g5 (L + m)do + A7 1T (1 + pydy + — — -]
k(A % 1

If n is odd and m > n, then again using (1.1) and (2.11) we obtain

n-1
®[d(yn'ym)] < %ﬁdo

Since 1 < 1,u < 1 therefore Ay < 1, so in both the cases @[d(y,,y,)] = 05 as n —» =, and since @ € @(P,C) we have
d(Yn, Ym) = 0g @as n — =, So by lemma 1.1, {y,} = {hx,_,} is a Cauchy sequence.

Since h(X) is complete, there exists § € h(X) and u € X such that lim,_,.y, =9 and 9 = hu.
We shall show that u is a coincidence point of pairs (f, h) and (g, h) i.e. fu = gu = hu.
If fu # hu then 0 < d(fu, hu). Using (2.7) we obtain
Old(fu, y2n+1)] = O[A(fu, gX2n41)]
< a@[d(hu, hxyp11)] + bBld(hw, gxon41) + d(hXzn 41, fU)]
+c@ld(hu, fu) + d(hxzn i1, 9X2n+1)]
= a@ld(hu, y5,)] + bB[d(hw, y2n41) + dYzn, fUW)]
+c@d(hu, fu) + d(V2n, Yon+1)]

Since y,,, = hu, d(fu, Yon+1) = d(fu, hu) asn - « and @ € @(P, ), therefore letting n —» « in above inequality and using
remark 1.1 we get

old(fu, hw)] < (b + c)@[d (hu, fu)]
< @ld(hu, fuw)] (since b+ ¢ < 1),
a contradiction. Therefore fu = hu. Similarly, it can be shown that gu = hu. Therefore
fu=gu=hu=9 e (2.12)
Thus 9 is point of coincidence of pairs (f, h) and (g, h). We shall show that it is unique.
Suppose w is another point of coincidence of these pairsi.e. fz = gz = hz = w for some z € X.
Then from (2.7) it follows that
old(w,9)] = 0ld(fz, gu)]
< a@ld(hz, hu)] + b@[d(hz, gu) + d(hu, fz)]
+c@ld(hz, fz) + d(hu, gu)]
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= a@ld(w,9)] + bB[d(w,9) + d(I, w)]
+c@[d(w,w) + d(9,9)]
= (a + 2b)B[d(w,9)].
Since a + 2b < 1, by remark 1.1 we obtain
Bld(w,9)] = 0g i.e. w =19. Thus point of coincidence is unique.

If pairs (f,h) and (g, h) are weakly compatible, from (2.12) we have f9 = fhu = hfu = hd and g9 = ghu = hgu = h9,
therefore f9 = g9 = hd = p (say). This shows that p is another point of coincidence, therefore by uniqueness, we must
have p =9 i.e.

f9=g9=nh9=29.
Thus 9 is uniqgue common fixed point of self maps f, g and h.

Theorem 2.3. Let (X,d) be a cone metric space and P a normal cone with normal constant K. Suppose f, g, h be self
maps of X satisfy the condition.

old(fx, gy)] < a®[d(hx, hy)] + b@[d(hx, fx) + d(hx, gy)]
+c@d[(hy, fx) +d(hy,gy)] forallx,y e X = -er (2.13)

where @ € ®(P,C) and a, b, c are non negative reals with a+2b + 2c < 1. If f(X) U g(X) c h(X) and h(X) is complete
subspace of Xthen the maps f, g and h have a unique point of coincidence in X. Moreover, if (f,h) and (g, h) are weakly
compatible pairs then f, g and h have a uniqgue common fixed point.

Proof. The proof of this theorem same as Theorem 2.2.
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