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Abstract 
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1. Introduction and Preliminaries 

In 2007, Huang and Zhang [1] introduced the concept of cone metric spaces which is a generalization of metric 
spaces, by replacing the set of real numbers by on ordered Banach space and proves some fixed point theorems for some 
contractive maps in normal cone metric spaces. Subsequently, some other authors [2,3,4] studied fixed point results of 
mappings satisfying contractive type condition in cone metric spaces, however there exists non-normal cone metric 
spaces [5]. 

Recently, Stojan Radenovic [6] has obtained coincidence point results for two mappings in cone metric spaces which 
satisfies new contractive conditions. The same concept was further extended by M. Rangamma and K. Prudhvi [7],  
Malhotra et al. [8] and proved coincidence point results and common fixed point results for three self mappings.  The 
purpose of this paper is to generalize, extend and improves the results of [7] and [8]. 

We recall some definitions and properties of cone metric spaces[1]. 

Definition 1.1[1].  Let 𝐸 be a real Banach space and 𝑃 be a subset of 𝐸.  The set 𝑃 is called a cone if :  

i)  𝑃 is closed, non-empty and 𝑃 ≠ {0𝐸}, here 0𝐸 is the zero vector of 𝐸; 

ii) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;     

iii) 𝑥 ∈ 𝑃 and  −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0𝐸 .   

Given a cone 𝑃 ⊂ 𝐸, we define a partial ordering ≼ with respect to 𝑃 by   𝑥 ≼ 𝑦 if and only if  𝑦 − 𝑥 ∈ 𝑃.  We write  𝑥 ≺ 𝑦 to 

indicate that  𝑥 ≼ 𝑦 but  𝑥 ≠ 𝑦, while 𝑥 ≪ 𝑦  if and only if for 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝑃, where 𝑖𝑛𝑡 𝑃 denotes the interior of  𝑃. 

Let 𝑃 be a cone in a real Banach space 𝐸, then 𝑃 is called normal, if there exist a constant 𝐾 > 0 such that for all 𝑥, 𝑦, ∈ 𝐸, 

0𝐸 ≼ 𝑥 ≼ 𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝑥 ≤ 𝐾 𝑦 . 

The least positive number 𝐾 satisfying the above inequality is called the normal constant of 𝑃.  

Definition 1.2[1]. Let X be a non-empty set, 𝐸  be a real Banach space.  Suppose that the mapping  𝑑: 𝑋 × 𝑋 → 𝐸 

satisfies   

(i) 0𝐸 ≼ 𝑑 𝑥, 𝑦  for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑 𝑥, 𝑦 = 0𝐸 if and only if  𝑥 = 𝑦; 

(ii) 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥   for all 𝑥, 𝑦 ∈ 𝑋; 

(iii) 𝑑 𝑥, 𝑦 ≼ 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 Then 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a cone metric space. 

Definition 1.3[1]. Let (𝑋, 𝑑) be a cone metric space.  Let {𝑥𝑛 } be a sequence in 𝑋 and 𝑥 ∈ 𝑋. 

i) If for every 𝑐 ∈ 𝐸  with 0 ≪ 𝑐  there is a positive integer 𝑛0  such that 𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐  for all 𝑛 > 𝑛0 , then the 

sequence {𝑥𝑛 } is said to be convergent and converges to 𝑥.  We denote this by 𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 as 
𝑛 → ∞. 

ii) If for every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐 there is a positive integer 𝑛0 such that,  𝑑(𝑥𝑛 , 𝑥𝑚 ) ≪ 𝑐 for all 𝑛, 𝑚 > 𝑛0, then the 

sequence {𝑥𝑛 } is called a Cauchy sequence in 𝑋. 

(𝑋, 𝑑) is called a complete cone metric space, if every Cauchy sequence in 𝑋 is convergent in 𝑋. 

Lemma 1.1[1]. Let (𝑋, 𝑑) be a cone metric space,  𝑃 be a normal cone with normal constant 𝐾. Let {𝑥𝑛} and {𝑦𝑛 } be two 

sequences in 𝑋.    

i) {𝑥𝑛} is a Cauchy sequence if and only if  𝑑 𝑥𝑛 , 𝑥𝑚  → 0𝐸 as  𝑛 → ∞. 

ii) If  𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, as 𝑛 → ∞, then 𝑑(𝑥𝑛 , 𝑦𝑛) → 𝑑(𝑥, 𝑦) as 𝑛 → ∞. 

Remark 1.1[4]. Let 𝑃 be a cone in a real Banach space 𝐸 with zero vector 0𝐸 and 𝑎, 𝑏, 𝑐 ∈ 𝑃, then; 

a) If  𝑎 ≼ 𝑏 and 𝑏 ≪ 𝑐 then 𝑎 ≪ 𝑐. 

b) If  𝑎 ≪ 𝑏 and 𝑏 ≪ 𝑐 then 𝑎 ≪ 𝑐. 

c) If  0𝐸 ≼ 𝑢 ≪ 𝑐 for each 𝑐 ∈ 𝑖𝑛𝑡 𝑃 then 𝑢 = 0𝐸 . 

d) If 𝑐 ∈ 𝑖𝑛𝑡 𝑃 and 𝑎𝑛 → 0𝐸  then there exist 𝑛0 ∈ 𝑁 such that, for all 𝑛 > 𝑛0 we have 𝑎𝑛 ≪ 𝑐. 

e) If 0𝐸 ≼ 𝑎𝑛 ≼ 𝑏𝑛 for each 𝑛 and 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏 then 𝑎 ≼ 𝑏. 

f) If 𝑎 ≼  𝑎 where 0 ≤  < 1 then 𝑎 = 0𝐸 . 

Let 𝐸, 𝐵 be two real Banach spaces, 𝑃 and 𝐶 normal cones in 𝐸 and 𝐵 respectively.  Let " ≼ " and " ≤ " be the partial 

orderings induced by 𝑃 and 𝐶 in 𝐸 and 𝐵 respectively.  Let ∅: 𝑃 → 𝐶 be a function satisfying: 

i) If 𝑎, 𝑏 ∈ 𝑃 with 𝑎 ≼ 𝑏 then ∅ 𝑎 ≤ 𝑘∅ 𝑏 , for some positive real 𝑘; 
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ii) ∅ 𝑎 + 𝑏 ≤ ∅ 𝑎 + ∅ 𝑏  for all 𝑎, 𝑏 ∈ 𝑃; 

iii) ∅ is sequentially continuous i.e. if  𝑎𝑛 , 𝑎 ∈ 𝑃 and 𝑙𝑖𝑚𝑛→∞𝑎𝑛 = 𝑎, then 𝑙𝑖𝑚𝑛→∞∅ 𝑎𝑛  = ∅ 𝑎 ; 

iv) If ∅ 𝑎𝑛  → 0𝐵 then 𝑎𝑛 → 0𝐸 , where 0𝐸 and 0𝐵 are the zero vectors of 𝐸 and 𝐵 respectively. We denote the set 

of all such functions by Ф(𝑃, 𝐶) i.e. ∅ ∈ Ф(𝑃, 𝐶) if  ∅ satisfies all above properties. It is clear that ∅ 𝑎 = 0𝐵 if 

and only if 𝑎 = 0𝐸 . 

Let (𝑋, 𝑑) be a cone metric space with normal cone 𝑃 and ∅ ∈ Ф(𝑃, 𝐶).  Since 𝑑 𝑥, 𝑦 ≼ 𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

therefore 

                   ∅ 𝑑 𝑥, 𝑦  ≤ 𝑘∅ 𝑑 𝑥, 𝑧  + 𝑘∅ 𝑑 𝑧, 𝑦                                                                         --------(1.1) 

Example 1.1[8]. Let 𝐸  be any real Banach space with normal cone 𝑃  and normal constant 𝐾 . Define ∅: 𝑃 → 𝑃  by 

∅ 𝑎 = 𝑎, for all 𝑎 ∈ 𝑃.  Then  ∅ ∈ Ф(𝑃, 𝐶) with 𝐸 = 𝐵, 𝑃 = 𝐶 and 𝑘 = 1. 

2. Main Results 

Theorem 2.1. Let (𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with normal constant 𝐾.  Suppose 𝑓, 𝑔, 𝑕 be self 

maps of 𝑋 satisfy the condition  

∅[𝑑 𝑓𝑥, 𝑔𝑦 ] ≤ 𝑎∅[𝑑 𝑕𝑥, 𝑕𝑦 ] + 𝑏∅[𝑑 𝑕𝑥, 𝑓𝑥 + 𝑑 𝑕𝑦, 𝑔𝑦 ]                                                                    --------(2.1)    

 for all 𝑥, 𝑦 ∈ 𝑋,  where ∅ ∈ Ф(𝑃, 𝐶)  and 𝑎, 𝑏  are nonnegative reals  with 𝑎 + 2𝑏 < 1.  If 𝑓 𝑋 ∪ 𝑔 𝑋 ⊆ 𝑕(𝑋)  and 𝑕(𝑋)  is 

complete subspace of 𝑋, then the maps 𝑓, 𝑔 and 𝑕 have a unique point of coincidence in 𝑋.  Moreover, if (𝑓, 𝑕) and (𝑔, 𝑕) 

are weakly compatible pairs then 𝑓, 𝑔 and 𝑕 have a unique common fixed point. 

Proof. Suppose 𝑥𝑜  be any arbitrary point of 𝑋. Since 𝑓 𝑋 ∪ 𝑔 𝑋 ⊆ 𝑕 𝑋 , starting with  𝑥𝑜  we define a sequence {𝑦𝑛 } 
such that  

𝑦2𝑛 = 𝑓𝑥2𝑛 = 𝑕𝑥2𝑛+1 𝑎𝑛𝑑 𝑦2𝑛+1 = 𝑔𝑥2𝑛+1 = 𝑕𝑥2𝑛+2,  for all 𝑛 ≥ 0.  We shall prove that {𝑦𝑛 } is a Cauchy sequence in 

𝑋. 

If 𝑦𝑛 = 𝑦𝑛+1 for some 𝑛 e.g. if  𝑦2𝑛 = 𝑦2𝑛+1, then from (2.1) we obtain 

          ∅ 𝑑 𝑦2𝑛+2 , 𝑦2𝑛+1  = ∅[𝑑 𝑓𝑥2𝑛+2 , 𝑔𝑥2𝑛+1 ] 

                                      ≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛+2 , 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛+2 , 𝑓𝑥2𝑛+2 + 𝑑 𝑕𝑥2𝑛+1, 𝑔𝑥2𝑛+1 ] 

                                      = 𝑎∅ 𝑑 𝑦2𝑛+1 , 𝑦2𝑛  + 𝑏∅[𝑑 𝑦2𝑛+1 , 𝑦2𝑛+2 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

Since 𝑦2𝑛 = 𝑦2𝑛+1, it follows from above inequality that, 

                      ∅ 𝑑 𝑦2𝑛+2 , 𝑦2𝑛+1  ≤ 𝑏∅ 𝑑 𝑦2𝑛+1 , 𝑦2𝑛+2  . 

As 𝑏 < 1 from (f) of remark 1.1, we obtain 

                    ∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  = 0𝐵 also ∅ ∈ Ф(𝑃, 𝐶) therefore we have  

                      𝑑 𝑦2𝑛+2, 𝑦2𝑛+1 = 0𝐸  i.e. 𝑦2𝑛+2 = 𝑦2𝑛+1. 

Similarly we obtain that 

𝑦2𝑛 = 𝑦2𝑛+1 = 𝑦2𝑛+2 = − − − − −= 𝜗 (say). 

Therefore {𝑦𝑛 } is a Cauchy sequence. 

Suppose 𝑦𝑛 ≠ 𝑦𝑛+1 for all 𝑛.  Then from (2.1) it follows that 

                          ∅ 𝑑 𝑦2𝑛 , 𝑦2𝑛+1  = ∅ 𝑑 𝑓𝑥2𝑛 , 𝑔𝑥2𝑛+1   

                                                       ≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛 , 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛 , 𝑓𝑥2𝑛 + 𝑑 𝑕𝑥2𝑛+1 , 𝑔𝑥2𝑛+1 ] 

                                                      = 𝑎∅ 𝑑 𝑦2𝑛−1, 𝑦2𝑛  + 𝑏∅ 𝑑 𝑦2𝑛−1, 𝑦2𝑛 + 𝑑(𝑦2𝑛 , 𝑦2𝑛+1)  

                  𝑖. 𝑒 ∅ 𝑑 𝑦2𝑛 , 𝑦2𝑛+1  ≤
𝑎+𝑏

1−𝑏
∅[𝑑 𝑦2𝑛−1, 𝑦2𝑛 ] 

                                                 = ∅[𝑑 𝑦2𝑛−1, 𝑦2𝑛 ] 

Where                                         𝜆 =  
 𝑎+𝑏    

1−𝑏
< 1 𝑠𝑖𝑛𝑐𝑒 𝑎 + 2𝑏 < 1  . 

Writing 𝑑𝑛 = ∅ 𝑑 𝑦𝑛 , 𝑦𝑛+1  , we obtain 

                                            𝑑2𝑛 ≤ 𝝀𝑑2𝑛−1                                                                                                      ----------(2.2) 

Again  
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                                    ∅ 𝑑 𝑦2𝑛+2 , 𝑦2𝑛+1  = ∅[𝑑 𝑓𝑥2𝑛+2, 𝑔𝑥2𝑛+1 ] 

                                                                    ≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛+2, 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛+2, 𝑓𝑥2𝑛+2 + 𝑑 𝑕𝑥2𝑛+1, 𝑔𝑥2𝑛+1 ] 

                                                                    = 𝑎∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛  + 𝑏∅[𝑑 𝑦2𝑛+1, 𝑦2𝑛+2 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

                             i.e.  ∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  ≤
𝑎+𝑏 

1−𝑏
 ∅  𝑑 𝑦2𝑛+1, 𝑦2𝑛   

                                                             = 𝜇∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛   

Where                                          𝜇 =
𝑎+𝑏

1−𝑏
< 1 𝑠𝑖𝑛𝑐𝑒  𝑎 + 2𝑏 < 1 .   

Therefore                                       𝑑2𝑛+1 ≤ 𝜇𝑑2𝑛                                                                                                ---------(2.3) 

From (2.2) and (2.3) we get 

                         𝑑2𝑛 ≤ 𝝀𝑑2𝑛−1 ≤ 𝜆𝜇𝑑2𝑛−2 ≤ − − −−≤ 𝜆𝑛𝜇𝑛𝑑0          

and 

                                                             𝑑2𝑛+1 ≤ 𝜇𝑑2𝑛 ≤ 𝜆𝜇𝑑2𝑛−1 ≤ − − −−≤ 𝜆𝑛𝜇𝑛+1𝑑0 . 

Thus 

                                                    𝑑2𝑛 + 𝑑2𝑛+1 ≤ 𝜆𝑛𝜇𝑛(1 + 𝜇)𝑑0                                                                 --------(2.4)          

and 

                                             𝑑2𝑛+1 + 𝑑2𝑛+2 ≤ 𝜆𝑛𝜇𝑛+1(1 + 𝜆)𝑑0                                                            -------(2.5) 

Let 𝑛, 𝑚 ∈ 𝑁, then for the sequence {𝑦𝑛 } we consider ∅[𝑑 𝑦𝑛 , 𝑦𝑚  ] in two cases. 

If 𝑛 is even and 𝑚 > 𝑛, then using (1.1) and (2.4) we obtain 

∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤ 𝑘 ∅ 𝑑 𝑦𝑛 , 𝑦𝑛+1  + 𝑘∅ 𝑑 𝑦𝑛+1 , 𝑦𝑛+2  + 

                                                                               − − − − − − − + 𝑘∅[𝑑 𝑦𝑚−1 , 𝑦𝑚  ] 

                                                                   ≤ 𝑘[𝑑𝑛 + 𝑑𝑛+1 + 𝑑𝑛+2 + 𝑑𝑛+3 + − − −−] 

  

                                                                   ≤ 𝑘[ 𝜆 
𝑛

2𝜇 
𝑛

2 (1 + 𝜇) 𝑑0 + 𝜆 
𝑛+2

2 𝜇 
𝑛+2

2  1 + 𝜇 𝑑0 +  − − −] 

                                                  ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤
𝑘 𝜆𝜇  𝑛/2(1+𝜇)

1−𝜆𝜇
𝑑0. 

If 𝑛 is odd and 𝑚 > 𝑛, then again using (1.1) and (2.5) we obtain 

∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤ 𝑘∅ 𝑑 𝑦𝑛 , 𝑦𝑛+1  + 𝑘∅ 𝑑 𝑦𝑛+1, 𝑦𝑛+2  + 

                                                                               − − − − − − − + 𝑘∅[𝑑 𝑦𝑚−1 , 𝑦𝑚  ] 

                                                                  ≤ 𝑘[𝑑𝑛 + 𝑑𝑛+1 + 𝑑𝑛+2 + 𝑑𝑛+3 + − − −−] 

                                                                  ≤ 𝑘[
𝑛−1

2 𝜇
𝑛−1

2
+1 1 +  𝑑0 + 

𝑛 +1

2 𝜇
𝑛+1

2
+1 1 +  𝑑0 + − − −] 

                                                   ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤
𝑘 𝜆𝜇  

𝑛−1
2 (1+)

1−𝜆𝜇
𝑑0. 

Since 𝜆 < 1, 𝜇 < 1 therefore 𝜆 𝜇 < 1, so in both the cases ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   → 0𝐵 as 𝑛 → ∞, and since ∅ ∈ Ф(𝑃, 𝐶) we have 

𝑑 𝑦𝑛 , 𝑦𝑚  → 0𝐸 as 𝑛 → ∞. So by lemma 1.1,  𝑦𝑛  = {𝑕𝑥𝑛−1} is a Cauchy sequence. 

Since 𝑕(𝑋) is complete, there exists ϑ ∈ 𝑕(𝑋) and 𝑢 ∈ 𝑋 such that 𝑙𝑖𝑚𝑛→∞𝑦𝑛 = 𝜗 and 𝜗 = 𝑕𝑢. 

We shall show that 𝑢 is a coincidence point of pairs  𝑓, 𝑕  and (𝑔, 𝑕) i.e. 𝑓𝑢 = 𝑔𝑢 = 𝑕𝑢. 

If 𝑓𝑢 ≠ 𝑕𝑢 then 0𝐸 ≺ 𝑑 𝑓𝑢, 𝑕𝑢 . Using (2.1) we obtain 

                   ∅ 𝑑 𝑓𝑢, 𝑦2𝑛+1  = ∅[𝑑 𝑓𝑢, 𝑔𝑥2𝑛+1 ] 

≤ 𝑎∅ 𝑑 𝑕𝑢, 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑢, 𝑓𝑢 + 𝑑 𝑕𝑥2𝑛+1, 𝑔𝑥2𝑛+1 ] 

                                           = 𝑎∅ 𝑑 𝑕𝑢, 𝑦2𝑛  + 𝑏∅[𝑑 𝑕𝑢, 𝑓𝑢 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 
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Since 𝑦2𝑛 → 𝑕𝑢, 𝑑2𝑛 → 0𝐵 , 𝑑 𝑓𝑢, 𝑦2𝑛+1 → 𝑑(𝑓𝑢, 𝑕𝑢) as 𝑛 → ∞ and ∅ ∈ Ф  𝑃, 𝐶 , therefore letting 𝑛 → ∞ in above inequality 

and using remark 1.1 we get  

∅ 𝑑 𝑓𝑢, 𝑕𝑢  ≤ 𝑏∅[𝑑 𝑕𝑢, 𝑓𝑢 ] 

< ∅ 𝑑 𝑕𝑢, 𝑓𝑢   (since 𝑏 < 1 ),    

a contradiction. Therefore 𝑓𝑢 = 𝑕𝑢.  Similarly it can be shown that 𝑔𝑢 = 𝑕𝑢.    

Therefore      𝑓𝑢 = 𝑔𝑢 = 𝑕𝑢 = 𝜗                                                                                                                 -------------(2.6) 

Thus 𝜗 is point of coincidence of pairs (𝑓, 𝑕) and (𝑔, 𝑕).  We shall show that it is unique. 

Suppose 𝑤 is another point of coincidence of these pairs i.e. 𝑓𝑧 = 𝑔𝑧 = 𝑕𝑧 = 𝑤  for some 𝑧 ∈ 𝑋.  

Then from (2.1) it follows that  

                                                ∅ 𝑑 𝑤, 𝜗  = ∅ 𝑑 𝑓𝑧, 𝑔𝑢   

                                                             ≤ 𝑎∅ 𝑑 𝑕𝑧, 𝑕𝑢  + 𝑏∅[𝑑 𝑕𝑧, 𝑓𝑧 + 𝑑(𝑕𝑢, 𝑔𝑢)] 

                                                             = 𝑎∅ 𝑑 𝑤, 𝜗  + 𝑏∅[𝑑 𝑤, 𝑤 + 𝑑(𝜗, 𝜗)] 

                                                             = 𝑎∅[𝑑 𝑤, 𝜗 ]. 

Since  𝑎 < 1, by remark 1.1 we obtain 

∅ 𝑑 𝑤, 𝜗  = 0𝐵 i.e.  𝑤 = 𝜗.  Thus point of coincidence is unique. 

If pairs (𝑓, 𝑕)  and (𝑔, 𝑕)  are weakly compatible, from (2.6) we have 𝑓𝜗 = 𝑓𝑕𝑢 = 𝑕𝑓𝑢 = 𝑕𝜗  and 𝑔𝜗 = 𝑔𝑕𝑢 = 𝑕𝑔𝑢 = 𝑕𝜗, 
therefore 𝑓𝜗 = 𝑔𝜗 = 𝑕𝜗 = 𝑝 (say).  This shows that 𝑝 is another point of coincidence, therefore by uniqueness, we must 

have  𝑝 = 𝜗 i.e. 

                                                𝑓𝜗 = 𝑔𝜗 = 𝑕𝜗 = 𝜗. 

Thus 𝜗 is unique common fixed point of self maps 𝑓, 𝑔 and 𝑕. 

Corollary 2.1.  Let (𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with normal constant 𝐾.  Suppose 𝑓, 𝑔, 𝑕 be self 

maps of 𝑋 satisfy the condition 

∅ 𝑑 𝑓𝑥, 𝑔𝑦  ≤∝ ∅ 𝑑 𝑕𝑥, 𝑕𝑦  + 𝛽∅ 𝑑 𝑕𝑥, 𝑓𝑥   

                                                                                    +𝛾∅ 𝑑 𝑕𝑦, 𝑔𝑦    for all 𝑥, 𝑦 ∈ 𝑋         

where  ∅ ∈ Ф(𝑃, 𝐶) and ∝, 𝛽 , 𝛾 are non negative reals with ∝ +𝛽 +  𝛾 < 1.  If 𝑓(𝑋) ∪ 𝑔(𝑋) ⊆ 𝑕(𝑋) and 𝑕(𝑋) is complete 

subspace of 𝑋, then the maps 𝑓, 𝑔 𝑎𝑛𝑑 𝑕 have a unique point of coincidence in 𝑋.  Moreover, if (𝑓, 𝑕) and (𝑔, 𝑕) are weakly 

compatible pairs then 𝑓, 𝑔 and 𝑕 have a unique common fixed point.  

Proof.  The symmetric property of  𝑑  and the above inequality imply that  

                                                 ∅ 𝑑 𝑓𝑥, 𝑔𝑦  ≤∝ ∅ 𝑑 𝑕𝑥, 𝑕𝑦  +
𝛽+𝛾

2
∅[𝑑 𝑕𝑥, 𝑓𝑥 + 𝑑 𝑕𝑦, 𝑔𝑦 ]   

 By substituting ∝= 𝑎 and 
𝛽+𝛾

2
= 𝑏 in above inequality, we obtain the required result as given in Theorem 2.1.  It is also the 

Theorem 2.1 of [8]. 

Corollary 2.2. Let (𝑋, 𝑑) be a cone metric space and 𝑃 be normal cone with normal constant  𝐾.  Suppose the self maps 

𝑓, 𝑔, 𝑕 of 𝑋 satisfy the condition   

                                                      ∅ 𝑑 𝑓𝑥, 𝑔𝑦  ≤ 𝑎∅ 𝑑 𝑕𝑥, 𝑕𝑦  + 𝑏∅[𝑑 𝑕𝑥, 𝑔𝑦 + 𝑑(𝑕𝑦, 𝑓𝑥)] for all 𝑥, 𝑦 ∈ 𝑋, 

where ∅ ∈ Ф(𝑃, 𝐶) and 𝑎, 𝑏are nonnegative reals with 𝑎 + 2𝑏 < 1. If 𝑓 𝑋 ∪ 𝑔 𝑋 ⊆ 𝑕 𝑋 𝑎𝑛𝑑  𝑕(𝑋) is a complete subspace 

of 𝑋 , then the maps 𝑓, 𝑔  and 𝑕  have a unique point of coincidence in 𝑋.   Moreover, if (𝑓, 𝑕)  and (𝑔, 𝑕)  are weakly 

compatible pairs then 𝑓, 𝑔 and 𝑕 have a unique common fixed point. 

Theorem 2.2.  Let (𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with normal constant 𝐾.   Suppose 𝑓, 𝑔, 𝑕 be self 

maps of 𝑋 satisfy the condition  

∅[𝑑 𝑓𝑥, 𝑔𝑦 ] ≤ 𝑎∅[𝑑 𝑕𝑥, 𝑕𝑦 ] + 𝑏∅[𝑑 𝑕𝑥, 𝑔𝑦 + 𝑑 𝑕𝑦, 𝑓𝑥 ] 

                                                                            +𝑐∅[𝑑 𝑕𝑥, 𝑓𝑥 + 𝑑 𝑕𝑦, 𝑔𝑦 ] for all 𝑥, 𝑦 ∈                                --------(2.7)     

where ∅ ∈ Ф(𝑃, 𝐶)  and 𝑎, 𝑏, 𝑐  are nonnegative reals  with 𝑎 + 2𝑏 + 2𝑐 < 1.  If 𝑓 𝑋 ∪ 𝑔 𝑋 ⊆ 𝑕(𝑋)  and 𝑕(𝑋)  is complete 

subspace of 𝑋, then the maps 𝑓, 𝑔 and 𝑕 have a unique point of coincidence in 𝑋.  Moreover, if (𝑓, 𝑕) and (𝑔, 𝑕) are weakly 

compatible pairs then 𝑓, 𝑔 and 𝑕 have a unique common fixed point. 
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Proof. Suppose 𝑥0 be any arbitrary point of 𝑋.  Since 𝑓 𝑋 ∪ 𝑔 𝑋 ⊂ 𝑕 𝑋 ,  starting with 𝑥0 we define a sequence {𝑦𝑛 } 
such that 

𝑦2𝑛 = 𝑓𝑥2𝑛 = 𝑕𝑥2𝑛+1 and 𝑦2𝑛+1 = 𝑔𝑥2𝑛+1 = 𝑕𝑥2𝑛+2, for all 𝑛 ≥ 0.We shall prove that {𝑦𝑛 } is a Cauchy sequence in 𝑋. 

If  𝑦𝑛 = 𝑦𝑛+1 for some n, e.g. if 𝑦2𝑛 = 𝑦2𝑛+1, then from (2.7) we obtain 

            ∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  = ∅ 𝑑 𝑓𝑥2𝑛+2, 𝑔𝑥2𝑛+1   

≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛+2, 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛+2, 𝑔𝑥2𝑛+1 + 𝑑 𝑕𝑥2𝑛+1 , 𝑓𝑥2𝑛+2 ] 

                                              +𝑐∅[𝑑 𝑕𝑥2𝑛+2 , 𝑓𝑥2𝑛+2 + 𝑑 𝑕𝑥2𝑛+1, 𝑔𝑥2𝑛+1 ] 

                                      = 𝑎∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛  + 𝑏∅[𝑑 𝑦2𝑛+1 , 𝑦2𝑛+1 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+2 ] 

                                              +𝑐∅[𝑑 𝑦2𝑛+1 , 𝑦2𝑛+2 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

Since 𝑦2𝑛 = 𝑦2𝑛+1, it follows from above inequality that, 

          ∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  ≤ 𝑏∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛+2  + 𝑐∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛+2   

                                          = (𝑏 + 𝑐)∅[𝑑 𝑦2𝑛+1, 𝑦2𝑛+2 ] 

As 𝑏 + 𝑐 < 1 from (f) of remark 1.1, we obtain 

∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  = 0𝐵  also ∅ ∈ Ф (𝑃, 𝐶) therefore we have  

𝑑 𝑦2𝑛+2, 𝑦2𝑛+1 = 0𝐸  i.e. 𝑦2𝑛+2 = 𝑦2𝑛+1 . 

Similarly we obtain that 

𝑦2𝑛 = 𝑦2𝑛+1 = 𝑦2𝑛+2 = − − − − −= 𝜗 (say). 

Therefore {𝑦𝑛 } is a Cauchy sequence. 

Suppose 𝑦𝑛 ≠ 𝑦𝑛+1 for all n.  Then from (2.7) it follows that 

             ∅ 𝑑 𝑦2𝑛 , 𝑦2𝑛+1  = ∅ 𝑑 𝑓𝑥2𝑛 , 𝑔𝑥2𝑛+1   

                                          ≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛 , 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛 , 𝑔𝑥2𝑛+1 + 𝑑 𝑕𝑥2𝑛+1 , 𝑓𝑥2𝑛 ] 

                                              +𝑐∅[𝑑 𝑕𝑥2𝑛 , 𝑓𝑥2𝑛 + 𝑑 𝑕𝑥2𝑛+1 , 𝑔𝑥2𝑛+1 ] 

= 𝑎∅ 𝑑 𝑦2𝑛−1 , 𝑦2𝑛  + 𝑏∅ 𝑑 𝑦2𝑛−1 , 𝑦2𝑛+1 + 𝑑(𝑦2𝑛 , 𝑦2𝑛)  

                                             +𝑐∅[𝑑 𝑦2𝑛−1 , 𝑦2𝑛 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

       𝑖. 𝑒 ∅ 𝑑 𝑦2𝑛 , 𝑦2𝑛+1  ≤
𝑎+𝑏+𝑐

1−𝑏−𝑐
∅[𝑑 𝑦2𝑛−1 , 𝑦2𝑛 ] 

                                         = ∅[𝑑 𝑦2𝑛−1 , 𝑦2𝑛 ], 

 Where                              𝜆 =  
 𝑎+𝑏+𝑐   

1−𝑏−𝑐
< 1 𝑠𝑖𝑛𝑐𝑒 𝑎 + 2𝑏 + 2𝑐 < 1  . 

Writing 𝑑𝑛 = ∅ 𝑑 𝑦𝑛 , 𝑦𝑛+1  , we obtain 

                                                          𝑑2𝑛 ≤ 𝝀𝑑2𝑛−1                                                                               ----------(2.8) 

Again  

∅ 𝑑 𝑦2𝑛+2 , 𝑦2𝑛+1  = ∅ 𝑑 𝑓𝑥2𝑛+2 , 𝑔𝑥2𝑛+1   

                                 ≤ 𝑎∅ 𝑑 𝑕𝑥2𝑛+2 , 𝑕𝑥2𝑛+1  + 𝑏∅[𝑑 𝑕𝑥2𝑛+2 , 𝑔𝑥2𝑛+1 + 𝑑 𝑕𝑥2𝑛+1 , 𝑓𝑥2𝑛+2 ] 

                                     +𝑐∅[𝑑 𝑕𝑥2𝑛+2 , 𝑓𝑥2𝑛+2 + 𝑑 𝑕𝑥2𝑛+1 , 𝑔𝑥2𝑛+1 ] 

                                = 𝑎∅ 𝑑 𝑦2𝑛+1, 𝑦2𝑛  + 𝑏∅[𝑑 𝑦2𝑛+1 , 𝑦2𝑛+1 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+2 ] 

                                     +𝑐∅[𝑑 𝑦2𝑛+1 , 𝑦2𝑛+2 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

              i.e.  ∅ 𝑑 𝑦2𝑛+2, 𝑦2𝑛+1  ≤
𝑎+𝑏+𝑐 

1−𝑏−𝑐
 ∅  𝑑 𝑦2𝑛+1 , 𝑦2𝑛   

                                                                = 𝜇∅ 𝑑 𝑦2𝑛+1 , 𝑦2𝑛   

where                                       𝜇 =
𝑎+𝑏+𝑐

1−𝑏−𝑐
< 1 𝑠𝑖𝑛𝑐𝑒  𝑎 + 2𝑏 + 2𝑐 < 1 .   
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Therefore                                         𝑑2𝑛+1 ≤ 𝜇𝑑2𝑛                                                                                               ---------(2.9) 

From (2.8) and (2.9) we get 

                         𝑑2𝑛 ≤ 𝝀𝑑2𝑛−1 ≤ 𝜆𝜇𝑑2𝑛−2 ≤ − − −−≤ 𝜆𝑛𝜇𝑛𝑑0,  

and         

                                          𝑑2𝑛+1 ≤ 𝜇𝑑2𝑛 ≤ 𝜆𝜇𝑑2𝑛−1 ≤ − − −−≤ 𝜆𝑛𝜇𝑛+1𝑑0. 

Thus 

                                                         𝑑2𝑛 + 𝑑2𝑛+1 ≤ 𝜆𝑛𝜇𝑛(1 + 𝜇)𝑑0                                                                  --------(2.10)          

                                                       𝑑2𝑛+1 + 𝑑2𝑛+2 ≤ 𝜆𝑛𝜇𝑛+1(1 + 𝜆)𝑑0                                                               -------(2.11) 

Let 𝑛, 𝑚 ∈ 𝑁, then for the sequence {𝑦𝑛 } we consider ∅[𝑑 𝑦𝑛 , 𝑦𝑚  ] in two cases.                                 

If 𝑛 is even and 𝑚 > 𝑛, then using (1.1) and (2.10) we obtain 

                                       ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤ 𝑘∅ 𝑑 𝑦𝑛 , 𝑦𝑛+1  + 𝑘∅ 𝑑 𝑦𝑛+1 , 𝑦𝑛+2  + 

                                                                             − − − − − − − + 𝑘∅[𝑑 𝑦𝑚−1,𝑦𝑚 ] 

                                                            ≤ 𝑘[𝑑𝑛 + 𝑑𝑛+1 + 𝑑𝑛+2 + 𝑑𝑛+3 +  − − −−] 

                                                            ≤ 𝑘[
𝑛
2  𝜇

𝑛
2 1 + 𝜇 𝑑0 + 

𝑛+2
2  𝜇

𝑛+2
2  1 + 𝜇 𝑑0 + − − −] 

                                                  ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤
𝑘 𝜆𝜇  

𝑛
2 (1+𝜇)

1−𝜆𝜇
𝑑0. 

If 𝑛 is odd and 𝑚 > 𝑛, then again using (1.1) and (2.11) we obtain 

                                              ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   ≤
𝑘 𝜆𝜇  

𝑛−1
2 (1+)

1−𝜆𝜇
𝑑0 . 

Since 𝜆 < 1, 𝜇 < 1 therefore 𝜆 𝜇 < 1, so in both the cases ∅ 𝑑 𝑦𝑛 , 𝑦𝑚   → 0𝐵  as 𝑛 → ∞, and since ∅ ∈ Ф(𝑃, 𝐶)  we have 

𝑑 𝑦𝑛 , 𝑦𝑚  → 0𝐸 as 𝑛 → ∞. So by lemma 1.1,  𝑦𝑛  = {𝑕𝑥𝑛−1} is a Cauchy sequence. 

Since 𝑕(𝑋) is complete, there exists ϑ ∈ 𝑕(𝑋) and 𝑢 ∈ 𝑋 such that 𝑙𝑖𝑚𝑛→∞𝑦𝑛 = 𝜗 and 𝜗 = 𝑕𝑢. 

We shall show that 𝑢 is a coincidence point of pairs (𝑓, 𝑕) and (𝑔, 𝑕) i.e. 𝑓𝑢 = 𝑔𝑢 = 𝑕𝑢. 

If 𝑓𝑢 ≠ 𝑕𝑢 then 0𝐸 ≺ 𝑑 𝑓𝑢, 𝑕𝑢 . Using (2.7) we obtain 

                         ∅ 𝑑 𝑓𝑢, 𝑦2𝑛+1  = ∅[𝑑 𝑓𝑢, 𝑔𝑥2𝑛+1 ] 

                                                  ≤ 𝑎∅ 𝑑 𝑕𝑢, 𝑕𝑥2𝑛+1  + 𝑏∅ 𝑑 𝑕𝑢, 𝑔𝑥2𝑛+1 + 𝑑 𝑕𝑥2𝑛+1 , 𝑓𝑢   

+𝑐∅ 𝑑 𝑕𝑢, 𝑓𝑢 + 𝑑(𝑕𝑥2𝑛+1, 𝑔𝑥2𝑛+1)  

= 𝑎∅ 𝑑 𝑕𝑢, 𝑦2𝑛  + 𝑏∅[𝑑 𝑕𝑢, 𝑦2𝑛+1 + 𝑑 𝑦2𝑛 , 𝑓𝑢 ] 

+𝑐∅[𝑑 𝑕𝑢, 𝑓𝑢 + 𝑑 𝑦2𝑛 , 𝑦2𝑛+1 ] 

Since 𝑦2𝑛 → 𝑕𝑢, 𝑑(𝑓𝑢, 𝑦2𝑛+1) → 𝑑 𝑓𝑢, 𝑕𝑢  as 𝑛 → ∞ and ∅ ∈ Ф 𝑃, 𝐶 , therefore letting 𝑛 → ∞ in above inequality and using 

remark 1.1 we get  

                                     ∅ 𝑑 𝑓𝑢, 𝑕𝑢  ≤ (𝑏 + 𝑐)∅[𝑑 𝑕𝑢, 𝑓𝑢 ] 

                                                         < ∅ 𝑑 𝑕𝑢, 𝑓𝑢   (since  𝑏 + 𝑐 < 1), 

a contradiction. Therefore 𝑓𝑢 = 𝑕𝑢.  Similarly, it can be shown that 𝑔𝑢 = 𝑕𝑢. Therefore 

                                                                        𝑓𝑢 = 𝑔𝑢 = 𝑕𝑢 = 𝜗                                                       -------------(2.12) 

Thus 𝜗 is point of coincidence of pairs (𝑓, 𝑕) and (𝑔, 𝑕).  We shall show that it is unique. 

Suppose 𝑤 is another point of coincidence of these pairs i.e. 𝑓𝑧 = 𝑔𝑧 = 𝑕𝑧 = 𝑤  for some 𝑧 ∈ 𝑋. 

Then from (2.7) it follows that   

                                              ∅ 𝑑 𝑤, 𝜗  = ∅ 𝑑 𝑓𝑧, 𝑔𝑢   

                                                          ≤ 𝑎∅ 𝑑 𝑕𝑧, 𝑕𝑢  + 𝑏∅[𝑑 𝑕𝑧, 𝑔𝑢 + 𝑑(𝑕𝑢, 𝑓𝑧)] 

+𝑐∅ 𝑑 𝑕𝑧, 𝑓𝑧 + 𝑑(𝑕𝑢, 𝑔𝑢)  
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                                                              = 𝑎∅ 𝑑 𝑤, 𝜗  + 𝑏∅[𝑑 𝑤, 𝜗 + 𝑑(𝜗, 𝑤)] 

+𝑐∅ 𝑑 𝑤, 𝑤 + 𝑑 𝜗, 𝜗   

                                                              = (𝑎 + 2𝑏)∅ 𝑑 𝑤, 𝜗  . 

Since  𝑎 + 2𝑏 < 1, by remark 1.1 we obtain 

∅ 𝑑 𝑤, 𝜗  = 0𝐵 i.e.  𝑤 = 𝜗.  Thus point of coincidence is unique.  

If pairs (𝑓, 𝑕) and (𝑔, 𝑕) are weakly compatible, from (2.12) we have 𝑓𝜗 = 𝑓𝑕𝑢 = 𝑕𝑓𝑢 = 𝑕𝜗  and 𝑔𝜗 = 𝑔𝑕𝑢 = 𝑕𝑔𝑢 = 𝑕𝜗, 
therefore 𝑓𝜗 = 𝑔𝜗 = 𝑕𝜗 = 𝑝 (say).  This shows that 𝑝 is another point of coincidence, therefore by uniqueness, we must 

have  𝑝 = 𝜗 i.e. 

                                                                  𝑓𝜗 = 𝑔𝜗 = 𝑕𝜗 = 𝜗. 

Thus 𝜗 is unique common fixed point of self maps 𝑓, 𝑔 and 𝑕. 

Theorem 2.3. Let (𝑋, 𝑑) be a cone metric space and 𝑃 a normal cone with normal constant 𝐾.  Suppose 𝑓, 𝑔, 𝑕 be self 

maps of 𝑋 satisfy the condition. 

∅ 𝑑 𝑓𝑥, 𝑔𝑦  ≤ 𝑎∅ 𝑑 𝑕𝑥, 𝑕𝑦  + 𝑏∅[𝑑 𝑕𝑥, 𝑓𝑥 + 𝑑(𝑕𝑥, 𝑔𝑦)] 

                                                                   +𝑐∅𝑑[ 𝑕𝑦, 𝑓𝑥 + 𝑑 𝑕𝑦, 𝑔𝑦 ]  for all 𝑥, 𝑦 ∈ 𝑋                       ---------(2.13) 

where  ∅ ∈ Ф(𝑃, 𝐶) and 𝑎, 𝑏, 𝑐 are non negative reals with 𝑎 + 2𝑏 + 2𝑐 < 1.  If 𝑓(𝑋) ∪ 𝑔(𝑋) ⊂ 𝑕(𝑋) and 𝑕(𝑋) is complete 

subspace of 𝑋then the maps 𝑓, 𝑔 𝑎𝑛𝑑 𝑕 have a unique point of coincidence in 𝑋.  Moreover, if (𝑓, 𝑕) and (𝑔, 𝑕) are weakly 

compatible pairs then 𝑓, 𝑔 and 𝑕 have a unique common fixed point.  

Proof.  The proof of this theorem same as Theorem 2.2.  
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