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ABSTRACT 

In locally convex spaces, the concepts of cone-Henig subgradient and cone-Henig subdifferential for the set-valued 

mapping are introduced through the linear functionals. The theorems of existence for Henig efficient point and cone-

Henig subdifferential are proposed, and the sufficient and necessary condition for a linear functional being a cone-Henig 

subgradient is established. 
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1. INTRODUCTION 

In the past several decades there has been lots of emphasis on the study of vector set-valued optimization. It is well 

known that the subgradient and subdifferential play very important role in nonsmooth analysis and optimization 

theory. Especially, since Tanino[1] introduced the concept of weak subdifferentials for set-valued mappings, there are 

a great deal of investigation results relating subdiffertial to set-valued optimization, for example: Baier [2], Bigi [3], 

Flores-Bazan [4], Lin [5], Song [6-7] and Taa [8-10], etc. The (weak) subdiffertials for set-valued maps in above 

references are the set of a kind of linear operators. On the other hand, the (weak) efficient solution is a kind of 

extremely efficient 

solutions in vector optimization. Since the range of the set of (weak) efficient solutions is often too large, contracting 

the solution range is a basic topic in vector optimization. For this purpose, many kinds of proper efficiency has been 

presented, such as Benson [11], Borwein [12], Henig [13], and Luc [14], etc. The Henig proper efficiency is an 

important proper efficiency. It is worthy to notice that the super efficiency (introduced by Borwein [12]) equals to the 

Henig efficiency when the convex cone has a bounded base. Recently, Gong [15-16] studied the optimality conditions 

for Henig proper efficient solutions for vector set-valued optimization. 

The aim of this paper is to investigate the Henig proper efficiency in the view of subdifferential in the locally convex 

spaces. The subdifferential introduced in this note is different from Tanino's in 1992, it is the set of a kind of linear 

functionals. This paper is organized as follows. In Section 2, we recall some definitions and Lemmas, which are 

needed in this paper. In addition, a existence theorem for Henig efficient point is proposed. Then, in section 3, the 

concepts of the generalized gradient and subdifferential in  sense of Henig efficiency are introduced, and we obtain 

the existence condition of the Henig subdifferential to set-valued map. 

2.  Henig Proper Efficiency 

In this note, it is assumed that X  and Y  are two locally convex spaces with topological duals 
*X  and 

*Y , 

respectively. The origin of Y is denoted by 0Y , and the neighborhood family of 0Y  denoted by (0 )YN . When no 

confusion can arise, we write 0 instead of 0Y . For a set A Y , we write 

( ) { a : 0 a }cone A A   ， . 

 The closure and interior of a set A  are denoted by ( )cl A  and int( )A . A  set A Y  is  a cone if A A  , 

0  . In the sequel, we always assume that D  is a pointed closed convex cone in Y  with int( )D  . The 

cone D  induces a partially ordering of Y . Let D


 and 
iD
 be the dual cone and strictly dual cone of convex cone 

D , defined by 

*{ : ( ) 0 },D f Y f y for all y D      

{ : ( ) 0 \{0}}.iD f D f y for all y D      

 A nonempty convex subset B  of the convex cone D  is called a base of D  if D coneB  and 0 clB . In this 

paper, it is always assumed that B  is a base of D . Set  

( ) { : 0 ( ) , }.iD B f D there exists t suchthat f b t for all b B       

 Since 0 clB , there exists 
* \{0}Y  such that  

inf{ ( ) : } 0r b b B  
 

Let  

{ : ( ) }.
2

B

r
V y Y y    

Define the neighborhood family of 0Y in Y  as follows:  
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  { :   .   }B is an open convex circled neighborhood of zero iU V U n Y 
 

For each U  , Let  

( ) ( ).UD B cone B U 
 

It has been pointed out that for each U  , ( )UD B is a pointed convex cone in Y  with \{0} int ( )UD D B . 

The following results have been proven by Gong [16]. 

Lemma 2.1 (see Ref. [16])  Assume that D  has been a base B . 

(a) For anyU  , ( ) \{0} ( )UD B D B  . 

(b)  For any ( )D B  , there exists U  such that ( ) \{0}
U

D B  . 

(c)  If convex cone D  is closed and B is bounded closed, then int( ) ( ).D D B   

Definition 2.1.  (see Ref. [16])   Let C  be a nonempty subset of Y  and let B  be a base of D . 
0y C  is said to 

be a Henig efficient point of C  with respect to B ,written as 0 [ , ]y HE C B , if there exist U   such that 

0( ) ( int( ( )) .UC y D B  
 

The following Proposition 2.1 will be used in the sequel. 

Proposition 2.1.  Let C  be a nonempty subset of Y . Then [ , ] [ , ]HE C B HE C D B  . 

Proof   Obviously, [ , ] [ , ]HE C D B HE C B  . Now we prove that 

[ , ] [ , ]HE C B HE C D B 
. 

For arbitrary [ , ]y HE C B . then there exists U   such that 

                                                       ( ) ( int( ( )) .
U

C y D B                                                                 (2.1) 

If [ , ]y HE C D B  , then for all U  , it holds that 

                                                         ( ) ( int( ( ))UC D y D B                                                              (2.2) 

Consequently, there exist y C  and d D  such that 

int( ( ))Uy d y D B    . 

When 0d  , this contradicts to (2.1). When 0,d  it yields from \{0} int( ( ))UD D B  that 

int( ( )),Uy y D B    

 which also is a contradiction to (2.1). The proof is completed. 

Kothe [17] introduced the concept of weakly countable compactness for a set. The following theorem shows that if a 

set is weakly countable compact then it must be exist a Henig proper efficient point. 

Theorem 2.1.   If C Y  is weakly countable compact set, then [ , ]HE C B  . 

Proof   Since 0 clB , there exists 
* \{0}Y  such that  

inf{ ( ) : } 0r b b B    
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By the weakly countable compactness of C , it follows that C  is bounded set (we refer to Kothe [9], page 310). 

Hence,  

inf{ ( ) : } .y y C      

Thus, for any n N  ( N  is positive integer set), there exist 
ny C  such that 

1
( ) .ny

n
      

By the weakly countable compactness of C  again, there exists 
0y C  such that 

0y  is a weak accumulation point of 

{ } .n n Ny   On the other hand, we obtain that 
0( )y  is an accumulation point of { ( )}n n Ny   from the continuity of  . In 

view of above argument, we can set 
0( ) inf{ ( ) : }.y y y C      Hence,  

                                                            0( ) 0, .y y y C                                                                          (2.3) 

Set 

{ : ( ) },
4

r
U y Y y    

and let ( ) ( )
U

D B cone B U  . It is clear that U  . Then, for any y B U  , there exist b B  and u U  

such that y b u  . So, 

3
( ) ( ) ( ) ( ) 0.

4 4

r r
y b u b          

Consequently, we have 

                                                  ( ) 0, int( ( )).
U

y for all y D B                                                        (2.4) 

Combining (2.3) and (2.4), we obtain that  

0( ) int[ ( )] ,
U

C y D B    

which follows that 0 [ , ].y HE C B  

Let : 2YF X  be a set-valued map. The set 

( ) : { , ( ) }dom F x X F x    

is called the domain of F . The set 

( ) : {( , ) : ( ), ( )}graph F x y X Y x dom F y F x    
 

 is called the graph of F . The set  

( ) : {( , ) : ( ), ( ) }epi F x y X Y x dom F y F x D       

is called the epigraph of F . 

 Let us recall some concepts. 

Definition 2.2.  (see Ref. [14]) Let : 2YF X   be a set-valued mapping, Let 0 0( , ) ( )x y graph F . F  is said to be 

lower semi-continuous at 0 0( , )x y , if for any neighborhood 0( )N y  of 0y , there exists a neighborhood 0( )N x  of 0x  

such that 0( ) ( )F x N y   for all 0( )x N x . 
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Definition 2.3.  (see Ref. [14]) Let S X  be convex set and : 2YF S   be a set-valued mapping. 

(1) F  is said to be (strictly) D -convex on S , if 
1 2, , (0,1)x x S      

1 2 1 2( ) (1 ) ( ) ( (1 ) ) .F x F x F x x D          

1 2 1 2( ) (1 ) ( ) ( (1 ) ) int( ).F x F x F x x D          

(2) Let 
0x S , F  is said to be strict D -convex at 

0x , if , (0,1)x S       

0 0( ) (1 ) ( ) ( (1 ) ) int( ).F x F x F x x D           

It is well known that if F  is D -convex on S  if and only if ( )epi F  is a convex subset of X Y . 

3.  CONE-HENIG PROPER EFFICIENT SUBDIFFERENTIAL 

Now, we introduce the concept of cone-Henig subdifferential for a set-valued map. 

Definition 3.1.  Let : 2YF X   be a set-valued map, ( , ) ( )x y graph F , 
*X  and int( )p D . It is said that 

*X  is a D -Henig efficient subgradient of F  at ( , )x y  with respect to vector p , if  

( ) [ ( ( ) ( ) ), ].
x X

y x p HE F x x p B 


    

The set of all D -Henig efficient subgradient of F  at ( , )x y  with respect to vector p  is called the D -Henig efficient 

subdifferential of F  at ( , )x y  with respect to p and is denoted by ( , )H pF x y . It is said that F  is D -Henig efficient 

subdifferentiable at ( , )x y  with respect to p , if ( , )H pF x y  . 

Example 3.1.  Let  [0,1]qX Y R L   , where 0 1q  . We denote  

{0} {( ,0) [0,1]: 0},qD R R L        

' [0,1].qD R L   

It is obviously that the convex pointed cone D  is closed, and int \{0}D D   (See E. K. Makarov and N. N. 

Rachkovski, Density theorems for generalized Henig proper efficiency, Journal of Optimization Theory and Applications, 

91(2): 419-437). Since
* [0,1] {0}qL   (See [18] Rudin, W., Functional Analyis, McGraw-Hill Book Company, New York, 

1973, Section 1.47), we get 
* {0}X R  . Let (1,0)p D  , and define 

*X  by 

( , ) , ( , ) .z for any z X      

 The set-valued mapping : 2YF X   defined by  

( , ) [0,1] ( , ) .qF z R L for any z X     

For (0,0), (0,0)x y  , it is clear that ( , )H pF x y . 

The following basic properties of cone-Henig subdifferential can be obtain from Definition 3.1. 

Proposition 3.1.  Let : 2YF X   be a set-valued mapping, ( , ) ( )x y graph F , int( )p D  and 0r  . Then 

 (1) If ( , )H pF x y  then [ ( ), ].y HE F x B  
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 (2) If [ ( ), ]y HE F x B , then ( , )H pF x y  . 

 (3) [ ( ), ]y HE F X B  if and only if *0 ( , )H pX
F x y . 

 (4) If ( , )H pF x y , then ( , )H rpF x y
r


 . 

In order to obtain the existence theorem of cone-Henig efficient subdifferential, we need the following Lemma 3.1. 

Lemma 3.1. Let : 2YF X   be a set-valued mapping and 
0 ( )x dom F . If one of the next three conditions is 

fulfilled, then int[ ( )]epi F  . 

1 :C  There exists
0

ˆ ( )y F x  such that F  is lower semi-continuous at 0
ˆ( , ).x y  

2 :C  There exists a Y  such that ( )F X a D   

3 :C  There is a map :f X Y  such that ( ) ( )f x F x  for any x X , and f  is continuous in a neighborhood 

0( )U x  of 
0x . 

Proof  Suppose that condition 1C  holds, taking int( )p D , we shall show that 0
ˆ( , ) int[ ( )].x y p epi F  . In fact, 

by int( )p D , there exists  (0 )YU N  such that  

                                                                           .p U D                                                                                       (3.1) 

Since F  is lower semi-continuous at 0
ˆ( , )x y , then for the neighborhood 

1
ˆ( )

2
y U  of ŷ   there exist 0( )W N x  

(the neighborhood family of 0x  )such  that 

1
ˆ( ) ( ) , .

2
F y U for all W     

   Let 0V W x  , then (0 )XV N  and   

0

1
ˆ( ) ( ) , .

2
F x v y U for all v V     

Taking ( , )x y X Y  , then there exists 0  , and when 0    ,  

1
, .

2
x V y U    

Thus, there exists 0

1
ˆ( ) ( )

2
y F x x y U   , that is: there is 

1

2
y U such that  

ˆ ˆ ( )y y y y p y p y y            

Combining with (3.1), we get ˆy y p y D    . Thus 

0 0
ˆ ˆ( , ) ( , ) ( , ) ( ), [0, ).x x y p y x y p x y epi F              

  It yields that 0
ˆ( , ) int[ ( )]x y p epi F  . 

Assuming that there exists a Y  such that  
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                                                   ( ) , for .F x a D all x X                                                                   (3.2) 

For int( )p D , take y a p  , then int( )y a p D   . Consequently, there is (0 )YU N  such that  

                                                                .U y a D                                                                                   (3.3) 

By (3.2), for any x X  and ( )xy F x , there exists xp D  such that x xy a p  . Making use of (3.3) and 

noticing that D  is a convex cone, we obtain that 

, .x xU y y U y a p D for all x X         

Thus, ( ) ( )xU y y D F x D x X       . Consequently, we have 

( , ) ( ), , ,x y epi F for all x X y U y     

which shows that int[ ( )]epi F  . 

It is clear that int[ ( )]epi F   if the condition 3C  is satisfied. In fact, since f  is continuous 

in the neighborhood 0( )U x of 0x , it is obviously that 0( ( ))f U x  is an open set. Consequently, 

0 0( ( ), ( ( ))) ( )U x f U x epi F . Thus, int[ ( )]epi F  . 

Theorem 3.1.  Let D  be closed convex pointed cone with a bounded closed base B . Let : 2YF X   be a D -

convex set-valued mapping, 0 0( , ) ( ), int( )x y graph F p D   and 0 0[ ( ), ]y HE F x B . Let F  be strict D -

convex at 0x . If one of the three conditions in Lemma 3.1 is fulfilled, then 0 0( , )H pF x y  . 

Proof.   Firstly, by 0 0[ ( ), ]y HE F x B , there exist U   such that  

                                                        0 0( ( ) ) int( ( )) .
U

F x y D B                                                            (3.4) 

Then, since F  is D -convex, ( )epi F  is a convex set. Consider the epigraph of F , the  proof of this theorem consists 

of several steps. First, we prove two important properties of ( )epi F  and then we apply a separation theorem to obtain 

the desired  result. 

Step 1: int[ ( )]epi F  . We obtain this fact from Lemma 3.1. 

Step 2: 0 0( , ) int[ ( )]x y epi F . Otherwise, 0 0( , ) int[ ( )]x y epi F . This follows that there exists 

(0 )YU N such that  

0 0( , ) ( ).x y U epi F   

For int( )p D , there exists 0   such that p U    . Thus 

0 0( ) ,y p F x D     

Consequently, there exist 0( )y F x  and d D  such tat  

0y p y d       

Furthermore, we can  see that  

                                                    0 int( ) \{0}.y y p d D D                                                                  (3.5) 
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Since for all , \{0} int( ( )).UU D D B  . So, by (3.5), we get 

0 int( ( )) .Uy y D B for all U     

Which is a contradiction to (3.4). 

Step 3: There exist 
* *( , ) X Y    with \{0}D   such that 

                               0 0( ) ( ) 0, , ( ), .x x y d y x X y F x d D                                                                 (3.6) 

In fact, since int[ ( )]epi F  is an open convex  subset of X Y  with 
0 0( , ) int[ ( )]x y epi F  (due to step 2). Now, 

using  a separation theorem, there exists 
* *( , ) X Y    ,  with * *( , ) (0 ,0 )

X Y
    such that (3.6)  holds. We have 

*0
Y

  . Otherwise, it follows that 

                                               
0( ) 0,x x x X                                                                                                      (3.7) 

For a positive real number 0  , Let v X  be an arbitrary vector. Taking 0x v x    in (3.7), we get 

( ) 0v   . This shows that 0  , a contradiction to the fact * *( , ) (0 ,0 )
X Y

   . In addition, taking 

0 0,x x y y   in (3.6), we obtain that 

( ) 0, .d for all d D    

 Thus, *\{0 }.
Y

D   

Step 4: For any 0, ( ), ,x X y F x d D y d y     , we have 

                                                              0 0( ) ( ) 0.x x y d y                                                                            (3.8) 

  On the contrary, by inequality (3.6), there is ( , ) ( )x y d epi F
  

   with 0y d y
 

  such that  

                                                            0 0( ) ( ) 0.x x y d y 
  

                                                                               

(3.9) 

For arbitrary (0,1) , set 

                                                          0 0(1 ) ; (1 ) .x x x y y y    
 

                                                       

(3.10) 

Since F  is strict D -convex at 0x , we have that  

0 0(1 ) ( (1 ) ) int( ).y y y F x x D    
 

        

Setting 

                                           0, ( (1 ) ), int( ),y F x x D      


                                                        (3.11) 

Takin 0,d y    and x x  in inequality (3.6), we get that  

                                                                  0 0( ) ( ) 0x x y      .                                                                (3.12) 

By (3.11) and (3.9), we get 
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0 0 0 0

0 0

( ) ( ) ( ) ( )

( ( ) ( ))

( ).

x x y y x x y y

x x y y

d

        

  



 

 



      

   

 
 

Thus, 

0 0( ) ( ) ( )y y d x x   


     . 

By inequality (3.12), and noticing that ( ) 0d


 , we can see that 

                                            0 0 0( ) ( ) ( ) ( )y y y y d y     


      .                                                  (3.13) 

On the other hand, from  *\ 0
Y

D   and int( )D  , we have ( ) 0   . So, 

0 0 0( ) ( ) ( ) ( )y y y y             

 which contradicts to (3.13). 

Step 5: ( )D B  . Setting 0x x  and 0y y  in inequality (3.8), and taking  \ 0d D  arbitrary. We can get that 

0 0y d y   and   

 ( ) 0, \ 0d d D    

This yields that int( )D  .   (in fact int( )D   implies that there is 
*g Y  such that  

g
D

n
   , for all 

natural number n . Consequently, there is 0 d D 
、

 such that ( )( ) 0
g

d
n

  
、

. Taking n  in above inequality, 

we obtain that ( ) 0d 
、

: a contradiction.) by Lemma 2.1, we obtain ( )D B  . 

Step 6: 0 0( , )
( )

H pF x y
p




  . Since ( )D B  , by Lemma 2.1, there is U  such that  

 *( ) \ 0U Y
D B 

 .      

                                                       ( ) 0y  , for all int( ( ))Uy D B                                                          (3.14) 

On the other hand, from inequality (3.6), it is easy to obtain that 

                                          0 0( ) ( ) 0, , ( )x x y y x X y F x                                                            (3.15) 

Suppose that  0 0( , )
( )

H pF x y
p




  , then we have that 

0
0

( )
( ( ) ) int( ( ))

( )
U

x X

x x
F x p y D B

p









     

Consequently, there exist  x X  and ( )y F x   such that 

0
0

( )
int( ( ))

( )
U

x x
y y p D B

p







  


 . 

Noticing that ( )D B  , it follows that 
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0
0 0 0

( )
( ) ( ) ( ) 0

( )

x x
y y p x x y y

p


  




      


   , 

a contradiction to inequality (3.15). The proof is completed. 

Theorem 3.2 Let : 2YF X  be a set-valued mapping ( , ) ( )x y graph F , and int( )p D . Then 

 ( ),y HE F X B  if and only if *0 ( , )H pX
F x y . 

Proof   The argument  is easy. Since  ( ),y HE F X B , there exist U   such that  

( ( ) ) int( ( ))
U

F x y D B   , 

 this equivalents to 

( ( ) 0( ) ) int( ( ))
U

x X

F x x x p y D B


        

thus,  *0 ( , )H pX
F x y . 

The following Theorem 3.3 shows that a linear functional is a  cone-Henig subgradient under the suitable conditions. 

 Theorem 3.3  Let : 2YF X  be a set-valued mapping, ( , ) ( )x y graph F , 
*X  and int( )p D . Assuming 

that F  is D -convex in X , then ( , )H pF x y if and only if there exist ( )D B  such that  

                                                   ( ) ( ) ( ), ( )y y x x p y F x x X                                                           (3.16) 

bf Necessity. By ( , )H pF x y , there is U   such that  

                                       ( ( ) ( ) ) int( ( ))
U

x X

F x x x p y D B


                                                                

(3.17) 

By proposition 2.1, we get 

                                        ( ( ) ( ) ) int( ( ))
U

x X

F x x x p y D D B


                                                        

(3.18) 

On the other hand, from F  be D -convex, it yields that ( ) ( )
x X

F x x x p D


    is a convex set. Making use of a 

separation theorem, there is  *

* \ 0
Y

Y   such that  

( ( ) ( ) ) ( ), , ( ), int( ( )),
U

y x p y x p d z x X y F x z D B d D             

Noticing that D  and ( )
U

D B  are convex cones, it is clear that  

                                      ( ( ) ( ) ) 0, , ( ),y x p y x p d x X y F x d D          .                                  

(3.19) 

 ( ) 0, ( ).
U

z z D B     

Thus,  *( ( )) \ 0
U Y

D B  , this follows that ( )D B  from Lemma 2.1. Takin 0d  in inequality (3.19), we 

prove that there exist ( )D B    such that  inequality (3.16) hold. 
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 Sufficiency. Suppose that there is ( )D B   such that (3.16) hold, If ( , )H pF x y , then for any U  , we 

have  

                                               ( ( ) ( ) ) int( ( ))U

x X

F x x x p y D B


                                            (3.20). 

Since ( )D B  , by Lemma 2.1, there is U   such that  *( ( )) \ 0
U Y

D B  . So, for ( )
U

D B , we also have 

                                               ( ( ) ( ) ) int( ( ))
U

x X

F x x x p y D B


                                                (3.21) 

Consequently, there exist x X  and ( )y F x   such that 

( ) int( ( ))
U

y x x p y D B     , 

 then 

( ( ) ) 0y x x y      , 

which contradicts to inequality (3.16) 

As the end of section, we deal with  the basic properties of come-Henig subdifferentials. The following Proposition 3.2 and 

Proposition 3.3 are direct consequences of Definition 3.1 and Theorem 3.2, and their proofs are omitted. 

Proposition 3.2. Let : 2YF X  be a D -convex set-valued mapping, ( , ) ( )x y graph F  and 1 2, int( )p p D . If 

1
( , )H pF x y   , then there is ( )D B   such that 

2
( , )H pF x y , 

where 
1

2

( )

( )

p

p





 . 

Proposition 3.3. Let : 2YF X  be a D -convex set-valued mapping, ( , ) ( )x y graph F  and int( )p D . If 

0   then ( )( , ) ( , )H p H pF x y F x y    . 

Proposition 3.4. Let : 2YF X  be a D -convex set-valued mapping, ( , ) ( )x y graph F , and int( )p D . 

Assuming that ( , )H pF x y  , then ( , )H pF x y  is convex and closed. 

Proof. Convexity. Taking 1 2, ( , )H pF x y    and (0,1)  arbitrary. Setting 1 2: (1 )      . We claim that 

( , )H pF x y  . In fact, otherwise ( , )H pF x y  . By Definition 3.1, there are x X , ( )y F x   

with ( , ) ( , )x y x y    andU   such that 

                                      ( ) ( ( ) ) int ( )
U

y x p y x p D B                                                                  (3.22) 

since 1 2, ( , )H pF x y   ,by theorem 3.2, there exit 1 2, ( )D B    such that 

                                                                1 1( ) ( ) ( )y y x x p                                                              (3.23) 

                                                       2 2( ) ( ) ( )y y x x p                                                                       (3.24) 

Noticing that 1 2, ( )D B   , we obtain from (3.22) that  

                                                   1 1( ) ( ) ( ) 0y y x x p                                                                      (3.25) 
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2 2( ) ( ) ( ) 0y y x x p                                                                     (3.26) 

From inequality (3.23) and (3.25), it follows that  

                                                                    
1( ) ( )x x x x                                                                       (3.27) 

Respectively, by inequality (3.24) and (3.26), we get 

                                                                      
2( ) ( )x x x x                                                                       (3.28) 

Consequently, by inequality (3.27) and (3.28), it yields that  

( ) ( )x x x x      , 

a contradiction.Closeness. Suppose that there is   ( , )n H pF x y    with ( )n n   such that 

( , )H pF x y .So, there exist x S , ( )y F x   and U   such that ( ) int ( )
U

y y x x p D B        .  

Since ( ) ( )ny y x x p y y x x p           , there is the sufficient large n  such that  

( ) int ( )n U
y y x x p D B 

        , 

which yield ( , )n H pF x y  ,a contradiction.  

4.  CONCLUDING REMARKS 

In 1993, Borwein and Zhuang [12] introduced the concept of super efficiency in vector optimization. They have proven that 

if the closed convex pointed cone has a bounded base, then the set of Henig efficient points for a nonempty set are equal 

to its super efficient points(see Proposition 3.5 of Ref. [12]). This together with the results obtained in this note, we can 

investigate the super efficiency in the view of subdifferential. 

The globally proper efficiency has the similar properties to Henig efficiency in many respects(see Gong [15-16], Yu [19]). 

Of course, the concept of cone-subdifferential in sense of globally proper efficiency can be defined in the same way. 

Making use of the method of this paper, we claim that the similar results for globally proper efficiency can be obtained. 
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