Uniqueness for entropy solutions to fully nonlinear equations
 Chiraz KOURAICHI and Abdelmajid SIAI
 Ecole Nationale d'Ingénieurs de Monastir, Tunisie chiraz.kouraichi@yahoo.fr InstitutPréparatoire aux Etudes d'Ingénieurs de Nabeul, Tunisie absiai@yahoo.fr

Abstract

Let X be a metric space, $\mathcal{M}(X, \mathcal{B}, \mu)$ the space of μ-measurable functions, $\Omega \subset \mathbb{R}^{N}$ be a domain whith boundary $\partial \Omega$ and $\mathrm{a}(\mathrm{x}$, ξ) be an operator of Leray-Lions type. If β and γ are nondecreasing continuous function on \mathbb{R} such that $\beta(0)=\gamma(0)=0$ and $(\mathrm{f}, \mathrm{g}) \in \mathrm{L}^{1}(X, \mathcal{B}, \mu)$, then, there exists a unique entropy solution u in $\mathcal{M}(X, \mathcal{B}, \mu)$ to the problem $-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]+\beta(\mathrm{u})=\mathrm{f}$ in Ω and $\mathrm{a}(., \mathrm{Du}) v+\gamma(\tau \mathrm{u})=\mathrm{g}$ on $\partial \Omega$.

Keywords:

Entropy solution; Renormalized solution; Elliptic problem; Measure space.

Mathematics Subject Classification:

35J65; 35J70; 35K55; 47J05; 35D99.

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics
Vol 5, No. 2
editor@cirworld.com
www.cirworld.com, member.cirworld.com

Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 3$, be a domain (not necessarily bounded) whithboundary $\partial \Omega$. For example, to prove existence and uniqueness for a solution to an elliptic or parabolic problem in Ω related with an operator of Leray-Lions type: Au = $-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]$ with non linear Neumann condition on the boundary $\partial \Omega$:

$$
\begin{equation*}
\mathrm{a}(., \mathrm{Du}) \cdot v+\gamma(\tau \mathrm{u}) \ni \mathrm{g}, \mathrm{~g} \in \mathrm{~L}^{1}(\partial \Omega), \tag{1.1}
\end{equation*}
$$

where γ is a maximal monotone graph in \mathbb{R}^{2}, v is the vector field of exterior normal to the boundary $\partial \Omega$, when $g=0$, many authors even in the linear case $A u=-\Delta u$, (see [1], for example) include the boundary condition (1.1) in the definition of the domain $D(A)$ of the operator A. In the case where $g \neq 0$, [2] apply the same process to a family of operators B^{9} in the elliptic case (rep: $\mathrm{B}^{g(t)}$ in the parabolic case). Besides supplementary technical difficulties, even in case where A is linear some notion of multivalued linear operator is needed. This is no more necessary when applying theorems 4.1 of [8] and [9]. More precisely if $X=\Omega \cup \partial \Omega, L^{1}(\Omega) \times L^{1}(\partial \Omega)$ is identified to $L^{1}(X)$. Then, let A be The operator defined as follows: $(u, \tau u)$ $\in D(A)$ if there exist $(f, g) \in L^{1}(X)$ such u is an entropy solution to the next problems:

$$
\left\{\begin{array}{c}
-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]=\mathrm{f} \text { in } \Omega, \tag{1.2}\\
\mathrm{a}(., \mathrm{Du}) . v=\mathrm{g} \text { on } \partial \Omega
\end{array}\right.
$$

In the sense that, if $T_{k}(r)=\max \{-k, \min (r, k)\}, k>0, r \in \Omega, \forall \varphi \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$,

$$
\int_{\Omega} \mathrm{a}\left(\mathrm{x}, \mathrm{Du}^{2}\right) \mathrm{DT}_{\mathrm{k}}(\mathrm{u}-\varphi) \leq \int_{\Omega} \mathrm{fT}_{\mathrm{k}}(\mathrm{u}-\varphi)+\int_{\partial \Omega} \mathrm{gT}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi) .
$$

If A_{1} is the restriction of A to $L^{1}(X)$, then A_{1} is said to be accretive in $L^{1}(x)$, if then the next inequality holds

$$
\begin{equation*}
\int_{\Omega}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) \varphi_{0}+\int_{\left\{\mathrm{u}_{1}=\mathrm{u}_{2}\right\}}\left|\mathrm{f}_{1}-\mathrm{f}_{2}\right|+\int_{\partial \Omega}\left(\mathrm{g}_{1}-\mathrm{g}_{2}\right) \psi_{0}+\int_{\left\{\tau \mathrm{u}_{1}=\tau \mathrm{u}_{2}\right\}}\left|\mathrm{g}_{1}-g_{2}\right| \geq 0 \tag{1.3}
\end{equation*}
$$

For any $F_{i}=\left(f_{i}, g_{i}\right) \in L^{1}(X), \quad U_{i}=\left(u_{i}, \tau u_{i}\right) \in D\left(A_{1}\right), i=1,2$ so that $A U_{i}=F_{i}$ and $\varphi_{0}=\operatorname{sign}_{0}\left(u_{1}-u_{2}\right), \psi_{0}=\operatorname{sign}_{0}\left(\tau u_{1}-\tau u_{2}\right)$, where: $\operatorname{sign}(r)=\operatorname{sign}_{0}(r)=\frac{r}{|r|}, r \in \mathbb{R}, r \neq 0, \operatorname{sign}(0)=[-1,1]$ and $\operatorname{sign}_{0}(0)=0$. Inequalities (i) in ([8] theorem 4.1) extends (1.3) to the case where ($\left.u_{i}, \tau u_{i}\right) \in D(A)$, and inequality (ii) states that if in addition (ui, $\left.\square u i\right)=D\left(A_{1}\right) i=1,2$, then for every $\varphi \in \operatorname{sign}\left(u_{1}-u_{2}\right)$ and $\psi \in \operatorname{sign}\left(\tau u_{1}-\tau u_{2}\right)$, we have:

$$
\begin{equation*}
\int\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) \varphi+\int_{\partial \Omega}\left(\mathrm{g}_{1}-\mathrm{g}_{2}\right) \psi \geq 0 . \tag{1.4}
\end{equation*}
$$

Inequalities (1.3) and (1.4) where applied in [8], and similarly in [9], to prove existence and uniqueness of a solution to the problem: - $\operatorname{div}[\mathrm{a}(., \mathrm{Du})]+\beta(\mathrm{u}) \ni \mathrm{f}$ and $\mathrm{a}(., \mathrm{Du}) . v+\gamma(\tau u) \ni \mathrm{g}$ оn $\partial \Omega$.

It is well known from [7] that uniqueness of weak solutions for degenerate problems, is not guaranteed. However, if two kind of solutions u and v in a class of uniqueness, such as entropy solutions or renormalized solutions, are obtained as a limit of a sequence (u_{n}) of some regular solutions related to some sequence data (f_{n}), from uniqueness of u_{n} related to some f_{n}, the fact that entropy solutions, renormalized solutions etc are particular weak solutions, then by applying (1.3), formally we shall be able to prove that $u=v$. This seams to be new, since, even that studied separately existence and uniqueness of entropy and renormalized solutions have not proved that it is the same solution (see [6]).
Theorems 4.1 [8] may be extended to general measure spaces (X, \mathcal{B}, μ) and the closure in $\mathcal{M}(X, \mathcal{B}, \mu) \times \mathrm{L}^{1}(X, \mathcal{B}, \mu)$ of the operator A_{1} and thus, a larger class of measurable functions that are weak solutions obtained as limit in $\mathcal{M}(X, \mathcal{B}, \mu)$ with data in $f \in L^{1}(X)$ of a sequence of entropy solutions, or renormalized solutions that are in $L^{1}(X)$. It is proved first, that for this particular case, entropy and renormalized solution is the same one. This will be extended, next, for general entropy and renormalized solutions in $\mathcal{M}(X, \mathcal{B}, \mu)$, that are not necessary integrable, but satisfy some specified conditions of regularity that is required in the definition of this kind of solutions.

Order Preserving Inequalities

Let be given a metric space X and a complete measure space (X, \mathcal{B}, μ) such that X is σ-infinite and μ is regular, (see [4]). The space of μ-measurable real valued functions $\mathcal{M}(X, \mathcal{B}, \mu)$, equipped with some distance as in [8] and [9] is a Frechet space and its topology is equivalent to the local convergence in measure. In the sequel, the spaces $\mathcal{M}(X, \mathcal{B}, \mu)$ and $\mathrm{L}^{1}(X, \mathscr{B}, \mu)$ are noted simply \mathcal{M} and L^{1}.
Definition 2.1.A: $X \rightarrow 2^{2}$ an operator, possibly multivalued in X, is said to be accretive in X, if one of the following equivalent properties is satisfied,
(i) $\quad\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \geq 0$, if $x_{1}, x_{2} \in D(A), y_{1} \in A x_{1}, y_{2} \in A x_{2}$.
(ii) The resolvent $)_{\lambda}^{A}=(I+\lambda A)^{-1}$ is a contraction from $R(I+\lambda A)$ to X, for every $\lambda>0$.

Definition 2.2.A ism-accretive in X, if the resolvent J_{λ}^{A} is a contraction everywhere defined in X, for every $\lambda>0$.
Definition 2.3. The operator A is \mathbf{m}-completely accretive in X, if A is m-accretive and

$$
\begin{equation*}
\int_{X}\left(\mathrm{AU}_{1}-\mathrm{AU}_{2}\right) \mathrm{p}\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right) \geq 0, \mathrm{U}_{1}, \mathrm{U}_{2} \in \mathrm{D}(\mathrm{~A}), \mathrm{p} \in \mathscr{P}_{0} \tag{2.1}
\end{equation*}
$$

$\mathscr{P}_{0}=\{p: \mathbb{R} \rightarrow \mathbb{R}, p$ Lipschitz, odd, non decreasing and p ' has a compact support $\}$.
The function a of Leray-Lions type is defined as follows,
(H. 1) $\left\{\begin{array}{c}a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\ (x, \xi) \mapsto a(x, \xi)\end{array}\right.$ is a Carathéodory function in the sense that, a is continousin ξ,
for almost every $\mathrm{x} \in \Omega$, and measurablein x for any $\xi \in \mathbb{R}^{N}$.
(H.2) there exist $p, C_{1} \in \mathbb{R}, 1<p<N$, and $C_{1}>0$, so that, $\langle a(x, \xi), \xi\rangle \geq C_{1}|\xi|^{p}$, for a.e. $x \in \Omega$ and every $\xi \in \mathbb{R}^{N}$.
(H.3) $\left\langle a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right), \xi_{1}-\xi_{2}\right\rangle>0$, if $\xi_{1} \neq \xi_{2}$, for a.e. $x \in \Omega$.
(H.4) There exists some $h_{0} \in L^{p^{\prime}}(\Omega), p^{\prime}=\frac{p}{p-1}$ and a positive constant C_{2} such that $|a(x, \xi)| \leq C_{2}\left(h_{0}(x)+|\xi|^{p-1}\right)$, for a.e. $x \in \Omega$ and every $\xi \in \mathbb{R}^{N}$.
If A_{1} is an m-accretive operator in $L^{1}\left({ }^{1}\right)$, its closure $A=\overline{A_{1}}$ is defined as follows: For any $(u, f) \in \mathscr{M} \times L^{1}$, then $A u=f$, if there exist $\left(u_{n}, f_{n}\right) \in\left(L^{1}\right)^{2}$ such that, $\left(u_{n}, f_{n}\right) \rightarrow(u, f)$ in $\mathscr{M} \times L^{1}$ and $A u_{n}=f_{n}$.
$\left(^{1}\right): A_{1}$ is Kato accretivein L^{1}, in the sense that for any pair $\left(u_{1}, f_{1}\right),\left(u_{2}, f_{2}\right) \in D\left(A_{1}\right) \times L^{1}$, we have:
$\lim _{\mathrm{t} \rightarrow 0}\left(\int_{\mathrm{X}}|(\mathrm{f}-\mathrm{g})+\mathrm{t}(\mathrm{u}-\mathrm{v})|-|\mathrm{f}-\mathrm{g}|\right)=\int_{\mathrm{X}}(\mathrm{f}-\mathrm{g}) \operatorname{sign}_{0}(\mathrm{u}-\mathrm{v})+\int_{\{\mathrm{u}=\mathrm{v}\}}|\mathrm{f}-\mathrm{g}| \geq 0$,
where $\operatorname{sign}(r)=\operatorname{sign}_{0}(r)=\frac{r}{|r|}$, if $r \in \mathbb{R}, r \neq 0, \operatorname{sign}(0)=[-1,1]$ and $\operatorname{sign}_{0}(0)=0$.
Theorem 2.1. A_{1} and A are defined as previously, let be given $f, g \in L^{1}$, then we have the following:
(i) If $u, v \in D(A)$ are solutions to $A u=f$ and $A v=g$, then they satisfy:

$$
\begin{equation*}
\int_{\mathrm{X}}(\mathrm{f}-\mathrm{g}) \operatorname{sign}_{0}(\mathrm{u}-\mathrm{v})+\int_{\{\mathrm{u}=\mathrm{v}\}}|\mathrm{f}-\mathrm{g}| \geq 0 . \tag{2.2}
\end{equation*}
$$

(ii) If in addition $u, v \in D\left(A_{1}\right)$, then: $\int_{X}(f-g) \varphi \geq 0$, for every $\varphi \in \operatorname{sign}(u-v)$

Proof. (i) If $\left(u_{n}, f_{n}\right),\left(v_{n}, g_{n}\right) \in\left(L^{1}\right)^{2}, A_{1} u_{n}=f_{n}$ and $A_{1} v_{n}=g_{n}, u_{n} \rightarrow u, v_{n} \rightarrow v$ in \mathcal{M} and $f_{n} \rightarrow f, g_{n} \rightarrow g$ in L^{1}. Since A_{1} is accretive in L^{1}, if setting $h_{n}=f_{n}-g_{n}, \omega_{n}=u_{n}-v_{n}, h=f-g, \omega=u-v, \varphi_{n}=\operatorname{sign}_{0}\left(\omega_{n}\right)$ and $\varphi=\operatorname{sign}_{0}(\omega)$, this leads to:

$$
\begin{equation*}
\int_{\mathrm{X}} \mathrm{~h}_{\mathrm{n}} \varphi_{\mathrm{n}}+\int_{\{\omega=0\}}\left|\mathrm{h}_{\mathrm{n}}\right| \geq 0, \forall \mathrm{n} \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

Next, if $\mathrm{T}_{\frac{1}{\mathrm{k}}}(\mathrm{r})=\max \left\{-\frac{1}{\mathrm{k}}, \min \left(\frac{1}{\mathrm{k}}, \mathrm{r}\right)\right\}, \mathrm{k} \in \mathbb{N}^{*}, \mathrm{r} \in \mathbb{R}$, then

$$
\begin{aligned}
\left|\int_{\mathrm{X}} \mathrm{~h} \varphi-\int_{\mathrm{X}} \mathrm{~h}_{\mathrm{n}} \varphi_{\mathrm{n}}\right| & \leq \int_{X}|\mathrm{~h}|\left|\varphi-\mathrm{kT}_{\frac{1}{\mathrm{k}}}(\omega)\right|+\int_{X}|\mathrm{~h}|\left|\mathrm{kT}_{\frac{1}{\mathrm{k}}}(\omega)-\mathrm{kT}_{\frac{1}{\mathrm{k}}}\left(\omega_{\mathrm{n}}\right)\right|+\int_{X}\left|\mathrm{~h}-\mathrm{h}_{\mathrm{n}}\right|\left|\mathrm{kT}_{\frac{1}{\mathrm{k}}}\left(\omega_{\mathrm{n}}\right)\right|+\int_{X}\left|\mathrm{~h}_{\mathrm{n}}\right|\left|\mathrm{kT}_{\frac{1}{\mathrm{k}}}\left(\omega_{\mathrm{n}}\right)-\varphi_{\mathrm{n}}\right| \\
& =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}
\end{aligned}
$$

Then, by appliying the Lebesgue theorem successively to $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$, we may assume that:
$\forall \varepsilon>0, \exists \mathrm{k}_{0}, \mathrm{n}_{0}=\mathrm{n}_{0}\left(\mathrm{k}_{0}\right), \mathrm{n}_{1} \in \mathbb{N}^{*}$, s.t. $\mathrm{I}_{1} \leq \varepsilon$, if $\mathrm{k} \geq \mathrm{k}_{0}, \mathrm{I}_{2} \leq \varepsilon$, if $\mathrm{n} \geq \mathrm{n}_{0}$ and $\mathrm{I}_{3} \leq \varepsilon$, if $\mathrm{n} \geq \mathrm{n}_{1}$. Thus if n and k are large enough, then: $\left|\int_{\mathrm{X}} \mathrm{h} \varphi-\int_{\mathrm{X}} \mathrm{h}_{\mathrm{n}} \varphi_{\mathrm{n}}\right| \leq 3 \varepsilon+\int_{X}\left|\mathrm{~h}_{\mathrm{n}}\right|\left|\mathrm{kT}_{\frac{1}{\mathrm{k}}}\left(\omega_{\mathrm{n}}\right)-\varphi_{\mathrm{n}}\right|$,thus $\lim _{\mathrm{n} \rightarrow+\infty}\left|\int_{\mathrm{X}} \mathrm{h} \varphi-\int_{\mathrm{X}} \mathrm{h}_{\mathrm{n}} \varphi_{\mathrm{n}}\right| \leq 3 \varepsilon+\int_{\mathrm{X}}|\mathrm{h}|\left|\mathrm{kT}_{\frac{1}{k}}(\omega)-\varphi\right|$.

Since the left term in the last inequality do not depend to k and $\lim _{\mathrm{k} \rightarrow+\infty} \int_{\mathrm{X}}|\mathrm{h}|\left|\mathrm{kT}_{\frac{1}{\mathrm{k}}}(\omega)-\varphi\right|=0$, then
$\lim _{\mathrm{n} \rightarrow+\infty} \int_{\mathrm{X}} \mathrm{h}_{\mathrm{n}} \varphi_{\mathrm{n}}=\int_{\mathrm{X}} \mathrm{h} \varphi$, hence
$\forall \varepsilon>0, \exists \mathrm{n}_{\varepsilon} \in \mathbb{N}$, such that $\int_{\mathrm{X}} \mathrm{h} \varphi \geq \int_{\mathrm{X}} \mathrm{h}_{\mathrm{n}} \varphi_{\mathrm{n}}-\varepsilon$ if $\mathrm{n} \geq \mathrm{n}_{\varepsilon}$.
Now, for the right term in (2.4), denote $\mathrm{E}_{\mathrm{n}}=\left\{\omega_{\mathrm{n}}=0\right\}$, if C is a compact in X and $\eta>0$, then by Egorov theorem: $\forall \mathrm{k} \in \mathbb{N}^{*}, \exists \mathrm{~N}_{\mathrm{k}} \in$ $\mathcal{B}, \mathrm{N}_{\mathrm{k}} \subset \mathrm{C}$ and $\mathrm{n}_{\mathrm{k}} \in \mathbb{N}$ so that $\mathrm{n} \geq \mathrm{n}_{\mathrm{k}}$, then $\mu\left(\mathrm{N}_{\mathrm{k}}\right) \leq \eta,\left|\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right| \leq \frac{1}{\mathrm{k}}$ and $\left|\mathrm{v}_{\mathrm{n}}-\mathrm{v}\right| \leq \frac{1}{\mathrm{k}}$ uniformly on $\mathrm{C} \mid \mathrm{N}_{\mathrm{k}}$, therefore, after possibly
replacing N_{k} with $U_{1 \leq 1 \leq k} N_{l}$, we assume that $\left(N_{k}\right)_{k}$ is increasing and while setting $F_{k}=U_{n \geq n_{k}} E_{n}$ and $F_{k}^{\prime}=\left(F_{k} \cap\left(C \backslash N_{k}\right)\right)_{k}$, it ensuer that $\mathrm{F}_{\mathrm{k}}^{\prime} \downarrow \mathrm{F}_{\mathrm{k} \geq 1}=\cap \mathrm{F}_{\mathrm{k}}^{\prime}$, if $\mathrm{k} \rightarrow+\infty$.

Next, for μ almost any $x \in F_{k}^{\prime}$, there exist n such that
$|u(x)-v(x)| \leq\left|u(x)-u_{n}(x)\right|+\left|u_{n}(x)-v_{n}(x)\right|+\left|v_{n}(x)-v(x)\right| \leq \frac{2}{k}$.
Thus $u=v, \mu$.a.e on F,
Therefore $\mathrm{F}_{\mathrm{k}}^{\prime} \downarrow \cap_{\mathrm{k} \geq 1} \mathrm{~F}_{\mathrm{k}}^{\prime} \subset \mathrm{E}=\{\omega=0\}$ and $\int_{\mathrm{E}}|\mathrm{h}| \geq \int_{\mathrm{F}_{\mathrm{k}}^{\prime}}|\mathrm{h}|-\varepsilon$, of sufficiently large k .
Now, with the help of (2.5) and (2.4), if n is large enough, then $\int_{X} h \varphi+\int_{F_{k}}\left|h_{n}\right| \geq \int_{X} h_{n} \varphi_{n}-\varepsilon+\int_{E_{n}}\left|h_{n}\right| \geq-\varepsilon$.
As $\lim _{\mathrm{n} \rightarrow+\infty} \int_{\mathrm{F}_{\mathrm{k}}}\left|\mathrm{h}_{\mathrm{n}}\right|=\int_{\mathrm{F}_{\mathrm{k}}}|\mathrm{h}|$, it arises that $\int_{\mathrm{X}} \mathrm{h} \varphi+\int_{\mathrm{F}_{\mathrm{k}}}|\mathrm{h}| \geq-\varepsilon$,
For every $\varepsilon>0$. Therefore $\int_{\mathrm{X}} \mathrm{h} \varphi+\int_{\mathrm{F}_{\mathrm{k}}}|\mathrm{h}| \geq 0$, if $\mathrm{k} \geq \mathrm{k}_{0}$.
Next, $F_{k}=F_{k}^{\prime} \cup\left(F_{k} \cap N_{k}\right) \cup\left(F_{k} \cap C^{c}\right)$. Since $h \in L^{1}$, then we may suppose that the compact C is sufficiently large and $\mu\left(N_{k}\right)$ is sufficiently small so that $\int_{\mathrm{C}^{\mathrm{C}}}|\mathrm{h}| \leq \varepsilon$ and $\int_{\mathrm{N}_{\mathrm{k}}}|\mathrm{h}| \leq \varepsilon$, therefore $\int_{\mathrm{E}}|\mathrm{h}| \geq \int_{\mathrm{F}_{\mathrm{k}}^{\prime}}|\mathrm{h}|-\varepsilon \geq \int_{\mathrm{F}_{\mathrm{k}}}|\mathrm{h}|-3 \varepsilon$ and then, in view of (2.6) and (2.7).
$\int_{\mathrm{X}}(\mathrm{f}-\mathrm{g}) \operatorname{sign}_{0}(\mathrm{u}-\mathrm{v})+\int_{\{\mathrm{u}=\mathrm{v}\}}|\mathrm{f}-\mathrm{g}|=\int_{\mathrm{X}} \mathrm{h} \varphi+\int_{\mathrm{E}}|\mathrm{h}| \geq-4 \varepsilon$, for any $\varepsilon>0$.
This completes the proof of (2.2).
(ii) Its proof is the same as in [8] and [9], we give an outline for this. For $\alpha>0$, consider
$\mathrm{W}_{\mathrm{i}, \alpha}=\left(\omega_{\mathrm{i}, \alpha}, \tau \omega_{\mathrm{i}, \alpha}\right)=\mathrm{J}_{\alpha}^{\mathrm{A}_{1}} u_{\mathrm{i}}=\left(\mathrm{I}+\alpha \mathrm{A}_{1}\right)^{-1} \mathrm{u}_{\mathrm{i}} \in \mathrm{D}\left(\mathrm{A}_{1}\right), \mathrm{i}=1,2$,
$Y_{i, \alpha}=\left(y_{i, \alpha}, z_{i, \alpha}\right)=A_{1} W_{i, \alpha}=A_{1, \alpha} u_{i}=\frac{1}{\alpha}\left(u_{i}-W_{i, \alpha}\right)$
Consider $\mathrm{p}_{\mathrm{n}}(\mathrm{r})=\mathrm{nT}_{\underline{1}}(\mathrm{r})$ and $\mathrm{j}_{\mathrm{n}}(\mathrm{r})=\int_{0}^{\mathrm{r}} \mathrm{p}_{\mathrm{n}}(\mathrm{s}) \mathrm{ds}$, then by definition of the subdifferential $\partial \mathrm{j}_{\mathrm{n}}=\mathrm{j}_{\mathrm{n}}^{\prime}$, we have
$\mathrm{j}_{\mathrm{n}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)-\mathrm{j}_{\mathrm{n}}\left(\omega_{1, \alpha}-\omega_{2, \alpha}\right) \geq \alpha p_{\mathrm{n}}\left(\omega_{1, \alpha}-\omega_{2, \alpha}\right)\left(\mathrm{y}_{1, \alpha}-\mathrm{y}_{2, \alpha}\right) \geq 0$, μ.a.e. on X . Then
$\int_{X} j_{n}\left(u_{1}-u_{2}\right)-\int_{X} j_{n}\left(\omega_{1, \alpha}-\omega_{2, \alpha}\right) \geq \alpha \int_{X} p_{n}\left(\omega_{1, \alpha}-\omega_{2, \alpha}\right)\left(y_{1, \alpha}-y_{2, \alpha}\right)$.
Since $\left|j_{n}(r)\right| \uparrow j(r)=|r|$, if $r \rightarrow+\infty$, then applying the Lebesgue convergence theorem in $L^{1}(X, \mathcal{B}, \mu)$, we obtain:
$\int_{X}\left(\left|u_{1}-u_{2}\right|-\left|\omega_{1, \alpha}-\omega_{2, \alpha}\right|\right) \geq 0$
Next, $\partial j(r)=\operatorname{sign}(r)$, then for every $\varphi \in \operatorname{sign}\left(u_{1}-u_{2}\right)$, μ.a.e. on X we have:
$\left|u_{1}-u_{2}\right|-\left|\omega_{1, \alpha}-\omega_{2, \alpha}\right| \leq\left[\left(u_{1}-\omega_{1, \alpha}\right)-\left(u_{2}-\omega_{2, \alpha}\right)\right] \varphi=\alpha .\left(y_{1, \alpha}-y_{2, \alpha}\right) \varphi$, on \mathbb{R}^{N}, then
$\int_{\mathrm{X}}\left(\mathrm{y}_{1, \alpha}-\mathrm{y}_{2, \alpha}\right) \varphi \geq \int_{\mathrm{X}}\left(\left|\mathrm{u}_{1}-\mathrm{u}_{2}\right|-\left|\omega_{1, \alpha}-\omega_{2, \alpha}\right|\right) \geq 0$
Since, $Y_{i, \alpha} \rightarrow A_{1} u_{i}$ in $L^{1}(X, \mathcal{B}, \mu)$, if $\alpha \rightarrow 0$, then (2.3) is proved.

Applications

We consider the problem

$$
\left\{\begin{array}{c}
-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]=\mathrm{f} \text { in } \Omega \tag{3.1}\\
\mathrm{a}(., \mathrm{Du}) v=\mathrm{g} \text { on } \partial \Omega
\end{array}\right.
$$

Where $f, g \in L^{1}$. Let $T_{k}(r)=\max \{-k, \min (r, k)\}, k>0$ and $r \in \Omega$. $\mathcal{M}(\Omega)=\{u: \Omega \rightarrow \mathbb{R}, u$ is measurable .
$\mathcal{L}_{0}(\Omega)=\{\mathrm{u} \in \mathcal{M}(\Omega)$, such that meas $\{|\mathrm{u}|>k\}<+\infty$, for every $\mathrm{k}>0\}$.
Definition 3.1. u is an entropy solution for the problem (3.1), if $u \in \mathcal{L}_{0}(\Omega), D T_{k}(u) \in L^{p}(\Omega), \forall k>0$ and $\forall \varphi \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$,

$$
\int_{\Omega} a(x, D u) D T_{k}(u-\varphi) \leq \int_{\Omega} f T_{k}(u-\varphi)+\int_{\partial \Omega} g T_{k}(\tau u-\tau \varphi) .
$$

Definition 3.2. u is a renormalized solution for the problem (3.1), if $u \in \mathcal{L}_{0}(\Omega), D T_{k}(u) \in L^{p}(\Omega), \forall k>0$,
$\lim _{\mathrm{h} \rightarrow+\infty} \int_{\mathrm{h} \leq|\mathrm{u}| \leq \mathrm{k}+\mathrm{h}}|\mathrm{Du}|^{\mathrm{p}}=0$ and $\forall \varphi \in \mathrm{W}^{1, \mathrm{p}}(\Omega) \cap \mathrm{L}^{\infty}(\Omega), \int_{\Omega} \mathrm{S}(\mathrm{u}) \mathrm{a}(\mathrm{x}, \mathrm{Du}) \mathrm{D} \varphi+\int_{\Omega} \mathrm{S}^{\prime}(\mathrm{u}) \varphi \mathrm{a}(\mathrm{x}, \mathrm{Du}) \operatorname{Du}=\int_{\Omega} \mathrm{f} \varphi \mathrm{S}(\mathrm{u})+\int_{\partial \Omega} \mathrm{g} \tau \varphi \mathrm{S}(\tau \mathrm{u})$
For all regular function S such that has a compact support.
Lemma3.1. A renormalized solution in L^{1} is an entropy solution.
Proof. If u is a renormalized solution of (3.1), $\forall \psi \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$

$$
\int_{\Omega} \mathrm{S}(\mathrm{u}) \mathrm{a}(\mathrm{x}, \mathrm{Du}) \nabla \psi+\int_{\Omega} \mathrm{S}^{\prime}(\mathrm{u}) \psi \mathrm{a}(\mathrm{x}, \mathrm{Du}) \mathrm{Du}=\int_{\Omega} \mathrm{f} \psi \mathrm{~S}(\mathrm{u})+\int_{\partial \Omega} \mathrm{g} \tau \psi \mathrm{~S}(\tau \mathrm{u}) .
$$

Let $\psi=T_{k}(u-\varphi), \varphi \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, and $S=S_{n}$ with S_{n} regular, $0 \leq S_{n} \leq 1, S(x)=0$ if $|\mathrm{x}| \geq \mathrm{n}+1, \mathrm{~S}(\mathrm{x})=1$ if $|\mathrm{x}| \leq \mathrm{n}$ and radial piecewise linear. Then

$$
\int_{\Omega} \mathrm{S}_{\mathrm{n}}(\mathrm{u}) \mathrm{a}(\mathrm{x}, D \mathrm{Du}) \mathrm{DT}_{\mathrm{k}}(\mathrm{u}-\varphi)+\int_{\Omega} \mathrm{S}_{\mathrm{n}}^{\prime}(\mathrm{u}) \mathrm{T}_{\mathrm{k}}(\mathrm{u}-\varphi) \mathrm{a}(\mathrm{x}, D \mathrm{D}) D \mathrm{u} \leq \int_{\Omega} \mathrm{fT}_{\mathrm{k}}(\mathrm{u}-\varphi) \mathrm{S}_{\mathrm{n}}(\mathrm{u})+\int_{\partial \Omega} \mathrm{gT}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi) \mathrm{S}_{\mathrm{n}}(\tau \mathrm{u}) .
$$

If $n \rightarrow \infty, S_{n} \rightarrow 1$, then $\left|f S_{n} \mathrm{~T}_{\mathrm{k}}(\mathrm{u}-\varphi)\right| \leq\left|f \mathrm{~T}_{\mathrm{k}}(\mathrm{u}-\varphi)\right|$ and $\left|g S_{n} \mathrm{~T}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi)\right| \leq\left|g \mathrm{~T}_{\mathrm{k}}(\tau u-\tau \varphi)\right|$.
By dominated convergence

$$
\int_{\Omega} \mathrm{fS}_{\mathrm{n}} \mathrm{~T}_{\mathrm{k}}(\mathrm{u}-\varphi) \rightarrow \int_{\Omega} \mathrm{fT}_{\mathrm{k}}(\mathrm{u}-\varphi) \text { and } \int_{\partial \Omega} \mathrm{gS}_{\mathrm{n}} \mathrm{~T}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi) \rightarrow \int_{\partial \Omega} \mathrm{gT}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi)
$$

Since $\operatorname{DT}_{\mathrm{k}}(\mathrm{u}-\varphi) \in \mathrm{L}^{\mathrm{p}}(\Omega)$ and $\mathrm{a}(\mathrm{x}, \mathrm{Du}) \in \mathrm{L}^{\mathrm{p}^{\prime}}(\Omega)$ then
 By $(\mathrm{H} 4)\left|\int_{\mathrm{n} \leq \leq \mathrm{u} \mid \leq \mathrm{n}+1} \mathrm{a}(\mathrm{x}, \mathrm{Du}) \mathrm{T}_{\mathrm{k}}(\mathrm{u}-\varphi) \mathrm{Du}\right| \leq \mathrm{c}\left\|\mathrm{T}_{\mathrm{k}}(\mathrm{u}-\varphi)\right\|_{\infty} \int_{\mathrm{n} \leq|\mathrm{u}| \leq \mathrm{n}+1}|\mathrm{Du}|^{\mathrm{p}}$ for $\mathrm{k}=1$ by definition of renormalized solution:
$\lim _{\mathrm{h} \rightarrow \infty} \int_{\mathrm{h} \leq|u| \leq \mathrm{h}+1}|\mathrm{Du}|^{\mathrm{p}}=0$ then
$\int_{\Omega} \mathrm{S}_{\mathrm{n}}^{\prime}(\mathrm{u}) \mathrm{a}(\mathrm{x}, \mathrm{Du}) \mathrm{T}_{\mathrm{k}}(\mathrm{u}-\varphi) \mathrm{Du} \rightarrow 0$ finally
$\int_{\Omega} \mathrm{a}(\mathrm{x}, D \mathrm{Du}) \mathrm{DT}_{\mathrm{k}}(\mathrm{u}-\varphi) \leq \int_{\Omega} \mathrm{fT}_{\mathrm{k}}(\mathrm{u}-\varphi)+\int_{\partial \Omega} \mathrm{gT}_{\mathrm{k}}(\tau \mathrm{u}-\tau \varphi)$.
Then the renormalized solution is an entropy solution.

Lemma3.2. An entropy solution is a renormalized solution.

Proof. From the uniqueness of entropy and renormalized solutions and by Lemma 3.1 we can conclude that an entropy solution is a renormalized solution.

Theorem 3.1. If $u, v \in \mathcal{M}$ are two entropy solutions to (3.1) then $u=v$.
Proof. If f and $g \in L^{1}, u \in \mathcal{M}$ is an entropy solution to (3.1) and $v \in \mathcal{M}$ is a renormalized solutions to (3.1) (entropy solution). There exists $v_{n} \in L^{1}$ is a renormalized solution to (3.1) with $v_{n} \rightarrow v$ in \mathcal{M} and $\left(f_{n}, g_{n}\right) \rightarrow(f, g) \in L^{1}$. Consider then, for a fixed k,

$$
\begin{aligned}
& \mathrm{S}_{1}(\mathrm{~h})=\left\{\left|\mathrm{u}-\mathrm{v}_{\mathrm{n}}\right|<k\right\} \cap\left[\{|\mathrm{u}|<h\} \cup\left\{\left|\mathrm{v}_{\mathrm{n}}\right|<h\right\}\right] \\
& \mathrm{S}_{2}(\mathrm{~h})=\left\{\left|\mathrm{u}-\mathrm{v}_{\mathrm{n}}\right|<k\right\} \cap\left[\{|\mathrm{u}| \geq \mathrm{h}\} \cup\left\{\left|\mathrm{v}_{\mathrm{n}}\right|<h\right\}\right] \\
& \mathrm{S}_{2}^{\prime}(\mathrm{h})=\left\{\left|\mathrm{u}-\mathrm{v}_{\mathrm{n}}\right|<k\right\} \cap\left[\left\{\left|\mathrm{v}_{\mathrm{n}}\right| \geq \mathrm{h}\right\} \cup\{|\mathrm{u}|<h\}\right],
\end{aligned}
$$

We select $\varphi=T_{h} v_{n}$ in the equation related to u. Then, taking into account that

$$
\int_{\mathrm{S}_{2}^{\prime}}\langle\mathrm{a}(., \mathrm{Du}), \mathrm{Du}\rangle \geq 0 \text {, and } \int_{\mathrm{S}_{2}}\left\langle\mathrm{a}(., \mathrm{Du}),-\mathrm{Dv}_{\mathrm{n}}\right\rangle \leq \int_{\mathrm{S}_{2}}\left\langle\mathrm{a}(., \mathrm{Du}), \mathrm{Du}-\mathrm{Dv}_{\mathrm{n}}\right\rangle \text {, we have }
$$

$$
-\int_{S_{2}}\left\langle a(., D u),-\mathrm{Dv}_{\mathrm{n}}\right\rangle+\int_{\mathrm{S}_{1}}\left\langle\mathrm{a}(., \mathrm{Du}), \mathrm{Du}-\mathrm{Dv}_{\mathrm{n}}\right\rangle \leq \int_{\Omega} \mathrm{fT}_{\mathrm{k}}\left(\mathrm{u}-\mathrm{T}_{\mathrm{h}} \mathrm{v}_{\mathrm{n}}\right)+\int_{\partial \Omega} g \mathrm{~T}_{\mathrm{k}}\left(\tau u-\mathrm{T}_{\mathrm{h}} \tau \mathrm{v}_{\mathrm{n}}\right) .
$$

On the other hand by (H 4),

$$
\begin{gathered}
\left|\int_{S_{2}}\left\langle\mathrm{a}(., \mathrm{Du}),-\mathrm{Dv}_{\mathrm{n}}\right\rangle\right| \leq \mathrm{C}| | \mathrm{Dv}_{\mathrm{n}} \|_{\mathrm{L}^{\mathrm{p}}(\{\mathrm{~h}-\mathrm{k} \leq|\mathrm{v}|<h\})} \times\left(\left\|\mathrm{h}_{0}\right\|_{\mathrm{L}^{\mathrm{p}^{\prime}}(\{\mathrm{h} \leq|\mathrm{u}|<h+k\})}+\left\|\left||\mathrm{Du}|^{\mathrm{p}^{\mathrm{p}-1}} \|_{\mathrm{L}^{\mathrm{p}^{\prime}}(\{\mathrm{h} \leq \leq \mathrm{u} \mid<h+k\})}\right)\right.\right. \\
\quad \text { or } \lim _{\mathrm{h} \rightarrow+\infty} \int_{\mathrm{h} \leq\left|\mathrm{v}_{\mathrm{n}}\right|<h+k}\left|\mathrm{Dv}_{\mathrm{n}}\right|^{\mathrm{p}}=0 \text { then } \lim _{\mathrm{h} \rightarrow+\infty} \int_{\mathrm{S}_{2}}\left\langle\mathrm{a}(., \mathrm{Du}),-\mathrm{Dv}_{\mathrm{n}}\right\rangle=0
\end{gathered}
$$

Next, we do the same for the equation related to v_{n}, with test function $\varphi=T_{h} u$ and add the two inequalities.

$$
\begin{aligned}
\int_{\Omega} \lim _{h \rightarrow+\infty}\langle a(., D u) & \left.-a\left(., D v_{n}\right), D u-D v_{n}\right\rangle \mathbf{1}_{S_{1}(h)}+\lim _{h \rightarrow+\infty} \int_{S_{2}(h)}\left\langle a(., D u),-D v_{n}\right\rangle+\lim _{h \rightarrow+\infty} \int_{S_{2}^{\prime}(h)}\left\langle a\left(., D v_{n}\right),-D u\right\rangle \\
& \leq \lim _{h \rightarrow+\infty} \int_{\Omega} f\left(T_{k}\left(u-T_{h} v_{n}\right)\right)+f_{n}\left(T_{k}\left(v_{n}-T_{h} u\right)\right)+\lim _{h \rightarrow+\infty} \int_{\partial \Omega} g\left(T_{k}\left(\tau u-\tau T_{h} v\right)\right)+g_{n}\left(T_{k}\left(\tau v_{n}-\tau T_{h} u\right)\right)
\end{aligned}
$$

Then, by applying the Lebesgue dominated convergence on the right, and letting $\mathrm{n} \rightarrow \infty$, we obtain

$$
\int_{\{|u-v|<k\}}\langle\mathbf{a}(., D u)-\mathbf{a}(., D v), D u-D v\rangle=0, \mathrm{k}>0 .
$$

It arises from H3 (Leary-Lions), that $D u=D v$, a.e in Ω (if $n \rightarrow \infty$) and therefore $u-v=0$, a.e. in Ω. This leads to $\tau T_{k} u=\tau T_{k} v a$.eon $\partial \Omega$, for any $\mathrm{k}>0$. Thus $\tau \mathrm{u}=\tau \mathrm{v}$ a.eon $\partial \Omega$.

Theorem 3.2. If β, γ are nondecreasing continuous function on \mathbb{R} such that $\beta(0)=\gamma(0)=0,(f, g) \in L^{1}$, then, there exists a unique entropy solution u in \mathcal{M} to the problem:

$$
\left\{\begin{array}{c}
-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]+\beta(\mathrm{u})=\mathrm{f} \text { in } \Omega \tag{3.2}\\
\mathrm{a}(., \mathrm{Du}) v+\gamma(\tau u)=\mathrm{g} \text { on } \partial \Omega
\end{array}\right.
$$

Proof. If u and v are two entropy solutions to (3.2) in \mathcal{M} with the same data $(f, g) \in L^{1}$, then applying (2.2), since $\beta(u)=\beta(v)$ a.e. on $\{u=v\}$ and $\gamma(\tau u)=\gamma(\tau v) d \sigma-a . e$. on $\{u=v\}$, one obtain:

$$
-\int_{\Omega}|\beta(u)-\beta(v)|-\int_{\partial \Omega}|\gamma(\tau u)-\gamma(\tau v)| \geq 0 \text { thus } \beta(u)=\beta(v) \text { a. e. on } \Omega \text { and } \gamma(\tau u)=\gamma(\tau v) \text { on } \partial \Omega \text {. }
$$

If $\beta(\mathbf{u})=\mathbf{h}$ and $\gamma(\tau u)=\mathbf{k}$, then u and v are two entropy solutions in \mathcal{M} to the problem, $\mathbf{A}(u, \tau u)=(\mathbf{f}-\mathbf{h}, \mathrm{g}-\mathbf{k})$. Then, the uniqueness of the entropy solution u to (3.2) derives from Theorem 3.1.

Corollary 3.1. If λ and $\tilde{\lambda}$ are bounded measure on Ω and $\partial \Omega$, then $-\operatorname{div}[\mathrm{a}(., \mathrm{Du})]+\beta(\mathrm{u}) \ni \lambda$ on Ω and $\mathrm{a}(., \mathrm{Du}) . v+$ $\gamma(\tau u) \ni \tilde{\lambda}$ on $\partial \Omega$ has at least a weak solution.
Proof. Set $\mathrm{AU}=(-\operatorname{div}[\mathrm{a}(., \mathrm{Du})], \mathrm{a}(., \mathrm{Du}) . v)$, if $\mathrm{U}_{\mathrm{n}}, \mathrm{F}_{\mathrm{n}} \in \mathrm{L}^{1}(\Omega \cup \partial \Omega)$ is some approximative sequence of solutions to the equation $A U_{n}+H_{n} \ni F_{n}, H_{n} \in B U_{n}$ previous arguments is that $\left(H_{n}\right)$ is a Cauchy sequence in L^{1}, then the classical methods are applied.

References

[1] F. Andreu, J. M. Mazón, S. Sigura de León, J. Toledo. 1997. Quasi-linearelliptic and parabolic equations in L^{1} with non-linear boundary conditions, Adv. Math. Sci. Appl.(7) 183-213.
[2] K.Ammar, P.Wittbold. 2005.Quasi-linear parabolic problems in L^{1} with non homogeneous conditions on the boundary, j. evolequ. (5) 01-33.
[3] Ph.Bénilan, M.G.Crandall, Completely accretive operators, in SemigroupTheory and Evolution Equations (Ph Clement et al.,eds.), Marcel Dekk.
[4] G.B.Folland. 1999. Real Analysis k Modern Techniques and Their Applications, John Wiley\&sons,2nded.
[5] F.Murat. 1994. Proceeding of the international conferences on Nonlinear Analysis, Besançon.
[6] A.Prignet. 1996.problèmes elliptiques et paraboliques dans un cadre non variationnel, Thèse.
[7] J.Serrin. 1964.Pathological solutions of elliptic differential equations, Ann. ScuolaNorm.Pisa. CI. Sci. 385-387.
[8] A.Siai. 2005.Nonlinear Neumann Problem in bounded Lipschitz domains, Electronic Journal of Differential Equations, (09), 1-16.
[9] A.Siai. 2006. A Fully Nonlinear Neumann Problem Non homogeneous Neumann Problem, Potential Analysis, Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V., (24, N1). 15-45.

