On R^G-Homeomorphisms in Topological Spaces
 Janaki. C ${ }^{1}$, Savithiri. D ${ }^{2}$
 ${ }^{1}$ Department of Mathematics, L.R.G. Govt. College for women, Tirupur.
 janakicsekar@yahoo.com
 ${ }^{2}$ Department of Mathematics, Sree Narayana Guru College, Coimbatore.
 savithirisngcmat@gmail.com

ABSTRACT:

This paper deals with $r^{\wedge} g$ open and closed maps. Also we introduce a new class of maps namely $r^{\wedge} g^{*}$ - homeomorphism which form a subclass of $\mathrm{r}^{\wedge} g$ - homeomorphism.
Mathematics Subject Classification: 54A10
Keywords: $r^{\wedge} g$ closed map; $r^{\wedge} g$ open map; $r^{\wedge} g$ - homeomorphism; $r^{\wedge} g^{*}$. homeomorphism.

Council for Innovative Research

1. INTRODUCTION

Generalized closed mappings were introduced and studied by Malghan [5], Regular closed maps, gpr-closed maps and rg-closed maps have been introduced and studied by Long [4], Gnanambal [2] and Arockiarani [1] respectively. Recently rw closed maps and open maps were introduced by Karpagadevi [3].
The purpose of this paper is to introduce the concept of a new-class of maps called $r^{\wedge} g$-closed maps and $r^{\wedge} g$ open maps. Further we introduce $r^{\wedge} g$ - homeomorphism, $r^{\wedge} g^{\star}$ - homeomorphism and discuss their properties.

2. PRELIMINARIES

In this section, we recollect some definitions which are used in this paper.

Definition 2.1:

A subset A of (X, τ) is said to be
i) an α-open set if $A \subseteq \operatorname{int}((\mathrm{cl}(\operatorname{int}(A)))$ and a α-closed set if $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A}$
ii) a generalized closed (briefly g-closed)[2]set iff $\mathrm{cl}(\mathrm{A}) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
iii) a generalized *closed (briefly g^{*}-closed) [11] set iff $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g -open in X .
iv) a weakly generalized semi closed (briefly wg - closed) [11] if cl(int $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
v) a semi generalized closed (briefly $s g$ - closed)[4$]$ if $s c l(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
vi) a generalized semi closed (briefly gs - closed) $[4]$ if scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open in X.
vii) a regular weakly generalized semi closed (briefly rwg - closed)[11] if cl(int(A) $\subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
viii) a regular generalized weakly semi closed (briefly rgw - closed)[11] if cl(int(A) $\subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X .
$i x$) a semi weakly generalized closed (briefly swg - closed)[11] if cl(int(A) $\subseteq U$ whenever $A \subseteq U$ and U is semiopen in X. x) a regular^ generalized closed (briefly $r^{\wedge} g$ closed) $[8]$ if $g c l(A) \subset U$, whenever $A \subset U$ and U is regular open in X.

The complements of the above mentioned closed sets are their respective open sets.
Definition 2.2: A map $f: X \rightarrow Y$ is said to be
i) a continuous function[1]if $f^{-1}(\mathrm{~V})$ is closed in X for every closed set V in Y .
ii) a wg - continuous [4]if $f^{-1}(V)$ is $w g$ - closed in X for every closed set V in Y.
iii) a sg -continuous [1]if $f^{-1}(V)$ is $r g$ closed in X for every closed set V in Y.
iv) a gs -continuous [1]if $f^{-1}(V)$ is gs closed in X for every closed set V in Y.
v) an rw-continuous [11] if $f^{-1}(V)$ is rw- closed in X for every closed set V in Y.
vi) an rwg-continuous [11] if $f^{-1}(V)$ is rwg- closed in X for every closed set V in Y.
vii) an rgw-continuous [11] if $f^{-1}(V)$ is rgw- closed in X for every closed set V in Y.
viii) a swg -continuous[11] if $f^{-1}(V)$ is swg-closed in X for every closed set V in Y.
$i x)$ an $r^{\wedge} g$-continuous [11] if $f^{-1}(V)$ is $r^{\wedge} g$ - closed in X for every closed set V in Y.

Definition 2.3:

A topological space (X, τ) is said to be
(i) $\quad \mathrm{a} \mathrm{T}_{1 / 2}$ space if every gclosed set is closed.
(ii) an $T_{r^{\wedge} g}$ space if every $r^{\wedge} g$ closed set is closed.

Definition 2.3

A bijective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called
i) homeomorphism if both f and f^{-1} are continuous.
ii) wg - homeomorphism if both f and f^{-1} are wg-continuous.
iii) sg - homeomorphism if both f and f^{-1} are $s g$-continuous.
iv) gs - homeomorphism if both f and f^{-1} are gs-continuous.
v) rw - homeomorphism if both f and f^{-1} are rw-continuous.
vi) $s w g$ - homeomorphism if both f and f^{-1} are swg-continuous.
vii) rwg - homeomorphism if both f and f^{-1} are rwg-continuous.
viii) rgw - homeomorphism if both f and f^{-1} are rgw-continuous.
ix) $r^{\wedge} g$ - homeomorphism if both f and f^{-1} are $r^{\wedge} g$-continuous

3. $\mathbf{R}^{\wedge} \mathrm{G}$ CLOSED MAPS

Definition 3.1:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be regular ${ }^{\wedge}$ generalized (briefly $\left.-r^{\wedge} g\right)$ closed map if the image of every closed set in (X, τ) is $r^{\wedge} \mathrm{g}$ closed in (Y, σ).

Theorem 3.2:

(i) Every closed map is $r^{\wedge} g$ closed map.
(ii) Every rg-closed map is $r^{\wedge} g$ closed map.
(iii) Every g-closed map is $r^{\wedge} g$ closed maps.
(iv) Every g^{*}-closed map is $\mathrm{r}^{\wedge} \mathrm{g}$ closed maps.

Proof:

Follows from the definition.

Remark 3.3:

The converse of the above theorem need not be true as seen from the following examples.

Example 3.4:

- Let $X=\{a, b, c\}, \tau=\{X, \varphi,\{a, b\},\{c\}\}, \sigma=\{Y, \varphi,\{a\},\{b\},\{a, b\}\}$. Let f be the identity map such that $f: X \rightarrow Y$. then f is $r^{\wedge} g$ closed but it is not a closed map.
- Let $X=\{a, b, c, d, e\}, \tau=\{X, \varphi,\{b, c, d, e\}\}, \sigma=\{Y, \varphi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$. Then define $f: X \rightarrow Y$, the identity map, then f is $r^{\wedge} g$ closed map but it is not $r g$ closed map.
- Let $X=\{a, b, c, d\}=Y, \tau=\{X, \varphi,\{a, b\},\{c, d\}\}, \sigma=\{Y, \varphi,\{a\},\{b, c\},\{a, b, c\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=b, f(b)=a, f(c)$ $=c, f(d)=a$, then f is $r^{\wedge} g$ closed map but it is not g-closed map.
- Let $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{b\},\{b, c\},\{a, d\},\{a, b, d\}\}, \sigma=\{Y, \varphi,\{a, b\},\{c\},\{a, b, c\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=a$, $f(b)=b, f(c)=d, f(d)=c$, then f is $r^{\wedge} g$ closed map but it is not g^{*} closed map.

Theorem 3.5:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is $r^{\wedge} g$ closed if and only if for each subset S of (Y, σ) and each open set U containing $f^{-1}(S)$ there is an $r^{\wedge} g$ open V set of (Y, σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:

Suppose f is $r^{\wedge} g$ closed set of (X, τ). Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^{-1}(S) \subseteq U$. Now $X-U$ is closed set in (X, τ). Since f is $r^{\wedge} g$ closed, $f(X-U)$ is an $r^{\wedge} g$ closed set in (Y, σ). Then $V=Y-f(X-U)$ is $r^{\wedge} g$-open set in $(Y, \sigma) . f^{-1}(S) \subseteq U$ implies $S \subset V$ and $f^{-1}(V)=X-f^{-1}(f(X-U)) \subset X-(X-U)=U$, i.e., $f^{-1}(V) \subseteq U$.
Conversely, let F be a closed set of (X, τ). Then $f^{-1}\left(f(F)^{c}\right) \subset F^{c}$ is an open set in (X, τ). By hypothesis, there exists an $r^{\wedge} g$ open set V in (Y, σ) such that $f(F)^{c} \subseteq V$ and $f^{-1}(V) \subseteq F^{c}$ and so $F \subseteq\left(f^{-1}(V)\right)^{c}$. Hence $V^{c} \subseteq f(F) \subseteq f\left(\left(\left(f^{-1}(V)\right)^{c}\right) \subseteq V^{c}\right.$ which implies $f(F) \subseteq V^{c}$. Since V^{c} is $r^{\wedge} g$ closed, $f(F)$ is $r^{\wedge} g$ closed. That is $f(F)$ is $r^{\wedge} g$ closed in (Y, σ). Therefore f is $r^{\wedge} g$ closed map.

Remark 3.6:

The composition of two $r^{\wedge} g$ closed maps need not be $r^{\wedge} g$ closed map in general and this is shown by the following example.

Example 3.7:

Let $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{b\},\{b, c\},\{a, d\},\{a, b, d\}\}$,
$\eta=\{Z, \varphi,\{a\},\{b, c\},\{a, b, c\}\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$, the identity map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ by $g(a)=a, g(b)=c, g(c)=d, g(d)$ $=b$. Then f and g are $r^{\wedge} g$ closed maps. But $g \circ f(d)=g(f(d))=g(d)=\{b\}$ is not $r^{\wedge} g$ closed in (Z, η). Hence $g^{\circ} f$ is not $r^{\wedge} g$ closed map.

Theorem 3.8:

If $f:(X, \tau) \rightarrow(Y, \sigma)$ is closed map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is $r^{\wedge} g$ closed map, then the composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is $r^{\wedge} g$ closed map.

Proof:

Let F be any closed set in (X, τ). Since f is a closed map, $f(F)$ is closed set in (Y, σ). Since g is $r^{\wedge} g$ closed map, $g(f(F))=g \circ$ $f(F)$ is $r^{\wedge} g$ closed set in (Z, η). Thus $g \circ f$ is $r^{\wedge} g$ closed map.

Remark 3.9:

If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $r^{\wedge} g$ closed map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is closed map, then the composition need not be an $r^{\wedge} g$ closed map as seen from the following example.

Example 3.10:

Let $X=Y=Z=\{a, b, c, d\}, \quad \tau=\{X, \varphi,\{a\},\{c\},\{d\},\{a, c\},\{a, d\},\{c, d\},\{a, c, d\}\}, \sigma=\{Y, \varphi,\{a\},\{c, d\},\{a, c, d\}\}, \eta=\{Z, \varphi,\{a\},\{b, c\},\{a, b, c\}\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$, the identity map and $g:(Y, \sigma) \rightarrow(Z, \eta)$ by $g(a)=a, g(b)=d, g(c)=c, g(d)=b$. Then f is $r^{\wedge} g$ closed map and g is a closed map. But $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ is not an $r^{\wedge} g$ closed map, since $\left.g \circ f\{a, b\}=g(f a, b\}\right)=g(a, b)=\{a, d\}$ is not an $r^{\wedge} g$ closed set in (Z, η).

Theorem 3.11:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ and $g:(Y, \sigma) \rightarrow(Z, \eta)$ be two $r^{\wedge} g$ closed maps where (Y, σ) is $T_{r^{\wedge} g}$ space. Then the composition $g \circ f$: $(X, \tau) \rightarrow(Z, \eta)$ is $r^{\wedge} g$ closed.

Proof:

Let A be a closed set of (X, τ). Since f is $r^{\wedge} g$ closed, $f(A)$ is $r^{\wedge} g$ closed in (Y, σ). By hypothesis, $f(A)$ is closed. Since g is $r^{\wedge} g$ closed, $\quad g(f(A))$ is $r^{\wedge} g$ closed in (Z, η) and $g(f(A))=g \circ f(A)$. Therefore $g \circ f$ is $r^{\wedge} g$ closed.

Theorem 3.12:

If $f:(X, \tau) \rightarrow(Y, \sigma)$ is g-closed, $g:(Y, \sigma) \rightarrow(Z, \eta)$ be $r^{\wedge} g$ closed and (Y, σ) is $T_{1 / 2}$ space then the composition $g \circ f:(X, \tau) \rightarrow$ (Z, η) is $r^{\wedge} g$ closed.

Proof:

Let A be a closed set of (X, τ). Since f is g-closed, $f(A)$ is g-closed in (Y, σ). By hypothesis $f(A)$ is closed. Since g is $r^{\wedge} g$ closed, $g(f(A))=g \circ f(A)$ is $r^{\wedge} g$ closed in (Z, η). Thus $g \circ f$ is $r^{\wedge} g$ closed.

Theorem 3.13:

Let $f:(X, \tau) \rightarrow(Y, \sigma), g:(Y, \sigma) \rightarrow(Z, \eta)$ be two mappings such that their composition $g \circ f:(X, \tau) \rightarrow(Z, \eta)$ be $r^{\wedge} g$ closed map. Then the following statements are true.
(i) If f is continuous and surjective, then g is $r^{\wedge} g$ closed.
(ii) If g is $r^{\wedge} g$ irresolute and injective, then f is $r^{\wedge} g$ closed.
(iii) If f is g-continuous, surjective and (X, τ) is a $T_{1 / 2}$ space then g is $r^{\wedge} g$ closed.

Proof:

(i) Let A be a closed set of (Y, σ). Since f is continuous, $f^{-1}(A)$ is closed in $(X, \tau) . g \circ f$ is $r^{\wedge} g$ closed, therefore $g \circ f(f$ $\left.{ }^{1}(A)\right)$ is $r^{\wedge} g$ closed in (Z, η). That is $g(A)$ is $r^{\wedge} g$ closed in (Z, η),since f is surjective. Therefore g is $r^{\wedge} g$ closed.
(ii) Let A be a closed set of (X, τ). Since $g \circ f$ is $r^{\wedge} g$ closed, $g \circ f(B)$ is $r^{\wedge} g$ closed set in (Z, η). g is $r^{\wedge} g$ irresolute, g. ${ }^{1}(g \circ f(B))$ is $r^{\wedge} g$ closed set in (Y, σ). That is $f(B)$ is $r^{\wedge} g$ closed in (Y, σ), since f is injective. Hence f is $r^{\wedge} g$ closed.
(iii) Let C be a closed set of (Y, σ). Since f is g-continuous $f^{-1}(C)$ is g-closed in (X, τ). Since (X, τ) is a $T_{1 / 2}$ space, f^{-} ${ }^{1}(C)$ is closed. By hypothesis, $g \circ f^{-1}(f(C))=g(C)$ is $r^{\wedge} g$ closed in (Z, η), since f is surjective. Therefore g is $r^{\wedge} g$ closed.

4. $\mathbf{R}^{\wedge} G$ OPEN MAPS:

Definition4.1:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called an $r^{\wedge} g$ open map if the image $f(A)$ is $r^{\wedge} g$ open in (Y, σ) for each open set A in (X, τ).

Theorem 4.2:

Every open map is $r^{\wedge} g$ open.
Proof: Obvious.
Remark 4.3: The converse of the above theorem need not be true as seen from the following example.

Example 4.4:

Let $X=Y=\{a, b, c\}, \tau=\{X, \varphi,\{b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{b\},\{a, b\}\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$ the identity map, then f is $r^{\wedge} g$ open but it is not an open map.

Theorem 4.5:

For any bijection map $f:(X, \tau) \rightarrow(Y, \sigma)$, the following statements are equivalent.
(i) $\quad f^{-1}:(Y, \sigma) \rightarrow(X, \tau)$ is $r^{\wedge} g$ continuous.
(ii) f is $r^{\wedge} g$ open map and
(iii) f is $r^{\wedge} g$ closed map.

Proof:

(i) \rightarrow (ii) : Let U be an open set of (X, τ). By assumption, $\left(f^{-1}\right)^{-1}(U)=f(U)$ is $r^{\wedge} g$ open in (Y, σ) and so f is $r^{\wedge} g$ open
(ii) \rightarrow (iii) : Let F be a closed set of (X, τ). Then F^{c} is open set on (X, τ). By hypothesis, $f\left(F^{c}\right)$ is $r^{\wedge} g$ open in (Y, σ). That is $f\left(F^{c}\right)=f(F)^{c}$ is $r^{\wedge} g$ open in (Y, σ). Thus $f(F)$ is $r^{\wedge} g$ closed in Y. Hence f is $r^{\wedge} g$ closed.
(iii) \rightarrow (i) : Let F be a closed set in X. By hypothesis, $f(F)$ is $r^{\wedge} g$ closed in Y. That is $f(F)=\left(f^{-1}\right)^{-1}(F)$ and therefore f^{-1} is continuous.

Theorem 4.6:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is $r^{\wedge} g$ open iff for any subset S of (X, τ) containing $f^{-1}(S)$, there exists an $r^{\wedge} g$ closed set K of (Y, σ) containing S such that $f^{-1}(K) \subset F$.

Proof: Obvious.

5. R^G HOMEOMORPHISMS

Definition 5.1:

A bijection $f:(X, \tau) \rightarrow(Y, \sigma)$ is called regular ^ generalized (briefly $r^{\wedge} g$) homeomorphism if both f and f^{-1} are $r^{\wedge} g$ continuous.
We say that the spaces (X, τ) and (Y, σ) are $r^{\wedge} g$-homeomorphic if there exists an $r^{\wedge} g$ - homeomorphism from (X, τ) onto (Y, σ).

Definition 5.2:

A bijection $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $r^{\wedge} g^{\star}$-homeomorphism if both f and f^{-1} are $r^{\wedge} g$ irresolutes.
We say that the spaces (X, τ) and (Y, σ) are $r^{\wedge} g^{*}$-homeomorphic if there exists an $r^{\wedge} g^{*}$ - homeomorphism from (X, τ) onto (Y, σ).
We denote the family of all $r^{\wedge} g^{\star}$ - homeomorphisms of a topological spaces of (X, τ) itself by $r^{\wedge} g^{\star}-h(X, \tau)$.

Theorem 5.3:

(i) Every homeomorphism is an $r^{\wedge} g$ homeomorphism.
(ii) Every g-homeomorphism is an $r^{\wedge} g$ homeomorphism.
(iii) Every $r^{\wedge} g^{\star}$ - homeomorphism is an $r^{\wedge} g$ homeomorphism.
(iv) Every rwg homeomorphism is an $r^{\wedge} \mathrm{g}$ homeomorphism.
(v) Every rgw homeomorphism is an $r^{\wedge} g$ homeomorphism.

Proof:

Follows from the definition.

Remark 5.4:

The converse of the above theorem need not be true as seen from the following examples.

Example 5.5:

- Let $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{c, d\},\{a, c, d\}\}$. Define a map $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=d, f(c)=c, f(d)=b$. Then f is $r^{\wedge} g$ homeomorphism but not homeomorphism.
- Let $X=Y=\{a, b, c\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\}\}, \sigma=\{Y, \varphi,\{a, b\},\{c\}\}$. Define an identity map $f:(X, \tau) \rightarrow(Y, \sigma)$. Then f is $r^{\wedge} g$ homeomorphism but not g homeomorphism.
- Let $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{c, d\},\{a, c, d\}\}$. Define a map $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=d, f(c)=c, f(d)=b$. Then f is $r^{\wedge} g$ homeomorphism but not $r^{\wedge} g^{*}$ homeomorphism
- Let $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{c\},\{a, c\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{c\},\{d\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c, d\}\}$. Define a map $g:(X, \tau) \rightarrow(Y, \sigma)$ by $g(a)=b, g(b)=d, g(c)=c, g(d)=a$, then g is rgw and rwg homeomorphisms but not $r^{\wedge} g$ homeomorphism.

Remark 5.6:

The composition of two $r^{\wedge} g$ homeomorphism need not be $r^{\wedge} g$ homeomorphism in general as seen from the following example.

Example 5.7:

Let $X=Y=Z=\{a, b, c, d\}, \quad \tau=\{X, \varphi \quad,\{a\},\{b\},\{a, b\},\{a, b, c\}\}, \quad \sigma=\{Y, \varphi,\{a\}, \quad\{c, d\}, \quad\{a, c, d\}\}, \quad \eta=$ $\{Z, \varphi,\{a\},\{c\},\{d\},\{a, c\},\{a, d\},\{c, d\},\{a, c, d\}\}$.

Define $f:(X, \tau) \rightarrow(Y, \sigma), g:(Y, \sigma) \rightarrow(Z, \eta)$, the identity mappings, then f and g are $r^{\wedge} g$ homeomorphisms. But $g \circ f:(X, \tau) \rightarrow$ (Y, σ) is not an $r^{\wedge} g$ homeomorphism, because for the closed set $\{b\}$ in $(Z, \eta),(g \circ f)^{-1}\{b\}=f^{-1}\left\{g^{-1}\{b\}\right\}=f^{-1}\{b\}=\{b\}$ is not an $r^{\wedge} g$ closed set in (X, τ).

Remark 5.8:

The converse of the above theorem need not be true as seen from the following example.

Remark 5.9:

The concept of $\mathrm{r}^{\wedge} g$ - homeomorphism is independent with the concept of wg - homeomorphism as seen from the following example.

Example 5.10:

* $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{c\},\{a, c\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}$. Define the identity map $f:(X, \tau) \rightarrow$ (Y, φ). Then f is wg homeomorphism but not $\mathrm{r}^{\wedge} \mathrm{g}$ homeomorphism.
* $\mathrm{X}=\mathrm{Y}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}, \sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\}$. The identity map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\mathrm{r}^{\wedge} \mathrm{g}$ homeomorphism but not $w g$ homeomorphism.

Remark 5.11:

$r^{\wedge} g$ - homeomorphism is independent with the concepts of $s g$ - homeomorphism and gs- homeomorphism as seen from the following example.

Example 5.12:

* Let $X=Y=\{a, b, c\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\}\}, \sigma=\{Y, \varphi,\{a, b\},\{c\}\}$. Define an identity map $f:(X, \tau) \rightarrow(Y, \sigma)$. Then f is $r^{\wedge} g$ homeomorphism but not sg-homeomorphism and gs- homeomorphism.
* Let $X=Y=\{a, b, c\}, \tau=\{X,, \varphi,\{a, b\},\{c\}\}, \sigma=\{Y, \varphi,\{a\},\{b\},\{a, b\}\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=c, f(c)=b$, then f is sg and gs homeomorphism but not $\mathrm{r}^{\wedge} \mathrm{g}$ homeomorphism.

Remark 5.13:

The concept of $r^{\wedge} g$ - homeomorphism is independent with the concept of α homeomorphism as seen from the following example.

Example 5.14:

* $X=Y=\{a, b, c\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\}\}, \sigma=\{Y, \varphi,\{a\},\{a, b\}\}$. Define the identity map $f:(X, \tau) \rightarrow(Y, \varphi)$, then f is $r^{\wedge} g$ homeomorphism but not α homeomorphism.
${ }^{*} \mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\mathrm{X}, \varphi,\{a\},\{c\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}, \quad \sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$. Define a map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) by $f(a)=c, f(b)=d, f(c)=a, f(d)=b$. Then f is α homeomorphism but it is not $r^{\wedge} g$ homeomorphism.

Remark 5.15:

$\mathrm{r}^{\wedge} \mathrm{g}$ - homeomorphism is independent with the concepts of swg-homeomorphism as seen from the following example.

Example 5.16:

* $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{c\},\{a, c\},\{a, b\},\{a, b, c\}\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$, then f is $r^{\wedge} g$ homeomorphism but not swg homeomorphism.
* $X=Y=\{a, b, c, d\}, \tau=\{X, \varphi,\{a\},\{c\},\{a, c\},\{a, b\},\{a, b, c\}\}, \sigma=\{Y, \varphi,\{a\},\{c\},\{a, c\},\{c, d\},\{a, c, d\}\}$. Define a map $f:(X, \tau) \rightarrow$ (Y, σ) by $f(a)=c, f(b)=d, f(c)=a, f(d)=b$. Then f is swg homeomorphism but it is not $r^{\wedge} g$ homeomorphism.

The above discussions are implicated as shown below:

where $A \longrightarrow B$ represents A implies B but not conversely, and $A \longleftrightarrow B$ represents A and B are independent.

Theorem 5.17:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be $\mathrm{r}^{\wedge} \mathrm{g}^{\star}$-homeomorphisms. Then their composition $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is also $\mathrm{r}^{\wedge} \mathrm{g}^{\star}-$ homeomorphism.

Proof:

Suppose f and g are $r^{\wedge} g$ homeomorphisms. Then f and g are $r^{\wedge} g$ irresolutes. Let U be $r^{\wedge} g$ closed set in (Z, η). Since g is $r^{\wedge} g$ irresolute, $g^{-1}(U)$ is $r^{\wedge} g$ - closed in (Y, σ). This implies that $\quad f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U)$ is $r^{\wedge} g$ closed in (X, τ), since f is $r^{\wedge} g$ irresolute. Hence ($g \circ f$) is $r^{\wedge} g$ irresolute. Also for an $r^{\wedge} g$ closed set V in (X, τ) we have $g \circ f(V)=g(f(V))$. By hypothesis, $f(V)$ is $r^{\wedge} g$ closed set in (Y, σ), this implies that $g(f(V))$ is $r^{\wedge} g$ closed set in (Z, η) i.e., $g \circ f(V)$ is $r^{\wedge} g$ closed set in (Z, η) implies that $(g \circ f)^{-1}$ is $r^{\wedge} g$ irresolute. Also $g \circ f$ is a bijection. This proves $g \circ f$ is $r^{\wedge} g$ homeomorphism.

Theorem 5.18:

The set $r^{\wedge} g^{\star}-h(X, \tau)$ from (X, τ) onto itself is a group under the composition of functions.

Proof:

Let $f, g \in r^{\wedge} g^{*}-h(X, \tau)$. Then by theorem 5.13, $g \circ f \in r^{\wedge} g^{*}-h(X, \tau)$. The composition of functions is associative and the identity element $I:(X, \tau) \rightarrow(X, \tau)$ belonging to $r^{\wedge} g^{\star}-h(X, \tau)$ serves as the identity element. If $f \in r^{\wedge} g^{\star}-h(X, \tau)$ then $f^{-1} \in r^{\wedge} g^{\star}-$ $h(X, \tau)$. This proves $r^{\wedge} g^{*}-h(X, \tau)$ is a group under the operation of functions.

Theorem 5.19:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an $r^{\wedge} g^{*}$-homeomorphism. Then f induces an isomorphism from the group $r^{\wedge} g^{*}-h(X, \tau)$ onto the group $r^{\wedge} g^{*}-h(Y, \sigma)$.

Proof:

Let $f \in r^{\wedge} g^{*}-h(X, \tau)$. We define a function $\Psi_{f}: r^{\wedge} g^{*}-h(X, \tau) \rightarrow r^{\wedge} g^{*}-h(Y, \sigma)$ by $\Psi_{f}(h)=(f \circ g) \circ f^{-1}$, for every $h \in r^{\wedge} g^{*}-h(X, \tau)$. Then Ψ_{f} is a bijection. Further for all $h_{1}, h_{2} \in r^{\wedge} g^{*}-h(X, \tau) \Psi_{f}\left(h_{1} \circ h_{2}\right)=f \circ\left(h_{1} \circ h_{2}\right) \circ f^{-1}=\left(f \circ h_{1} \circ f^{-1}\right) \circ\left(f \circ h_{2} \circ f^{-1}\right)=\Psi_{f}\left(h_{1}\right) \circ$ $\Psi_{f}\left(\mathrm{~h}_{2}\right)$. Therefore Ψ_{f} is a homeomorphism and so it is an isomorphism induced by f .

Theorem 5.20:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a bijective $r^{\wedge} g$ - continuous map. Then the following are equivalent.
(i) $\quad f$ is an $r^{\wedge} g$ - open map.
(ii) $\quad f$ is an $r^{\wedge} g$ - homeomorphism.
(iii) f is an $r^{\wedge} g$ - closed map.

Proof:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a bijective $\mathrm{r}^{\wedge} \mathrm{g}$ - continuous map.
(i) \rightarrow (ii): Let F be a closed set in (X, τ). Then $X \backslash F$ is open in (X, τ). Since f is $r^{\wedge} g$ - open, then $f(X \backslash F)$ is $r^{\wedge} g$-open in (Y, σ) i.e., $f(F)$ is $r^{\wedge} g$ closed in (Y, σ). Thus f is $r^{\wedge} g$ continuous. Further $\left(f^{-1}\right)^{-1}(F)=f(F)$ is $r^{\wedge} g$ closed in (Y, σ). Thus f^{-1} is $r^{\wedge} g$ continuous. Hence (i) \rightarrow (ii).
(ii) \rightarrow (iii):

Suppose f is an $r^{\wedge} g$ homeomorphism. Then f is bijective, f and f^{-1} are $r^{\wedge} g$ continuous. Let f be an $r^{\wedge} g$ closed set in ($\left.X, \tau\right)$. Since f^{-1} is $r^{\wedge} g$ continuous, $\left(f^{-1}\right)^{-1}(F)=f(F)$ is $r^{\wedge} g$ closed in (Y, σ). Thus f is $r^{\wedge} g$ closed. Thus (ii) \rightarrow (iii).
(iii) \rightarrow (i):

Let f be an $r^{\wedge} g$ closed map. Let V be $r^{\wedge} g$ open in X. Then $X I V$ is $r^{\wedge} g$ closed in (X, τ). Since f is $r^{\wedge} g$ closed, $f(X \backslash V)$ is $r^{\wedge} g$ closed in (Y, σ).This implies $Y \backslash f(V)$ is $r^{\wedge} g$ closed in (Y, σ). Therefore $f(V)$ is $r^{\wedge} g$ open in (Y, σ). This proves (iii) \rightarrow (i).

REFERENCES:

[1] Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D., thesis, Bharathiar Univ., Coimbatore, 1997.
[2] Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces, Indian J. Pure. App. Math, 28(1997), 351-360.
[3] Karpagadevi Pushpalatha. Rw closed maps and open maps in topological spaces, Vol 2 issue 291-93, 2013.
[4] Long P.E., and Herington L.L, Basic properties of regular closed functions, Rend.Cir.Mat. Palermo, 27(1978), 20-28.
[5] Malghan S.R, Generalized Closed maps, J.Karnatk Univ.Sci.,27(1982), 82-88
[6] Nagaveni.N, Studies on Generalizations of homeomorphisms in Topological spaces, Ph.D., Thesis, Bharathiar university, Coimbatore (1999).
[7] N.Palaniappan \& K.C.Rao, Regular generalized closed sets, KyungpookMath. 3 (2)(1993), 2011
[8] D.Savithiri, C.Janaki, On R^G closed sets in Topological spaces, IJMA, Vol 4, 162-169.
[9] M.Sheik John, A study on Generalization of closed sets on continuous maps in Topological and Bitopological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore (2002).
[10] P.Sundaram and M. Sheik John, On w closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
[11] P. Sundaram, Studies on Generalization of continuous maps in topological spaces, Ph.D, Thesis, Bharathiar University, Coimbatore (2002).
[12] M.Stone, Applications of the theory of Boolean rings to general topology, Trans.Amer. Math.Soc,41(1937),374-481.
[13] M.K.R.S. Veera Kumar, Between closed sets and g closed sets, Mem. Fac. Sci Kochi Univ.(math) , 21(2000), 1-19.

