

On R^G-Homeomorphisms in Topological Spaces

Janaki. C¹, Savithiri. D²

¹Department of Mathematics, L.R.G. Govt. College for women, Tirupur.

janakicsekar@yahoo.com

²Department of Mathematics, Sree Narayana Guru College, Coimbatore.

savithirisngcmat@gmail.com

ABSTRACT:

This paper deals with r g open and closed maps. Also we introduce a new class of maps namely r g - homeomorphism which form a subclass of r g - homeomorphism.

Mathematics Subject Classification: 54A10

Keywords: r^g closed map; r^g open map; r^g – homeomorphism; r^g*- homeomorphism.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 5, No. 2 editor@cirworld.com <u>www.cirworld.com</u>, member.cirworld.com

1. INTRODUCTION

Generalized closed mappings were introduced and studied by Malghan [5], Regular closed maps, gpr-closed maps and rg-closed maps have been introduced and studied by Long [4], Gnanambal [2] and Arockiarani [1] respectively. Recently rw closed maps and open maps were introduced by Karpagadevi [3].

The purpose of this paper is to introduce the concept of a new-class of maps called r $^{\circ}$ g-closed maps and r $^{\circ}$ g open maps. Further we introduce r $^{\circ}$ g- homeomorphism, r $^{\circ}$ g*- homeomorphism and discuss their properties.

2. PRELIMINARIES

In this section, we recollect some definitions which are used in this paper.

Definition 2.1:

A subset A of (X,τ) is said to be

- i) an α -open set if A \subset int(cl(int(A))) and a α -closed set if cl(int(cl(A))) \subset A
- ii) a generalized closed (briefly g-closed)[2]set iff $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open inX.
- iii) a generalized *closed (briefly g*-closed) [11] set iff cl(A) ⊆ U whenever A ⊆ U and U is g-open in X.
- iv) a weakly generalized semi closed (briefly wg closed) [11] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
- v) a semi generalized closed (briefly sg closed)[4] if scl(A) ⊆ U whenever A ⊆ U and U is semiopen in X.
- vi) a generalized semi closed (briefly gs closed)[4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- vii) a regular weakly generalized semi closed (briefly rwg closed)[11] if cl(int(A) ⊆ U whenever A ⊆ U and U is regular open in X.
- viii) a regular generalized weakly semi closed (briefly rgw closed)[11] if cl(int(A) \subseteq U whenever A \subseteq U and U is regular semi-open in X.
- ix) a semi weakly generalized closed (briefly swg closed)[11] if cl(int(A) ⊆ U whenever A ⊆ U and U is semiopen in X.
- x) a regular generalized closed (briefly r g closed) [8] if $gcl(A) \subset U$, whenever $A \subset U$ and U is regular open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2: A map f: $X \rightarrow Y$ is said to be

- i) a continuous function[1]if f⁻¹(V) is closed in X for every closed set V in Y.
- ii) a wg continuous [4]if f⁻¹ (V) is wg- closed in X for every closed set V in Y.
- iii) a sg -continuous [1]if f⁻¹(V) is rg closed in X for every closed set V in Y.
- iv) a gs -continuous [1]if f⁻¹(V) is gs closed in X for every closed set V in Y.
- v) an rw-continuous [11] if f⁻¹(V) is rw-closed in X for every closed set V in Y.
- vi) an rwg-continuous [11] if f¹(V) is rwg- closed in X for every closed set V in Y.
- vii) an rgw-continuous [11] if f¹(V) is rgw- closed in X for every closed set V in Y.
- viii) a swg -continuous[11] if f¹(V) is swg- closed in X for every closed set V in Y.
- ix) an r^g -continuous [11] if f⁻¹(V) is r^g- closed in X for every closed set V in Y.

Definition 2.3:

A topological space (X,τ) is said to be

- (i) a $T_{1/2}$ space if every gclosed set is closed.
- (ii) an $T_{r^{\prime}q}$ space if every r^g closed set is closed.

Definition 2.3

A bijective function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called

- i) homeomorphism if both f and f⁻¹ are continuous.
- ii) wg homeomorphism if both f and f⁻¹ are wg-continuous.
- iii) sg homeomorphism if both f and f¹ are sg-continuous.
- iv) gs homeomorphism if both f and f⁻¹ are gs-continuous.

- v) rw homeomorphism if both f and f⁻¹ are rw-continuous.
- vi) swg homeomorphism if both f and f⁻¹ are swg-continuous.
- vii) rwg homeomorphism if both f and f⁻¹ are rwg-continuous.
- viii) rgw homeomorphism if both f and f⁻¹ are rgw-continuous.
- ix) r^g homeomorphism if both f and f⁻¹ are r^g-continuous

3. R^G CLOSED MAPS

Definition 3.1:

A map f: $(X,\tau) \to (Y,\sigma)$ is said to be regular ^ generalized (briefly – r^g) closed map if the image of every closed set in (X,τ) is r^g closed in (Y,σ) .

Theorem 3.2:

- (i) Every closed map is r^g closed map.
- (ii) Every rg-closed map is r^g closed map.
- (iii) Every g-closed map is r^g closed maps.
- (iv) Every g*-closed map is r^g closed maps.

Proof:

Follows from the definition.

Remark 3.3:

The converse of the above theorem need not be true as seen from the following examples.

Example 3.4:

- Let $X = \{a,b,c\}$, $\tau = \{X,\phi,\{a,b\},\{c\}\}$, $\sigma = \{Y,\phi,\{a\},\{b\},\{a,b\}\}$. Let f be the identity map such that $f: X \to Y$. then f is r^g closed but it is not a closed map.
- Let $X = \{a,b,c,d,e\}$, $\tau = \{X,\phi,\{b,c,d,e\}\}$, $\sigma = \{Y,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$. Then define $f: X \rightarrow Y$, the identity map, then f is r^q closed map but it is not r0 closed map.
- Let $X = \{a,b,c,d\} = Y$, $\tau = \{X,\phi,\{a,b\},\{c,d\}\}$, $\sigma = \{Y,\phi,\{a\},\{b,c\},\{a,b,c\}\}$. Define a map $f:X \to Y$ by f(a) = b, f(b) = a, f(c) = c, f(d) = a, then f is r^c g closed map but it is not g-closed map.
- Let X = Y = {a,b,c,d}, τ = {X,φ,{b},{b,c},{a,d},{a,b,d}}, σ = {Y,φ,{a,b}, {c}, {a,b,c}}. Define a map f: X → Y by f(a) = a, f(b) = b, f(c) = d, f(d) = c, then f is r^g closed map but it is not g* closed map.

Theorem 3.5:

A map $f: (X,\tau) \to (Y,\sigma)$ is r'g closed if and only if for each subset S of (Y,σ) and each open set U containing $f^{-1}(S)$ there is an r'g open V set of (Y,σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof:

Suppose f is r^g closed set of (X,τ) . Let $S\subseteq Y$ and U be an open set of (X,τ) such that $f^{-1}(S)\subseteq U$. Now X-U is closed set in (X,τ) . Since f is r^g closed, f(X-U) is an r^g closed set in (Y,σ) . Then V=Y-f(X-U) is r^g-open set in (Y,σ) . $f^{-1}(S)\subseteq U$ implies $S\subset V$ and $f^{-1}(V)=X-f^{-1}(f(X-U))\subset X-(X-U)=U$, i.e., $f^{-1}(V)\subseteq U$.

Conversely, let F be a closed set of (X,τ) . Then $f^{-1}(f(F)^c) \subset F^c$ is an open set in (X,τ) . By hypothesis, there exists an r^g open set V in (Y,σ) such that $f(F)^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f(((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) \subseteq V^c$. Since V^c is r^g closed, f(F) is r^g closed. That is f(F) is r^g closed in (Y,σ) . Therefore f is r^g closed map.

Remark 3.6:

The composition of two r'g closed maps need not be r'g closed map in general and this is shown by the following example.

Example 3.7:

Let $X = Y = \{a,b,c,d\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}, \sigma = \{Y,\phi,\{b\},\{b,c\},\{a,d\},\{a,b,d\}\}, \sigma = \{Y,\phi,\{b\},\{b,c\},\{a,d\},\{a,b,d\}\}, \sigma = \{Y,\phi,\{b\},\{a,$

 $\eta = \{Z, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. Define $f: (X,\tau) \to (Y,\sigma)$, the identity map and $g: (Y,\sigma) \to (Z,\eta)$ by g(a) = a, g(b) = c, g(c) = d, g(d) = b. Then f and g are r^g closed maps. But $g \circ f(d) = g(f(d)) = g(d) = \{b\}$ is not r^g closed in (Z,η) . Hence g^g is not f^g closed map.

Theorem 3.8:

If f: $(X,\tau) \to (Y,\sigma)$ is closed map and g: $(Y,\sigma) \to (Z,\eta)$ is r^g closed map, then the composition $g \circ f$: $(X,\tau) \to (Z,\eta)$ is r^g closed map.

Proof:

Let F be any closed set in (X,τ) . Since f is a closed map, f(F) is closed set in (Y,σ) . Since g is r^g closed map, $g(f(F)) = g \circ f(F)$ is r^g closed set in (Z,η) . Thus $g \circ f$ is r^g closed map.

Remark 3.9:

If $f:(X,\tau)\to (Y,\sigma)$ is r'g closed map and $g:(Y,\sigma)\to (Z,\eta)$ is closed map, then the composition need not be an r'g closed map as seen from the following example.

Example 3.10:

Let $X = Y = Z = \{a,b,c,d\}, \quad \tau = \{X,\phi,\{a\},\{c\},\{d\},\{a,c\},\{a,d\},\{c,d\}\}, \quad \sigma = \{Y,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \quad \eta = \{Z,\phi,\{a\},\{b,c\},\{a,b,c\}\}.$ Define $f:(X,\tau)\to (Y,\sigma)$, the identity map and $g:(Y,\sigma)\to (Z,\eta)$ by g(a)=a, g(b)=d, g(c)=c, g(d)=b. Then f is r^g closed map and g is a closed map. But $g\circ f:(X,\tau)\to (Z,\eta)$ is not an r^g closed map, since $g\circ f\{a,b\}=g(f\{a,b\})=g(a,b)=\{a,d\}$ is not an r^g closed set in (Z,η) .

Theorem 3.11:

Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ be two r^g closed maps where (Y,σ) is T_{r^*g} space. Then the composition $g \circ f: (X,\tau) \to (Z,\eta)$ is r^g closed.

Proof:

Let A be a closed set of (X,τ) . Since f is r^g closed, f(A) is r^g closed in (Y,σ) . By hypothesis, f(A) is closed. Since g is r^g closed, g(f(A)) is r^g closed in (Z,η) and $g(f(A)) = g \circ f(A)$. Therefore $g \circ f$ is r^g closed.

Theorem 3.12:

If f: $(X,\tau) \to (Y,\sigma)$ is g-closed, g: $(Y,\sigma) \to (Z,\eta)$ be r^g closed and (Y,σ) is $T_{1/2}$ space then the composition $g \circ f: (X,\tau) \to (Z,\eta)$ is r^g closed.

Proof:

Let A be a closed set of (X,τ) . Since f is g-closed, f(A) is g-closed in (Y,σ) . By hypothesis f(A) is closed. Since g is r^g closed, $g(f(A)) = g \circ f(A)$ is r^g closed in (Z,η) . Thus $g \circ f$ is r^g closed.

Theorem 3.13:

Let $f: (X,\tau) \to (Y,\sigma), g: (Y,\sigma) \to (Z,\eta)$ be two mappings such that their composition $g \circ f: (X,\tau) \to (Z,\eta)$ be r^g closed map. Then the following statements are true.

- (i) If f is continuous and surjective, then g is r^g closed.
- (ii) If g is r^g irresolute and injective, then f is r^g closed.
- (iii) If f is g-continuous, surjective and (X,τ) is a $T_{1/2}$ space then g is r^g closed.

Proof:

- (i) Let A be a closed set of (Y,σ) . Since f is continuous, $f^{-1}(A)$ is closed in (X,τ) . $g \circ f$ is r^g closed, therefore $g \circ f(f^{-1}(A))$ is r^g closed in (Z,η) . That is g(A) is r^g closed in (Z,η) , since f is surjective. Therefore g is r^g closed.
- (ii) Let A be a closed set of (X,τ) . Since $g \circ f$ is r^g closed, $g \circ f(B)$ is r^g closed set in (Z,η) . g is r^g irresolute, $g^{-1}(g \circ f(B))$ is r^g closed set in (Y,σ) . That is f(B) is r^g closed in (Y,σ) , since f is injective. Hence f is r^g closed.
- (iii) Let C be a closed set of (Y,σ) . Since f is g-continuous $f^1(C)$ is g-closed in (X,τ) . Since (X,τ) is a $T_{1/2}$ space, $f^1(C)$ is closed. By hypothesis, $g \circ f^1(f(C)) = g(C)$ is r^g closed in (Z,η) , since f is surjective. Therefore g is r^g closed.

4. R^G OPEN MAPS:

Definition4.1:

A map f: $(X,\tau) \to (Y,\sigma)$ is called an r^og open map if the image f(A) is r^og open in (Y,σ) for each open set A in (X,τ) .

Theorem 4.2:

Every open map is r^g open.

Proof: Obvious.

Remark 4.3: The converse of the above theorem need not be true as seen from the following example.

Example 4.4:

Let $X = Y = \{a,b,c\}, \ \tau = \{X,\phi,\{b,c\}\}, \ \sigma = \{Y,\phi,\{a\},\{b\},\{a,b\}\}.$ Define $f:(X,\tau) \to (Y,\sigma)$ the identity map, then f is r^g open but it is not an open map.

Theorem 4.5:

For any bijection map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent.

- (i) $f^{-1}: (Y,\sigma) \rightarrow (X,\tau)$ is r^g continuous.
- (ii) f is r\g open map and
- (iii) f is r^g closed map.

Proof:

- (i) \rightarrow (ii): Let U be an open set of (X,τ) . By assumption, $(f^{-1})^{-1}(U) = f(U)$ is r^g open in (Y,σ) and so f is r^g open
- (ii) \rightarrow (iii): Let F be a closed set of (X,τ) . Then F^c is open set on (X,τ) . By hypothesis, $f(F^c)$ is r^g open in (Y,σ) . That is $f(F^c) = f(F)^c$ is r^g open in (Y,σ) . Thus f(F) is r^g closed in Y. Hence f is r^g closed.
- (iii) \rightarrow (i): Let F be a closed set in X. By hypothesis, f(F) is r^g closed in Y. That is $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is continuous.

Theorem 4.6:

A map $f: (X,\tau) \to (Y,\sigma)$ is r^g open iff for any subset S of (X,τ) containing $f^{-1}(S)$, there exists an r^g closed set K of (Y,σ) containing S such that $f^{-1}(K) \subset F$.

Proof: Obvious.

5. R^G HOMEOMORPHISMS

Definition 5.1:

A bijection $f:(X,\tau)\to (Y,\sigma)$ is called regular ^ generalized (briefly r^g) homeomorphism if both f and f^{-1} are r^g continuous.

We say that the spaces (X,τ) and (Y,σ) are r^g-homeomorphic if there exists an r^g – homeomorphism from (X,τ) onto (Y,σ) .

Definition 5.2:

A bijection f: $(X,\tau) \to (Y,\sigma)$ is said to be r^g*-homeomorphism if both f and f⁻¹ are r^g irresolutes.

We say that the spaces (X,τ) and (Y,σ) are r^g*-homeomorphic if there exists an r^g*- homeomorphism from (X,τ) onto (Y,σ) .

We denote the family of all r^*g^* - homeomorphisms of a topological spaces of (X,τ) itself by r^*g^* - $h(X,\tau)$.

Theorem 5.3:

- (i) Every homeomorphism is an r^g homeomorphism.
- (ii) Every g-homeomorphism is an r^g homeomorphism.
- (iii) Every r^g* homeomorphism is an r^g homeomorphism.
- (iv) Every rwg homeomorphism is an r^g homeomorphism.
- (v) Every rgw homeomorphism is an r^g homeomorphism.

Proof:

Follows from the definition.

Remark 5.4:

The converse of the above theorem need not be true as seen from the following examples.

Example 5.5:

- Let $X = Y = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$, $\sigma = \{Y,\phi,\{a\},\{c,d\},\{a,c,d\}\}$. Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = d, f(c) = c, f(d) = b. Then f is $r^{A}g$ homeomorphism but not homeomorphism.
- Let $X = Y = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}, \sigma = \{Y,\phi,\{a,b\},\{c\}\}.$ Define an identity map $f: (X,\tau) \to (Y,\sigma).$ Then f is r^g homeomorphism but not g homeomorphism.
- Let $X = Y = \{a,b,c,d\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}, \sigma = \{Y,\phi,\{a\},\{c,d\},\{a,c,d\}\}.$ Define a map $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = d, f(c) = c, f(d) = b. Then f is r0 homeomorphism but not r0 homeomorphism

• Let $X = Y = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,b\},\{a,b,c\}\}$, $\sigma = \{Y,\phi,\{c\},\{d\},\{b,d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}$. Define a map $g: (X,\tau) \to (Y,\sigma)$ by g(a) = b, g(b) = d, g(c) = c, g(d) = a, then g is rgw and rwg homeomorphisms but not r^g homeomorphism.

Remark 5.6:

The composition of two r\gammag homeomorphism need not be r\gammag homeomorphism in general as seen from the following example.

Example 5.7:

Let $X = Y = Z = \{a,b,c,d\}, \quad \tau = \{X,\phi,\{a\},\{a,b\},\{a,b\},\{a,b,c\}\}, \quad \sigma = \{Y,\phi,\{a\},\{c,d\},\{a,c,d\}\}, \quad \eta = \{Z,\phi,\{a\},\{c\},\{a,c\},\{a,d\},\{c,d\},\{a,c,d\}\}.$

Define f: $(X,\tau) \to (Y,\sigma)$, g: $(Y,\sigma) \to (Z,\eta)$, the identity mappings, then f and g are r^g homeomorphisms. But $g \circ f$: $(X,\tau) \to (Y,\sigma)$ is not an r^g homeomorphism, because for the closed set {b} in (Z,η) , $(g \circ f)^{-1}$ {b} = f^{-1} {g}^{-1}{b}} = f^{-1} {b} is not an r^g closed set in (X,τ) .

Remark 5.8:

The converse of the above theorem need not be true as seen from the following example.

Remark 5.9:

The concept of r^og - homeomorphism is independent with the concept of wg- homeomorphism as seen from the following example.

Example 5.10:

- * $X = Y = \{a,b,c,d\}, \tau = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,b\},\{a,b,c\}\}, \sigma = \{Y,\phi,\{a\},\{b\},\{a,b\}, \{a,b,c\}.$ Define the identity map f: $(X,\tau) \rightarrow (Y,\phi)$. Then f is wg homeomorphism but not r^g homeomorphism.
- * X = Y {a,b,c}, τ = {X, ϕ ,{a},{b}}, σ = {Y, ϕ ,{c},{a,b}}. The identity map f: (X, τ) \rightarrow (Y, σ) is r^g homeomorphism but not wg homeomorphism.

Remark 5.11:

r\gamma_g - homeomorphism is independent with the concepts of sg- homeomorphism and gs- homeomorphism as seen from the following example.

Example 5.12:

- * Let $X = Y = \{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$, $\sigma = \{Y,\phi,\{a,b\},\{c\}\}$. Define an identity map $f: (X,\tau) \to (Y,\sigma)$. Then f is r^g homeomorphism but not sg-homeomorphism and gs-homeomorphism.
- * Let X = Y = {a,b,c}, τ = {X, , ϕ ,{a,b},{c}}, σ = {Y, ϕ ,{a},{b},{a,b}}. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = a, f(b) = c, f(c) = b , then f is sg and gs homeomorphism but not r^g homeomorphism.

Remark 5.13:

The concept of r^g - homeomorphism is independent with the concept of α homeomorphism as seen from the following example.

Example 5.14:

- * $X = Y = \{a,b,c\}, \ \tau = \{X,\phi,\{a\},\{b\}\}, \ \sigma = \{Y,\phi,\{a\},\{a,b\}\}.$ Define the identity map $f: (X,\tau) \to (Y,\phi)$, then f is r^g homeomorphism but not α homeomorphism.
- * X = Y = {a,b,c,d}, τ = {X, ϕ ,{a},{c},{a,c},{c,d}}, σ = {Y, ϕ ,{a},{c},{a,c},{a,b}}, {a,b,c}}. Define a map f: (X, τ) \to (Y, σ) by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f is α homeomorphism but it is not r^g homeomorphism.

Remark 5.15:

r/g - homeomorphism is independent with the concepts of swg- homeomorphism as seen from the following example.

Example 5.16:

- * $X = Y = \{a,b,c,d\}, \ \tau = \{X, \ \phi,\{a\},\{b\},\{a,b\}, \ \{a,b,c\}\}, \ \sigma = \{Y, \ \phi,\{a\},\{c\},\{a,c\},\{a,b\}, \ \{a,b,c\}\}.$ Define f: $(X,\tau) \to (Y,\sigma)$, then f is r^g homeomorphism but not swg homeomorphism.
- * $X = Y = \{a,b,c,d\}, \ \tau = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,b\},\{a,b,c\}\}, \ \sigma = \{Y,\phi,\{a\},\{c\},\{a,c\}, \ \{c,d\}, \ \{a,c,d\}\}.$ Define a map f: $(X,\tau) \to (Y,\sigma)$ by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f is swg homeomorphism but it is not r^g homeomorphism.

The above discussions are implicated as shown below:

Theorem 5.17:

Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ be r^g^* -homeomorphisms. Then their composition $g \circ f: (X,\tau) \to (Y,\sigma)$ is also r^g^* -homeomorphism.

Proof:

Suppose f and g are r^g homeomorphisms. Then f and g are r^g irresolutes. Let U be r^g closed set in (Z,η) . Since g is r^g irresolute, $g^{-1}(U)$ is r^g – closed in (Y,σ) . This implies that $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is r^g closed in (X,τ) , since f is r^g irresolute. Hence $(g \circ f)$ is r^g irresolute. Also for an r^g closed set V in (X,τ) we have $g \circ f(V) = g(f(V))$. By hypothesis, f(V) is r^g closed set in (Y,σ) , this implies that (Y,σ) is r^g closed set in (Y,σ) is r^g irresolute. Also (Y,σ) is a bijection. This proves (Y,σ) is r^g homeomorphism.

Theorem 5.18:

The set $r^*g^*-h(X,\tau)$ from (X,τ) onto itself is a group under the composition of functions.

Proof:

Let $f,g \in r^g^*-h(X,\tau)$. Then by theorem 5.13, $g \circ f \in r^g^*-h(X,\tau)$. The composition of functions is associative and the identity element I: $(X,\tau) \to (X,\tau)$ belonging to $r^g^*-h(X,\tau)$ serves as the identity element. If $f \in r^g^*-h(X,\tau)$ then $f^1 \in r^g^*-h(X,\tau)$. This proves $r^g^*-h(X,\tau)$ is a group under the operation of functions.

Theorem 5.19:

Let $f: (X,\tau) \to (Y,\sigma)$ be an r^g^* -homeomorphism. Then f induces an isomorphism from the group r^g^* - $h(X,\tau)$ onto the group r^g^* - $h(Y,\sigma)$.

Proof:

Let $f \in r^g^*-h(X,\tau)$. We define a function $\Psi_f : r^g^*-h(X,\tau) \to r^g^*-h(Y,\sigma)$ by $\Psi_f(h) = (f \circ g) \circ f^{-1}$, for every $h \in r^g^*-h(X,\tau)$. Then Ψ_f is a bijection. Further for all $h_1,h_2 \in r^g^*-h(X,\tau)$ $\Psi_f(h_1 \circ h_2) = f \circ (h_1 \circ h_2) \circ f^{-1} = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \Psi_f(h_1) \circ \Psi_f(h_2)$. Therefore Ψ_f is a homeomorphism and so it is an isomorphism induced by f.

Theorem 5.20:

Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective r^g- continuous map. Then the following are equivalent.

- (i) f is an r\g open map.
- (ii) f is an r\(^g\) homeomorphism.
- (iii) f is an r^g closed map.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a bijective r^g – continuous map.

(i) \rightarrow (ii): Let F be a closed set in (X,τ) . Then X\F is open in (X,τ) . Since f is r^g- open, then f(X\F) is r^g-open in (Y,σ) i.e., f(F) is r^g closed in (Y,σ) . Thus f is r^g continuous. Further $(f^{-1})^{-1}(F) = f(F)$ is r^g closed in (Y,σ) . Thus f^{-1} is r^g continuous. Hence (i) \rightarrow (ii).

(ii) → (iii):

Suppose f is an r^og homeomorphism. Then f is bijective, f and f⁻¹ are r^og continuous. Let f be an r^og closed set in (X,τ) . Since f⁻¹ is r^og continuous, $(f^{-1})^{-1}(F) = f(F)$ is r^og closed in (Y,σ) . Thus f is r^og closed. Thus (ii) \rightarrow (iii).

(iii) \rightarrow (i):

Let f be an r^g closed map. Let V be r^g open in X. Then X\V is r^g closed in (X,τ) . Since f is r^g closed, $f(X\setminus V)$ is r^g closed in (Y,σ) . This implies Y\f(V) is r^g closed in (Y,σ) . Therefore f(V) is r^g open in (Y,σ) . This proves (iii) \to (i).

REFERENCES:

- [1] Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D., thesis, Bharathiar Univ., Coimbatore, 1997.
- [2] Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces, Indian J. Pure. App. Math, 28(1997), 351-360.
- [3] Karpagadevi Pushpalatha. Rw closed maps and open maps in topological spaces, Vol 2 issue 2 91-93, 2013.
- [4] Long P.E., and Herington L.L, Basic properties of regular closed functions, Rend.Cir.Mat. Palermo, 27(1978), 20-28.
- [5] Malghan S.R, Generalized Closed maps, J.Karnatk Univ.Sci.,27(1982), 82-88
- [6] Nagaveni.N, Studies on Generalizations of homeomorphisms in Topological spaces, Ph.D., Thesis, Bharathiar university, Coimbatore (1999).
- [7] N.Palaniappan & K.C.Rao, Regular generalized closed sets, KyungpookMath.3 (2)(1993), 2011
- [8] D.Savithiri, C.Janaki, On R^G closed sets in Topological spaces, IJMA, Vol 4, 162-169.
- [9] M.Sheik John, A study on Generalization of closed sets on continuous maps in Topological and Bitopological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore (2002).
- [10] P.Sundaram and M. Sheik John, On w closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [11] P. Sundaram, Studies on Generalization of continuous maps in topological spaces, Ph.D, Thesis, Bharathiar University, Coimbatore (2002).
- [12] M.Stone, Applications of the theory of Boolean rings to general topology, Trans.Amer. Math.Soc,41(1937),374-481.
- [13] M.K.R.S. Veera Kumar, Between closed sets and g closed sets, Mem. Fac. Sci Kochi Univ.(math), 21(2000), 1-19.