
 ISSN 2347-1921 

436 | P a g e                              N o v  2 3 ,  2 0 1 3  

Bounds on the Finite-Sample Risk for Exponential Distribution

Mohamed M. Rizk 
Mathematics & Statistics Department 

Faculty of Science, Taif University, Taif, Saudi Arabia 
Permanent Address: Mathematics Department, 

Faculty of Science, Menoufia University, Shebin El-Kom, Egypt 

mhm96@yahoo.com 
 

ABSTRACT 

In this paper, we derive lower and upper bounds on the expected nearest neighbor distance for exponential distribution. 
Then we find bounds on the risk of the nearest neighbor for exponential distribution. 
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1 Introduction and Model  

The neatest neighbor rule is one of the simplest types of nonparametric methods of interest in statistical pattern 
recognition that can be used with arbitrary distributions and without the assumption that the forms of the underling 
densities are known.  

The nearest neighbor rule was first studied by Fix and Hodges [5], [6]. Cover and Hart [1] gave upper bounds for the limit 

of the risk of nearest neighbor classifiers under certain conditions. Cover [2] has shown that 𝑅𝑚 = 𝑅∞ + 𝑂 𝑚−2  for 

the nearest neighbor classifier in the case one-dimensional bounded support, mixture density 𝑓 ≥ 𝑐 > 0, and under 

some additional conditions, where 𝑅𝑚  denotes the finite sample risk, 𝑅∞  is the nearest neighbor risk in the infinite-sample 

limit, and 𝑚 is the sample size. Wagner [14] and Fritz [7] treated convergence of the conditional error rate for nearest 

neighbor. Fukunaga and Hummels [8] studied the rate of convergence of the above bias in 𝑑- dimensional feature space. 

Psaltis et al. [12] generalised the results of Cover [2] to general dimension, and Snapp and Venkatesh [13] further 
extended the results to the case of multiple classes. Kulkarni and Posner [11] studied the rate of convergence for nearest 
neighbor estimation in terms of the covering numbers of totally bounded sets. Irle and Rizk [10] found an asymptotic 

evaluation of the conditional risk 𝑅𝑚 (𝑥) (the probability of error conditioned on the event that 𝑋 = 𝑥, by using partial 

integration and Laplace’s method. There is a wealth of consistency results in different directions available for nearest 
neighbor rules; see the collection of Dasarathy [3], the monographs by Devroye et al. [4], and Gyӧrfi et al. [9]. 

In this paper, we find lower and upper bounds on the expected nearest neighbor distance for exponential distribution as 
typical for distributions having unbounded support, and derive the bounds on the risk of nearest neighbor for a two-class 
pattern recognition of this distribution.  

We will consider  𝑋, 𝜃  be a random pair taking values in 𝜒 ×  1,2 , where 𝑋 taking values in some general separable 

metric space 𝜒 equipped with metric 𝜌 which we denote as the pair  𝜒, 𝜌 , and let 𝐷𝑚 =   𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  

  𝑋(𝑚), 𝜃(𝑚)   be a sequence of independent identically distributed random pairs with the same distribution as (𝑋, 𝜃). The 

𝑋(𝑖) are called the observations and 𝜃(𝑖) are usually called the classes. The function 𝛿: 𝜒 →  1,2 , where 𝛿 𝑥  

represents one’s guess of 𝜃 given 𝑥 is called a classifier. The probability of error for a classifier 𝛿 is 𝑃 𝜃 ≠ 𝛿(𝑋) . 

If the joint distribution of  𝑋, 𝜃  is known then the best classifier is known as the Bayes classifier. The Bayes classifier 𝛿∗ 

minimizes this risk resulting in the conditional Bayes risk 

       𝑟∗ 𝑥 = 𝑃 𝜃 ≠ 𝛿∗(𝑥)|𝑋 = 𝑥 ≤ 𝑃 𝜃 ≠ 𝛿(𝑥)|𝑋 = 𝑥 ,     for all classifier 𝛿. 

The Bayes risk is given by  

𝑅∗ = 𝐸 𝑟∗ 𝑥  =  𝑟∗ 𝑥 𝑃𝑋𝑑𝑥. 

Define the conditional mean of 𝜃 given 𝑋 = 𝑥 as  

𝑚 𝑥 = 𝑃 𝜃 = 1 𝑋 = 𝑥 = 𝐸 𝜃 𝑋 = 𝑥 , 

and the conditional variance as   

𝜎2 𝑥 = 𝑃 𝜃 = 1 𝑋 = 𝑥 −  𝑃 𝜃 = 1 𝑋 = 𝑥  2 . 

In general the joint distribution of (𝑋, 𝜃) is unknown it is often assumed that in addition to 𝑋 we have a training sequence 

𝐷𝑚 =   𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  𝑋(𝑚), 𝜃(𝑚)  , where patterns corresponding classes observed and we assume 

that   𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  𝑋(𝑚), 𝜃(𝑚)  , the data, stem from a sequence of independent identically distributed 

random pairs with the same distribution as (𝑋, 𝜃).  

The nearest neighbor rule assigns any input feature vector to the class given by the label 𝜃′ of the nearest reference 

vector. The problem to be considered is the classification of a random variable 𝜃 taking values in  1,2  given a sample 𝑋 in 

𝜒, with the goal of minimizing the finite-sample risk 𝑅𝑚 = 𝑃 𝜃 ≠ 𝜃′ . The conditional probability of error for the nearest 

neighbor rule is defined as the probability of error in classification 𝜃 by 𝜃′ given 𝑋 and its nearest neighbor 𝑋′ and denoted 

by 𝑃 𝜃 ≠ 𝜃′ 𝑋, 𝑋′ . By averaging 𝑃 𝜃 ≠ 𝜃′ 𝑋, 𝑋′  over 𝑋′, we obtain the m-samples conditional average probability of error 

𝑅𝑚  𝑋 = 𝑃 𝜃 ≠ 𝜃′ 𝑋 , and by averaging 𝑃 𝜃 ≠ 𝜃′ 𝑋  with respect to 𝑋, we obtain the unconditional nearest neighbor risk 

(the unconditional probability of error) 

 𝑅𝑚 = 𝑃 𝜃 ≠ 𝜃′ =  𝑃 𝜃 ≠ 𝜃′ 𝑋 𝑓 𝑥 𝑑𝑥. 

Define the nearest distance at time 𝑚 as 𝑑𝑚 = 𝜌 𝑋, 𝑋′ . 

In the next, we begin by presenting (without proof) the following result, this result is due to Irle and Rizk [10 ], for which 
they found an upper bound on the finite sample risk 𝑅𝑚  in terms of the expected nearest neighbor distance. 
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Lemma 1. 

If, for some 𝜔1 > 0 and 0 < 𝛾 ≤ 1 we have |𝑚 𝑥 − 𝑚 𝑥′ | ≤ 𝜔1𝜌 𝑥, 𝑥′ 𝛾 , for all  𝑥, 𝑥′ ∈ 𝜒, then for some suitable 

𝜔 > 0 independent of 𝑚,  

𝑅𝑚 ≤ 𝑅∞ + 𝜔    𝐸𝑑𝑚  𝛾  +  𝐸𝑑𝑚
2𝛾

   , 

where 𝜔 = 𝑚𝑎𝑥 𝜔1, 𝜔1
2 . 

2. A Bound Risk of the Expected Nearest Neighbour Distance for Exponential 
Distribution 

In this section we derive the lower and upper bounds for the expected nearest neighbor distance 𝐸𝑑𝑚  for exponential 

distribution. Let 𝑋 has a density function 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥  ,   𝜆, 𝑥 > 0. 

2.1 Deriving a lower bound 

 𝐸𝑑𝑚 =  𝑃 𝑑𝑚 > 𝜀  𝑑𝜀
∞

0
=   𝑃 𝑑𝑚 > 𝜀 𝑋 = 𝑥  

∞

0

∞

0
𝑑𝜀 𝑓 𝑥 𝑑𝑥   

           =   𝑃   𝑋 − 𝑥  > 𝜀  𝑚
∞

0

∞

0
 𝑑𝜀 𝑓 𝑥 𝑑𝑥  

           =   𝑃   𝑋 − 𝑥  > 𝜀  𝑚
∞

0

∞

0
𝑑𝜀 𝜆𝑒−𝜆𝑥𝑑𝑥                                                                                                      (2.1.1)  

           ≥   𝑃 𝑋 < 𝑥 − 𝜀 𝑚
∞

0

∞

0
𝑑𝜀  𝜆𝑒−𝜆𝑥𝑑𝑥  

           =   𝑃 𝑋 < 𝑧 𝑚
𝑥

0

∞

0
𝑑𝑧  𝜆𝑒−𝜆𝑥𝑑𝑥  

           =    1 − 𝑒−𝜆𝑧 
𝑚𝑥

0

∞

0
𝑑𝑧  𝜆𝑒−𝜆𝑥𝑑𝑥  

           =   𝜆𝑒−𝜆𝑥𝑑𝑥 
∞

𝑧

∞

0
 1 − 𝑒−𝜆𝑧 

𝑚
𝑑𝑧 

         =  𝑒−𝜆𝑧  
∞

0
 1 − 𝑒−𝜆𝑧 

𝑚
𝑑𝑧 =

1

𝜆
  1 − 𝑒−𝜆𝑧 

𝑚∞

0
𝑑 1 − 𝑒−𝜆𝑧 𝑑𝑧     

         =
1

𝜆
 𝑦𝑚1

0
𝑑𝑦 =

1

𝜆 𝑚+1 
.                                                                                                                                     (2.1.2) 

2.2 Deriving an upper bound:     

We use a constant 0 ≤ 𝐾1 𝑚 < ∞ depending on 𝑚, to write 

𝐸𝑑𝑚 =   𝑃   𝑋 − 𝑥  > 𝜀  𝑚
∞

0
𝑑𝜀

∞

0
𝑓 𝑥 𝑑𝑥  

          =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚 𝑑𝜀 
∞

0
𝑓 𝑥 𝑑𝑥 +   𝑃  𝑋 − 𝑥 > 𝜀 𝑚 𝑑𝜀

∞

0
𝑓 𝑥 𝑑𝑥

∞

𝐾1(𝑚)

𝐾1 𝑚 

0
  

          = 𝐿1 𝑚 + 𝐿2 𝑚 ,                                                                                                                                           (2.2.1)  

where 

𝐿1 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚 𝑑𝜀
∞

0
𝑓 𝑥 𝑑𝑥,

𝐾1 𝑚 

0
                                                                                               (2.2.2) 

𝐿2 𝑚 =   𝑃   𝑋 − 𝑥  > 𝜀  𝑚  𝑑𝜀𝑓 𝑥 𝑑𝑥.
∞

0

∞

𝐾1(𝑚)
                                                                                               (2.2.3) 

Firstly, we evaluate 𝐿1 𝑚 .   

We write, for 𝑋 with density 𝑓 

𝐿1 𝑚 =   𝑃  𝑋 − 𝑥 > 𝜀 𝑚𝑑𝜀 𝑓 𝑥 𝑑𝑥
∞

0

𝐾1(𝑚)

0
  

             =   𝑒−𝑚𝐺 𝑥,𝜀  𝑓 𝑥 𝑑𝜀 𝑑𝑥,
∞ 

0

𝐾1(𝑚)

0
                                             

where 𝐺 𝑥, 𝜀 = − 𝑙𝑜𝑔 𝑃  𝑋 − 𝑥 > 𝜀 . 

Since, − 𝑙𝑜𝑔  (1 − 𝑦) ≥ 𝑦 for all 0 ≤ 𝑦 ≤ 1, then 

− 𝑙𝑜𝑔𝑃  𝑋 − 𝑥 > 𝜀 = − 𝑙𝑜𝑔 1 − 𝑃  𝑋 − 𝑥 ≤ 𝜀   
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                                ≥ 𝑃(|𝑋 − 𝑥| ≤ 𝜀) = 𝑃 𝑥 − 𝜀 ≤ 𝑋 ≤ 𝑥 + 𝜀  

                                = 𝐹 𝑥 + 𝜀 − 𝐹 𝑥 − 𝜀 .                                                                                                              (2.2.4) 

Then we need good asymptotic estimates for 𝐹 𝑥 + 𝜀 −  𝐹 𝑥 − 𝜀 , as (𝜀 → 0), By using the Taylor expansion for the 

functions 𝐹 𝑥 + 𝜀  and 𝐹 𝑥 − 𝜀  we obtain  

 𝐹 𝑥 + 𝜀 = 𝐹 𝑥 +
𝑓 𝑥 𝜀

1!
+

𝑓 ′ 𝑥 𝜀2

2!
+

𝑓 ′′ 𝑥 𝜀3

3!
+

𝑓 ′′′ 𝑥 𝜀4

4!
+

𝑓(4) 𝑥 𝜀5

5!
+ ⋯,                                      (2.2.5) 

𝐹 𝑥 − 𝜀 = 𝐹 𝑥 −
𝑓 𝑥 𝜀

1!
+

𝑓 ′ 𝑥 𝜀2

2!
−

𝑓 ′′ 𝑥 𝜀3

3!
+

𝑓 ′′′ 𝑥 𝜀4

4!
−

𝑓(4) 𝑥 𝜀5

5!
+ ⋯.                                       (2.2.6)              

Substituting (2.2.5) and (2.2.6) in (2.2.4) yields 

𝐹 𝑥 + 𝜀 − 𝐹 𝑥 − 𝜀 =
2𝑓 𝑥 𝜀

1!
+

2𝑓 ′′ 𝑥 𝜀3

3!
+

2𝑓(4) 𝑥 𝜀5

5!
+ ⋯ ≥ 2𝜀 𝑓 𝑥 ,  

since 𝑓(𝑛) 𝑥 ≥ 0 for 𝑛 = 0, 2, 4, …, then we obtain 𝐺 𝑥, 𝜀 ≥ 2𝜀 𝑓 𝑥 . Hence 

  𝐿1 𝑚 ≤   𝑒− 2𝑚𝜀𝑓  𝑥 𝑓 𝑥 𝑑𝜀 𝑑𝑥 =  
1

2𝑚 
 𝑑𝑥

𝐾1(𝑚)

0
=

𝐾1 𝑚 

2𝑚 

∞

0

𝐾1(𝑚)

0
                                                           (2.2.7) 

Now, we evaluate 𝐿2 𝑚 . By Markov's inequality for any  0 < 𝑡 < 1  

 𝑃   𝑋 − 𝑥 > 𝜀 𝑚
∞

0
𝑑𝜀 =  𝑃   𝑒𝑡 𝑋−𝑥 > 𝑒𝑡𝜀  

𝑚∞

0
𝑑𝜀  

                                             ≤    
∞

0
𝜑(𝑡, 𝑥)𝑚𝑒−𝑚𝑡𝜀  𝑑𝜀 =  

1

𝑚𝑡
 𝜑(𝑡, 𝑥)𝑚 , 

where, 𝜑 𝑡, 𝑥 = 𝐸 𝑒𝑡 𝑋−𝑥  .  

Hence for 𝑡 =
1

𝜏𝑚
 , 𝜏 ≥ 1, we have 

 𝑃(|𝑋 − 𝑥| > 𝜀)𝑚𝑑𝜀 ≤ 𝜏𝜑  
1

𝜏𝑚
, 𝑥 

𝑚
.

∞

0
 It follows  

𝐿2 𝑚 ≤ 𝜏  𝜑  
1

𝜏𝑚
, 𝑥 

𝑚∞

𝐾1 𝑚 
𝑓 𝑥 𝑑𝑥.                                                                                                                  (2.2.8) 

Now, we evaluate 𝜑 𝑡, 𝑥 , that is we find the moment generating function of |𝑋 − 𝑥|. For 𝑥 ∈ 𝑅, 0 < 𝑡 < 1, we have 

𝜑 𝑡, 𝑥 = 𝐸 𝑒𝑡 𝑋−𝑥  ≤ 𝑒𝑡𝑥𝐸 𝑒𝑡𝑋 = 𝑒𝑡𝑥  𝑒𝑡𝑦  𝜆𝑒−𝜆𝑦
∞

0

𝑑𝑦 

                                                                 = 𝜆𝑒𝑡𝑥  𝑒−𝑦(𝜆−𝑡)𝑑𝑦
∞

0
=

𝜆𝑒 𝑡𝑥

𝜆−𝑡
 , 𝑡 < 𝜆  

Hence for 𝑡 =
1

𝜏𝑚 
 , 𝜏 ≥ 1 

 𝜑  
1

𝜏𝑚  
, 𝑥 

𝑚
≤ 𝑒

𝑥

𝜏   
𝜆

𝜆−𝑡
 
𝑚

= 𝑒
𝑥

𝜏   
1

1− 
1

𝜏𝑚𝜆

 

𝑚

=  𝑒
𝑥

𝜏   1 +
1

𝜏𝑚𝜆 −1
 
𝑚

. It follows 

𝐿2 𝑚 ≤ 𝜏𝜆  1 +
1

𝜏𝑚𝜆 −1
 
𝑚

  𝑒
𝑥

𝜏  
∞

𝐾1 𝑚 
𝑒−𝜆𝑥  𝑑𝑥  

             =
𝜏2𝜆

𝜏𝜆−1
 1 +

1

𝜏𝑚𝜆 −1
 
𝑚

𝑒− 𝜏𝜆−1 𝐾1 𝑚 ,   𝜏𝜆 > 1.                                                                                     (2.2.9) 

Substituting 𝐾1 𝑚 =
𝑙𝑜𝑔 𝑚

 𝜏𝜆−1 
 in (2.2.7) and (2.2.9), we obtain 

 𝐿1 𝑚 ≤
𝑙𝑜𝑔 𝑚

2 𝜏𝜆−1  𝑚 
,                                                                                                                                                (2.2.10) 

 𝐿2 𝑚 ≤
𝜏2𝜆

𝜏𝜆−1
 1 +

1

𝜏𝑚𝜆 −1
 
𝑚 1

𝑚 
= 𝑂  

1

𝑚 
 ,                                                                                                       (2.2.11) 

since  1 +
1

𝜏𝑚𝜆 −1
 
𝑚

→ 𝑒
1

𝜏 𝜆 , as  𝑚 → ∞.  
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Substituting (2.2.10) and (2.2.11) in (2.2.1) yields 

𝐸𝑑𝑚 = 𝐿1 𝑚 + 𝐿2 𝑚 ≤ 𝑂  
1

𝑚 
 +

𝑙𝑜𝑔 𝑚

2 𝜏𝜆−1  𝑚 
 , 𝜏𝜆 > 1.                                                                          (2.2.12) 

Note that, from (2.1.2) and (2.2.12) the lower and upper bounds of the expected nearest neighbor distance are different 

in constants and the term 𝑙𝑜𝑔𝑚. That is, for the distributions have exponentially decaying tails there is an additional 

logarithmic term over the rates for compact support. This example illustrates that the expected nearest neighbor distance 
depends on the tails of the distribution.     

Putting 𝛾 =
1

2
  in lemma 1, we obtain 𝑅𝑚 ≤ 𝑅∞ + 𝜔  𝐸𝑑𝑚 + 𝐸𝑑𝑚  .  

Hence, from (2.2.12) we have  

𝑅𝑚 ≤ 𝑅∞ + 𝜔   𝑂  
1

𝑚 
 +

𝑙𝑜𝑔 𝑚

𝑐2 𝜏𝜆−1 𝑚 
 

1

2
+  𝑂  

1

𝑚 
 +

𝑙𝑜𝑔 𝑚

𝑐2 𝜏𝜆−1 𝑚 
  .                                                         (2.2.13)   
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