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ABSTRACT 

In science and technology, applications of Markov chain models are varied. We consider the stochastic Markov chain by 
adding a stochastic term to the deterministic Markov chain. In this work, we decide to estimate the parameters of the birth 
and death stochastic Markov chain by the Bayesian method. 
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1. INTRODUCTION 

Randomness is a basic type of object uncertainty and a random variable is a function of sample space to set real number. 
A stochastic process is set of random variables. A differential equation that contains a random component is known as a 
Stochastic Differential Equation (SDE). It’s solution is known as a random process. 

SDEs are used in the modeling of many physical biological and economic systems. Generally, SDEs cannot be solved 
using traditional mathematics for the steps of the transformation because the Wiener process is non-differentiable instead 
we need special techniques such as Ito and Stratonovich calculus (Oksendal, 2000). However, there is not always a 
closed form solution for SDEs, hence researchers have looked for solving them numerically (Kloeden, 1995). The methods 
based on numerical analysis are reported (Kloeden and Platen, 1995). 

One of the most important steps in the modeling process is that of parameter estimation (Timmer, 2000). Timmer 
discussed three methods to estimate parameters in SDEs, the Maximum Likelihood Estimation (MLE), quasi-maximum 
likelihood and integration scheme. MLE is a popular method in the case of diffusion process driven by Brownian motions, 
when the process can be observed continuously (Prakasa Rao, 1983). When a diffusion process is observed at discrete 
times, in most case the transition density and hence likelihood function of the observations is not explicitly computable. 

Bayesian approach for parameters estimation is applicable to a large class of discretely observed process. This method 
has several advantages over frequents method. One of the ability is to incorporate prior information, if such information 
are available. 

 In recent years, Wilson (2005) suggested the some applications of Bayesian statistical inference to SDEs. Panzer (2009) 
studied nonparametric Bayesian inference for ergodic diffusions. Meulen and Zanten (2011) are showed consistent 
nonparametric Bayesian estimation for discretely observed scalar diffusions. However, Gugushvili and Spreij (2012) 
discuss the nonparametric Bayesian drift estimation for SDEs. In this paper, applies Bayesian statistical methods to SDEs 
used in Markov chain. The main goal of this paper is to parameter estimation of the birth and death stochastic Markov 
chain.  

The structure of this paper is as follows: In next section, we will consider the model stochastic birth and death process. In 
section 3, we will define the SDEs for the birth and death stochastic Markov chain. The parametric Bayesian estimation for 
the birth and death stochastic Markov chain is given in section 4.  

2. The birth and death stochastic Markov chain 

Markov processes represent the simplest generalization of independent processes by permitting the outcome at any 

instant to depend only on the outcome that precedes it. Thus, in a Markov process ),(tX the past has no influence on the 

future if the present is specified (Doob, 1953). This means that if nn tt 1 , then 

    
)1()).()(()),()(( 11   nnnnnn tXxtXPtttXxtXP  

From (1) it follows that if nttt  21 , so 

)2()).()(())(,),()(( 111   nnnnnn tXxtXPtXtXxtXP   

A special kind of Markov process is a Markov chain where the system can occupy a finite or countable infinite number of 

states  ,,,, 21 jeee  such that the future evolution of the process once it is in a given state, depends only on the 

present state and not on how it arrived at that state, depends only on the present state and not on how it arrived at that 
state. Both Markov chain and Markov process can be discreet-time or continuous-time depending on whether the time 
index set is discreet or continuous.  

In a discreet-time Markov chain nX with a finite or infinite set of states  ,,,, 21 jeee , let )( nn tXX  represents 

state of the system at ntt  . The numbers ),( nmpij , 

)(),( imjnij eXeXPnmp   

represent the transition probabilities of the Markov chain from state ie at mt to je at nt . 

P = (Pij) called one-step probability transition matrix whose entries are all nonnegative, and elements in each row add to 

unity. Theoretical results for Markov chains with known transition probability matrix are extensive. Discrete-time Markov 
chain models, continuous-time Markov chain models and stochastic differential equation models are three types of 
stochastic models commonly used in population biology. When population sizes are large, SDEs are used to approximate 
the discrete-time Markov chain models or continuous-time Markov chain models (Dennis, 2002). 
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Let )(tX denote the random variable for the total population size at time t and assume that the birth and death rates 

)(X and )(X satisfy assumptions, 

0)0()0()  i and 0)( x  for .NX   

0)() Xii   for ),0( NX   and 0)( X  for ).,0( NX   

)()() XXiii    for ).,0( KX   

)()() XXiv    for ).,( NKX  

NandK are numbers such that .0 NK   In the discreet-time Markov chain model, we have 

),)()(()( itXjttXPtpij    

where, 

         

( ). , 1, {0,1, , 1}

( ). , 1, {1,2,3, , }
( ) (3)

1 [ ( ) ( )]. , , {0,1,2, , }

0,

ij

i t if j i j N

i t if j i j N
p t

i i t if j i j N

otherwise





 

    


   
  

    







 

and ))(( tpP ij  is the transition matrix (Allen, 2003) 

.
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                                                                                                                                                             (4) 

However, for the continuous-time Markov chain model, ),0[ t , NtX ,,1,0)(   and t  sufficiently small. The 

transition probabilities for the continuous-time Markov chain model assume: 

                                       

( ). ( ), 1, {0,1, , 1}

( ). ( ), 1, {1,2,3, , }
( ) (5)

1 [ ( ) ( )]. ( ), , {0,1,2, , }

0, .

ij

i t O t if j i j N

i t O t if j i j N
p t

i i t O t if j i j N
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This can be written in matrix form as: 

,1)0(, 0  ipQP
dt

dP
 

where )( ijqQ   is the infinitesimal generator matrix, 
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3. Stochastic differential equation model 

Fluctuations in statistical mechanics are usually modeled by adding a stochastic term to the deterministic differential 
equation. By doing this one obtains what is called SDEs, and the term stochastic called noise (Gard, 1988). Then, a SDE 
is a differential equation in which one or more of the terms are stochastic process, and resulting in a solution which is itself 
a stochastic process. In recent decades the mathematics of SDEs has played an important role in many application areas 
including biology, chemistry, environmental modeling and engineering (Farnoosh and Rezaeyan, 2011). 

Every unwanted signal that adds to the information is called noise. A noise in dynamical system is usually considered a 
nuisance. However in certain nonlinear systems, including electronic circuits and biological sensory systems, the presence 
of noise can enhance the detection of weak signals. Noise has the most important role in SDE. 

Since the path of a Wiener process is nowhere differentiable, a white noise cannot be considered a stochastic process in 
the usual way but it can be approximate by conventional stochastic processes with wide spectral bands which are 
commonly known as color noise process. The most famous example of this noise, is the Ornestein-Uhlenbeck process. 

Let )(tX  denote the random variable for the total population size at time t and assume that both time and state are 

continuous variables, ),0[ t  and ],0[)( NtX  where N represents the maximum population size. Gardiner 

(1985), Allen (1999) showed that sample paths )(tX of the stochastic process satisfy in the following Ito stochastic 

integral equation: 

)7().(]))(())(([))](())(([)0()(
0 0

udWuXuXduuXuXXtX

t t

     

In (7), W  is the standard Wiener process, where )()()( tWttWtW   has a normal distribution, ).,0( tN   

The first integral in (7) is a Riemann integral, but the second integral is an Ito stochastic integral (Gard 1988, Oksendal 
2000). For notational convenience, the stochastic integral equation (7) is often expressed as the SDE: 

)8(.0)0(,
)(

))(())(())(())((
)(

0 xX
dt

tdW
tXtXtXtX

dt

tdX
   

Then 

.)0(,)()( 0xXdWXdtXdX    

This equation no explicit solution and 
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4. Parameters estimation 

For simplicity in calculations, we consider in (8), 

),())(())(( tXtXtX    

and 

                                              )9(),())(())(( 22 tXtXtX    

or, 

                                            )10().())(())(( tXtXtX    
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So, from equation (8) we obtain 

                                                )11(),(
)(

)(
tdWdt

tX

tdX
   

or, from (10)  we get 

                                     )12(.
)(

)()(
)(

dt

tdW
tXtX

dt

tdX
   

 

For a given positive integer n , let 
n

T
t   and consider the following partitions 

},)1(,,2,,0{ Ttnttn   , 

of ],0[ T , with a simple forward Euler discretization of the equation (11), we derive the following stochastic difference 

equation: 

          )13(,,2,1,)1(, nititWtXtXXX ttttttt     

 where ttW   is independent, identically distributed with the standard normal distribution.  

Denote tiX   by iX . The Least Square Estimator (LSE) of   for equation (13) is to minimize the following contrast 

function: 
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Then the LSE  ,
ˆ

n  is defined as: 
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In a similar manner, we get from SDE (12), 
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The SDE (12), has no explicit solution, but the equation (11) can be solved by making the transformation )(ln)( tXtY   

and using Ito's lemma to get (Kloeden, 1995), 

                                          )14().()( tdWdttdY    

If we consider (11) as a parametric of  ),(  , then these parameters are estimated via Bayesian paradigm. Bayesian 

estimation does not assume that   and   have fixed values, instead it assumes that these are random variables with 

probability distribution. 
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So, this method incorporates knowledge about a particular parameter as the prior distribution. 

From this a partial differential equation is derived and solved for the transition probability ),,( iiff tYtYP  yielding: 

               )15().
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The sampling distribution for data )( ii tYY  and discrete set of times nttt  10  is: 
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and the posterior probability for   and   is: 

          )17(),,(),,,,(),,,( 111  SSSPSSP nnn    
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YS  

The values of   and   which maximum the posterior distribution for uniform ),(  are just  

the maximum likelihood estimates: 
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(Timmer, 2000). 

With using of the standard Jeffery's prior 



1

),(   , the posterior distribution for  is: 

                   )18(),,(),,,,(),,( 111  SSSPdSSP nnn    

Or with using of the prior )ˆ(),( ML  , the posterior distribution for  is: 
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Thus,  
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Estimators are chosen to minimize the expected loss, 

                                      )21(),,ˆ()ˆ(  LPd ML 

for various loss functions ),ˆ( L . Set   ˆ),ˆ(L , then the resulting estimators the median is defined by: 
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If we put 
2)ˆ(),ˆ(  L , then the resulting estimator is the expected value 

         



0

)ˆ(ˆ
MLEXP Pd  = )23(.ˆ)

2
(

)
2

1
(

)
2

2
(

2

1

ML

n

n

n









 

5. CONCLUSION 

We converted the birth and death Markov chain to the stochastic Markov chain. The purpose of this paper is the LSE for 
the parameter of the birth and death stochastic Markov chain when   is given.  Also, we estimated the parameters 
and  of the stochastic model by using the Bayesian method. We used the various loss functions in order to minimize the  

expected loss. 
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