

On Totally (p,k) Quasiposinormal Operator

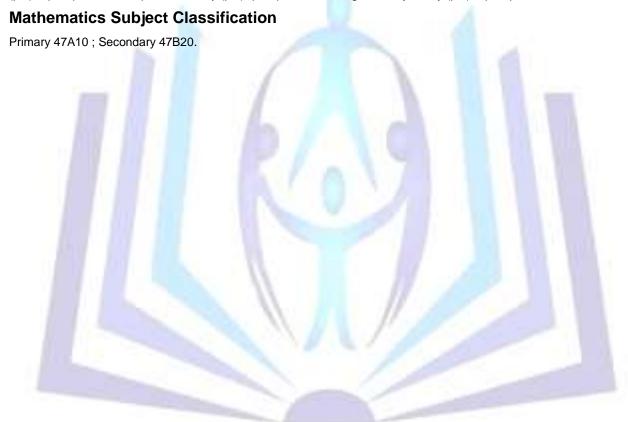
D.Senthilkumar; D.Kiruthika
Department of Mathematics
Government Arts College (Autonomous),
Coimbatore – 641018.
senthilsenkumhari@gmail.com
dkiruthi@gmail.com

ABSTRACT

In this paper we study some properties of totally (p,k) - quasiposinormal operator. And also we show that Weyl's theorem and algebraically Weyl's theorem holds for totally (p,k) -quasiposinormal operator.

Keywords:

(p,k) - quasiposinormal operator; totally (p,k) quasiposinormal; algebraically totally (p,k) -quasiposinormal.



Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 3, No 3 editor@cirworld.com www.cirworld.com, member.cirworld.com

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space H. Recall that an operator $T \in B(H)$ is positive, $T \ge 0$, if $(Tx,x) \ge 0$ for all $x \in H$, and posinormal if there exists a positive $\lambda \in B(H)$ such that $TT^* = T^* \ \lambda \ T$. Here λ is called interrupter of T. In other words, an operator T is called posinormal if $TT^* \le c^2 T^* T$, where T^* is the adjoint of T and $C \ge 0$ [4]. An operator T is said to be T0 posinormal if $TT^* \ge c^2 T^* T$ 0, where T^* 1 is clear that 1 - posinormal is posinormal. The conditionally totally posinormal was introduced by Bhagawati prashad and Carlos Kubrusly [1]. Salah Mecheri [9] and D.Senthilkumar [14] et all studied Generalized Weyl's theorem and Weyls theorem for posinormal and T^* 1 posinormal operators. Milyoung Lee and Sang Hun Lee was introduced "on T^* 2 quasiposinormal operators [13]. In this paper we want to focus that Weyl's theorem holds for totally T^* 3 quasiposinormal operators.

1.1 Definition: An operator T is said to be (p,k) - quasiposinormal if

$$T^{*k} (c^2 (T^*T)^p - (TT^*)^p) T^k \ge 0,$$

where k is a positive integer, 0 and <math>c > 0.

1.2 Definition: An operator T is called totally (p,k) - quasiposinormal, if the translate $T-\lambda$ is (p,k) - quasiposinormal operator for all $\lambda \in C$.

Let B(H) and K(H) denote, respectively, the algebra of bounded linear operators and the ideal of compact operators acting on an infinite dimensional separable Hilbert space H. If $T \in B(H)$ we shall write N(A) and R(T) for the null space and the range of T, respectively. Also, let $\alpha(T) := \dim N(T)$, $\beta(T) := \dim N(T^*)$ and let $\sigma(T)$, $\sigma_a(T)$, and $\prod_0 (T)$, denote the spectrum, approximate point spectrum and the set of all Riesz points of T, respectively. An operator $T \in B(H)$ is called Fredholm if it has a closed range, a finite dimensional null space, and its range has finite co - dimension. The index of a Fredholm operator is given by

$$I(A) := \alpha(T) - \beta(T),$$

T is called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and decent, equivalently [8, Theorem 7.9.3] if T is Fredholm and $T-\lambda$ is invertible for sufficiently small $|\lambda|>0, \ \lambda\in C$. The essential spectrum $\sigma_x(T)$, the Weyl spectrum $\sigma_x(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by [7, 8]

$$\sigma_{e}(T) = \{\lambda \in C : T - \lambda \text{ is not Fredholm}\}$$

$$\sigma_{w}(T) = \{\lambda \in C : T - \lambda \text{ is not Weyl}\}$$

$$\sigma_{h}(T) = \{\lambda \in C : T - \lambda \text{ is not Browder}\}$$

respectively. Evidently

$$\sigma_{a}(T) \subseteq \sigma_{w}(T) \subseteq \sigma_{b}(T) = \sigma_{a}(T) \bigcup acc \, \sigma(T)$$

where we write $\operatorname{acc} K$ for the accumulation points of $K \subseteq C$. If we write $\operatorname{iso} K = K \setminus \operatorname{acc} K$, then we let

$$\prod_{0}(T) := \{ \lambda \in iso \, \sigma(T) : 0 < \alpha(T - \lambda) < \infty \}, \ p_{0}(T) := \sigma(T) \setminus \sigma_b(T).$$

We say that Weyl's theorem holds for $\,T\,$ if

$$\sigma(T) \setminus \sigma_w(T) = \prod_{0.0} (T).$$

More generally, Berkani in [2] says that the generalized Weyl's theorem holds for T provided

$$\sigma(T) \setminus \sigma_{BW}(T) = E(T),$$

where E(T) and $\sigma_{{\scriptscriptstyle Bw}}(T)$ denote the isolated point spectrum which are eigenvalues (with no restriction on multiplicity) and the set of complex numbers λ for which $T-\lambda I$ fails to be Weyl, respectively. Let X be a Banach space. An operator $T\!\in\!B(X)$ is called B-Fredholm by Berkani [2] if there exists $n\in N$ for which the induced operator

$$T_n: T^n(X) \to T^n(X)$$

is Fredholm in the usual sense, and B-Weyl if in addition T_n has index zero. Note that if the generalized Weyl's theorem holds for T, then so does Weyl's theorem [2].

2. MAIN RESULTS

In this section we study some properties of totally (p,k) - quasiposinormal operator. The following lemma summarizes the basic properties of such operators.

2.1 Lemma: If T is totally (p,k) - quasiposinormal operator, then $\ker T \subset \ker T^*$, $\ker T \subset \ker T^2$, $r(T) = \|T\|$ and $T|_M$ is a totally (p,k) quasiposinormal operator, where r(T) denotes the spectral radius of T and M is any invariant subspace for T.

2.2 Lemma: Every totally (p,k) - quasiposinormal operator has the single valued extension property.

Proof: It is easy to prove that, by Lemma 2.1, $T-\lambda$ has finite ascent for each λ . Hence T has the single valued extension property by [10].

Recall that an operator $X \in L(H,K)$ is called a quasiaffinity if it has trivial kernal and dense range. An operator $S \in L(H)$ is said to be quasiaffine transform of an operator $T \in L(K)$ if there is a quasiaffinity $X \in L(H,K)$ such that $X \subseteq TX$

2.3 Corollary: Let T be any totally (p,k) - quasiposinormal operator. If S is any quasiaffine transform of T, then S has the single valued extension property.

Proof: Since $\ker(S-\lambda) \subset \ker(S-\lambda)^2$, it suffices to show that $\ker(S-\lambda)^2 \subset \ker(S-\lambda)$. If $x \in \ker(S-\lambda)^2$, then $(S-\lambda)^2 x = 0$. Let X be a quasiaffinity such that XS = TX. Then $X(S-\lambda)^2 x = 0$. Hence $(T-\lambda)^2 Xx = 0$. Thus $Xx \in \ker(T-\lambda)^2$. Since $\ker(T-\lambda) = \ker(T-\lambda)^2$ by the proof of Lemma 2.2, $X \in \ker(T-\lambda)$. Therefore, $X(S-\lambda)x = (T-\lambda)X = 0$. Since X is one-to-one, $(S-\lambda)x = 0$. Thus $X \in \ker(S-\lambda)$.

If T has the single valued extension property, then for any $x \in H$ there exists a unique maximal open set $\rho T(x)(\supset \rho(T))$ and a unique H - valued analytic function f defined in $\rho T(x)$ such that $(T-\lambda)f(\lambda)=x$, $\lambda \in \rho T(x)$. Moreover, if F is a closed set in C and $\sigma_T(x)=C\,\rho T(x)$, then

$$H_T(F) = \{ x \in H : \sigma_T(x) \subset F \}$$

is a linear subspace of H [3].

2.4 Corollary: If T is totally (p,k) - quasiposinormal operator, then

$$H_T(F) = \{ x \in H : \lim_{n \to \infty} ||(T - \lambda)^n x||^{\frac{1}{n}} = 0 \}$$

Proof: Since T has the single valued extension property by Lemma 2.2, the proof follows from [10].

2.5 Lemma: If T is totally (p,k) - quasiposinormal operator, then it is isoloid.

Proof: Since T has the translation invariance property, it suffices to show that if $0 \in iso \sigma(T)$, then $0 \in \sigma_p(T)$. Choose $\rho > 0$ sufficiently small that 0 is the only point of $\sigma(T)$ contained in or on the circle $|\lambda| = \rho$. Define

$$E = \int_{|\lambda| = \rho} (\lambda I - T)^{-1} d\lambda$$

Then E is the Riesz idempotent corresponding to 0. So M=E(H) is an invariant subspace for T, $M\neq\{0\}$, and $\sigma(T|_M)=0$. Since $(T|_M)$ is also totally (p,k) - quasiposinormal operator, $T|_M=0$. Therefore, T is not one-to-one. Thus $0\in\sigma_p(T)$.

2.6 Theorem: Weyl's theorem holds for any totally (p,k) - quasiposinormal operator.

Proof: If T is totally (p,k) - quasiposinormal operator, then it has the single valued extension property from Lemma 2.2. By [5, Theorem 2], it suffices to show that $H_T(\lambda)$ is finite dimensional for $\lambda \in \pi_{00}(T)$. If $\lambda \in \pi_{00}(T)$, then $\lambda \in iso\ \sigma(T)$ and $0 < \dim \ker(T-\lambda) < \infty$. Since $\ker(T-\lambda)$ is a reducing subspace for $T-\lambda$, write $T-\lambda = 0 \oplus (T_1-\lambda)$, where 0 denotes the zero operator on $\ker(T-\lambda)$, and $T_1-\lambda = (T_1-\lambda)|_{\ker(T-\lambda)^{\perp}}$ is injective. Therefore,

$$\sigma(T-\lambda) = \{0\} \bigcup \sigma(T_1-\lambda)$$

If $T_1-\lambda$ is not invertible, $0\in\sigma(T_1-\lambda)$. Since $\sigma(T-\lambda)=\{0\}\cup\sigma(T_1-\lambda)$, $\sigma(T-\lambda)=\sigma(T_1-\lambda)$. Since $\lambda\in\pi_{00}(T)$, $\lambda\in iso\ \sigma(T_1)$. Since T is totally (p,k)- quasiposinormal, it is easy to show that T_1 is totally (p,k) quasiposinormal operator. Since T_1 is isoloid by Lemma 2.5, $\lambda\in\sigma_p(T_1)$. Therefore, $\ker(T_1-\lambda)\neq\{0\}$ So we have a contradiction. Thus $T_1-\lambda$ is invertible. Therefore, $(T-\lambda)((\ker(T-\lambda))^\perp)=(\ker(T-\lambda))^\perp$. Thus $(\ker(T-\lambda))^\perp$ or $(\ker(T-\lambda))^\perp$. Since $\ker(T-\lambda)\subset\ker(T-\lambda)^*=(\operatorname{ran}(T-\lambda))^\perp$. Therefore, $\operatorname{ran}(T-\lambda)=(\ker(T-\lambda))^\perp$. Thus $\operatorname{ran}(T-\lambda)$ is closed. Since $\dim\ker(T-\lambda)<\infty$, $T-\lambda$ is semi-Fredholm. By [11, Lemma 1], $H_T(\{\lambda\})$ is finite dimensional.

2.7 Definition: An operator $T \in B(H)$ is called algebraically totally (p,k) - quasiposinormal operator if there exists a nonconstant complex polynomial p such that p(T) is totally (p,k) - quasiposinormal operator. The following facts follow from the above definition and the well known facts of totally (p,k) - quasiposinormal operator. If $T \in B(H)$ is algebraically totally (p,k) - quasiposinormal operator and $M \subseteq H$ is invariant under T, then $T|_M$ is algebraically totally (p,k) - quasiposinormal operator.

2.8 Lemma: If $T \in B(H)$ is algebraically totally (p,k) quasiposinormal operator and quasinilpotent, then T is nilpotent.

Proof: Suppose p(T) is totally (p,k) quasiposinormal operator for some nonconstant polynomial p. Since totally (p,k) quasiposinormal is translation-invariant, we may assume p(0)=0. Thus we can write $p(\lambda)\equiv a_0\lambda^m(\lambda-\lambda_1)\cdots(\lambda-\lambda_n)(m\neq 0,\lambda_i\neq 0)$ for every $1\leq i\leq n$. if T is quasinilpotent, then $\sigma(p(T))=p(\sigma(T))=p(\{0\})=0$, so that p(T) is also quasinilpotent. Since the only (p,k)- quasiposinormal quasinilpotent operator is zero, it follows that

$$a_0 T^m (T - \lambda_1 I) \cdots (T - \lambda_n I) = 0$$

since $T - \lambda_i I$ is invertible for every $1 \le i \le n$, we have $T^m = 0$.

2.9 Lemma: If $T \in B(H)$ is algebraically totally (p,k) - quasiposinormal operator, then T is isoloid.

Proof: Suppose p(T) is totally (p,k) - quasiposinormal for some nonconstant polynomial p. Let $\lambda \in \sigma(T)$. Then using the spectral decomposition, we can represent T as the direct sum $T = T_1 \oplus T_2$ where $\sigma(T_1) = \lambda$ and $\sigma(T_2) = \sigma(T) \setminus \lambda$. Note that $T_1 - \lambda I$ is also algebraically totally (p,k) quasiposinormal. Since $T_1 - \lambda I$ is quasinilpotent, by Lemma 2.8, $T_1 - \lambda I$ is nilpotent. Therefore $\lambda \in \pi_0(T)$. This shows that T is isoloid.

2.10 Theorem: Let T be an algebraically totally (p,k) - quasiposinormal operator. Then T is polaroid.

Proof: Let T be an algebraically totally (p,k) - quasiposinormal operator. Then p(T) is totally (p,k) - quasiposinormal for some non constant polynomial p. Let $\lambda \in iso\ \sigma(T)$. Using the spectral projection $P = \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$, where D is a

closed disc centered at μ which contains no other point of $\sigma(T)$. We can represent T as the direct sum, $T=\begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$

where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$. Since T_1 is algebraically (p,k) - quasiposinormal operator and $\sigma(T_1) = \lambda$. But $\sigma(T_1) - \lambda I = 0$ it follows from Lemma 2.8, that $T_1 - \lambda I$ is nilpotent. Therefore $T_1 - \lambda I$ has finite ascent and descent. On the other hand, since $T_1 - \lambda I$ is invertible, clearly it has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent. Therefore $T_1 - \lambda I$ has finite ascent and descent.

2.11 Theorem: Let $T^* \in B(H)$ be an algebraically totally (p,k) - quasiposinormal operator. Then T is a - isoloid.

Proof: Suppose T * is algebraically totally (p,k) - quasiposinormal operator. Since T * has SVEP, then $\sigma(T) = \sigma_a(T)$. Let $\lambda \in \sigma_a(T) = \sigma(T)$. But T * is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_p(T)$. Thus T is a - isoloid.

2.12 Theorem: Let T be an algebraically totally (p,k) - quasiposinormal operator. Then T has SVEP.

Proof: First we show that if T is totally (p,k) - quasiposinormal operator, then T has SVEP. Suppose that T is totally (p,k) - quasiposinormal operator. If $\Pi_0(T) = \phi$, then clearly T has SVEP. Suppose that $\Pi_0(T) \neq \phi$. Let $\Delta(T) = \lambda \in \Pi_0(T) : N(T-\lambda) \subseteq N(T^* - \overline{\lambda})$. Since T is totally (p,k) - quasiposinormal operator and $\Pi_0(T) \neq \phi$, $\Delta(T) \neq \phi$. Let M be the closed linear span of the subspaces $N(T-\lambda)$ with $\lambda \in \Delta(T)$. Then M reduces T and we can write T as $T_1 \oplus T_2$ on $H = M \oplus M^{\perp}$. Clearly $\lambda \in \Pi_{00}(T)$, is normal and $\Pi_0(T_2) = \phi$,. Since T_1 and T_2 have both SVEP, T has SVEP. Suppose that T is algebraically totally (p,k) - quasiposinormal operator. Then p(T) is totally (p,k) - quasiposinormal operator for some non constant polynomial p. Since p(T) has SVEP, it follows from [12, Theorem 3.3.9] that T has SVEP.

2.13 Theorem: Weyl's theorem holds for algebraically totally (p,k) - quasiposinormal operator.

Proof: Suppose that $\lambda \in \sigma(T) \setminus w(T)$. Then $T - \lambda$ is Weyl and not invertible, we claim that $\lambda \in \partial \sigma(T)$. Assume that λ is an interior point of $\sigma(T)$. Then there exist a neighbourhood U of λ , such that $\dim N(T - \lambda) > 0$ for all $\lambda \in u$. It follows from [6, Theorem 10] that T doesnot have single valued extension property [SVEP]. On the other hand, since p(T) is (p,k) - quasiposinormal operator for some non constant polynomial p, it follows from Lemma 2.12. That T has SVEP. It is a contradiction. Therefore $\lambda \in \partial \sigma(T)$.

Conversely suppose that $\lambda \in \prod_{00}(T)$, . Using the Riesz idempotent $E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D\lambda} (\mu - T)^{-1} d\mu$ where D is the closed disk centered at λ which contains no other point of $\sigma(T)$.

We can represent T as the direct sum $T=\begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$ where $\sigma(T_1)=\{\lambda\}$ and $\sigma(T_2)=\sigma(T)\setminus\{\lambda\}$. Now we consider two cases

Case (i) $\lambda = 0$:

Here T_1 is algebraically (p,k) - quasiposinormal operator and quasinilpotent. It follows from Lemma 2.8, that T_1 is nilpotent. We claim that $\dim R(E) < \infty$. For if $N(T_1)$ is infinite dimensional, then $0 \notin \prod_{0 \in T} T_0(T)$, . It is contradiction. Therefore T_1 is a finite dimensional operator. So it follows that T_1 is Weyl. But since T_2 is invertible, we can conclude that T is Weyl. Therefore $0 \in \sigma(T) \setminus w(T)$.

Case (ii) $\lambda \neq 0$.

Then by Lemma 2.9, that $T_1 - \lambda$ is nilpotent. Since $\lambda \in \prod_{0}(T)$, $T_1 - \lambda$ is a finite dimensional operator. So $T_1 - \lambda$ is Weyl. Since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl.

By case (i) and case (ii) , Weyl's theorem holds for T .

This completes the proof.

REFERENCES:

- [1] Bhagawati prashad Duggal and Carlos Kubrusly, Weyl's theorem for posinormal operators, J. Korean Math. Soc., 529-541.
- [2] M. Berkani, Index of B Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130 (2002) no. 6, 1717 1723.
- [3] I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- [4] H. Crawford Rhaly, Posinormal Operators, J.Math. Soc. Japan., 46 (1994), 587 605.
- [5] S. Djordjevic, I. Jeon and E. Ko, Weyl's theorem through local spectral theory, Glasgow Math. J. 44(2002), 323 327.
- [6] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math.58 (1975), no. 1, 61 -69.
- [7] R. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect A., 85 (1985), No. 2, 151 176.
- [8] R. Harte, Invertibility and Singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied mathematics, 109, Marcel Dekker, Inc., New York, 1988.
- [9] S. Mecheri, Generalized Weyl's theorem for Posinormal operators, Proc. Roy. Irish Acad., 107A (1), 81 89(2007).
- [10] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(1992), 323 337.
- [11] K. B. Laursen, Essential spectra through local spectral theory, Proc. Amer. Math. Soc. 125(1997), 1425 1434.
- [12] K.B. Laursen and M. Neumann, An introduction to Local spectral theory, 1st edition., Clarendon Press, oxford.
- [13] M. Y. Lee and S. H. Lee, On (p, k) quasiposinormal operators, J.Appl. Math. and Computing., Vol. 19 (2005), No. 1 -2, 573 - 578.
- [14] D. SenthilKumar, S.M. Sherin Joy and P. Maheswari Naik, Weyl Type Theorems and composition operators for p posinormal operators, International journal of Mathematics and Computations., vol (13)14 25 2011.