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ABSTRACT

In this paper we study some properties of totally (p,k) - quasiposinormal operator. And also we show that Weyl's theorem
and algebraically Weyl's theorem holds for totally (p,k) -quasiposinormal operator.
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1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space
H . Recall that an operator T € B(H) is positive, T >0, if (TX, X)>0 for all X€ H , and posinormal if there exists
apositive A€ B(H) suchthat TT" =T A T .Here A is called interrupter of T . In other words, an operator T is
called posinormal if TT < c?T T, where T is the adjoint of T and C>0 [4]. An operator T is said to be P -

posinormal if (TT )P < ¢ (T T)P for someC>0. It is clear that 1 - posinormal is posinormal. The conditionally

totally posinormal was introduced by Bhagawati prashad and Carlos Kubrusly [1]. Salah Mecheri [9] and D.Senthilkumar
[14] et al studied Generalized Weyl's theorem and Weyls theorem for posinormal and p - posinormal operators. Mi young

Lee and Sang Hun Lee was introduced "on (p, k) - quasiposinormal operator [13]. In this paper we want to focus that

Weyl's theorem holds for totally (P, K) - quasiposinormal operators.
1.1 Definition : An operator T is said to be (P, K) - quasiposinormal if
T 2T T)P —TTH")TE >0,
where K is a positive integer, 0 <p <1 and c>0 .

1.2 Definition: An operator T is called totally (P, K) - quasiposinormal, if the translate T — A is (p, K) -
quasiposinormal operator forall A € C .

Let B(H) and K(H) denote, respectively, the algebra of bounded linear operators and the ideal of compact operators
acting on an infinite dimensional separable Hilbert space H . If T e B(H) we shall write N(A) and R(T) for the null
space and the range of T , respectively. Also, let o (T):=dimN(T), A(T):=dimN(T ") and let o (T),
o ,(T),and [, (T), denote the spectrum, approximate point spectrum and the set of all Riesz points of T ,

respectively. An operator T € B(H) is called Fredholm if it has a closed range, a finite dimensional null space, and its
range has finite co - dimension. The index of a Fredholm operator is given by

I (A):= a(T) - A(T),

T is called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and decent, equivalently [8, Theorem

7.9.3] if T is Fredholm and T — A is invertible for sufficiently small ‘ﬂ, | > 0, A€ C. The essential spectrum

o, (T), the Weyl spectrum o, (T) and the Browder spectrum o, (T) of T are defined by [7, 8]

o, (T)={2C:T — Ais not Fredholm}

o,(T)={1C:T - 4is not Weyl}

o,(T)={AC:T — 1is not Browder}
respectively. Evidently

o.M co, () co,(T)=c,(T)Uacco(T),
where we write acc K for the accumulation points of K < C . If we write iSOK =K \acc K , then we let
[1,,(T)={Aecisoo(T):0 <a(T — A)<wc}, Pu,(T):=c(T)\o, (T).
We say that Weyl's theorem holds for T if
o(M)\oy, (T) =TT (T).

More generally, Berkani in [2] says that the generalized Weyl's theorem holds for T provided

o(M\og, (T) =E(T),
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where E(l') and oy, (I') denote the isolated point spectrum which are eigenvalues (with no restriction on multiplicity)

and the set of complex numbers A for which T — Al fails to be Weyl, respectively. Let X be a Banach space. An
operator T € B(X) is called B-Fredholm by Berkani [2] if there exists N € N for which the induced operator

T, T"(X)>T"(X)

is Fredholm in the usual sense, and B-Weyl if in addition Tn has index zero. Note that if the generalized Weyl's theorem

holds for T , then so does Weyl's theorem [2].
2. MAIN RESULTS

In this section we study some properties of totally (p, k) - quasiposinormal operator. The following lemma
summarizes the basic properties of such operators.

2.1 Lemma: IfT is totally (P,K) - quasiposinormal operator, then ker T kerT”, kerTc kerT2, r(T) =|T| and

T|y is a totally (p,K) quasiposinormal operator, where r(T) denotes the spectral radius of T and M is any
invariant subspace for T .

2.2 Lemma: Every totally (P, K) - quasiposinormal operator has the single valued extension property.

Proof: It is easy to prove that, by Lemma 2.1, T — A has finite ascent for each A . Hence T has the single valued
extension property by [10].

Recall that an operator X eL(H, K) is called a quasiaffinity if it has trivial kernal and dense range. An operator

S eL (H) is said to be quasiaffine transform of an operator T € L (K) if there is a quasiaffinity X eL(H,K) such that
X S=TX

2.3 Corollary: Let T be any totally (p, k) - quasiposinormal operator. If S is any quasiaffine transform of T, then S
has the single valued extension property.

Proof: Since ker(S— 1) cker(S — 1)?, it suffices to show that ker(S — 1) cker(S — A) . If xe ker(S — 1)?,
then (S —A)°Xx= 0. Let X be a quasiaffinity such that X S=TX . Then X (S —1)%>x=0. Hence (T —A)* Xx= 0.
Thus Xxeker(T — ). since ker(T —A)= ker (T —A)” by the proof of Lemma 2.2, X X € ker(T — A)
Therefore, X (S —A)x=(T —A)X x=0. Since X is one-to-one, (S—A)X=0. Thus Xxeker(S — A).

If T has the single valued extension property, then for any X& H there exists a unique maximal open set
2T (X)(@ o(T)) and a unique H - valued analytic function f defined in pT (X) such that (T —A) f(1)=Xx,
A€ pT (X) . Moreover, if Fis a closed setin C and o (X)= C pT(X), then

H: (F)={xe H oy (X)cF}
is a linear subspace of H [3].

2.4 Corollary: If T istotally (p,K) - quasiposinormal operator, then

1
Hy (F)={xe H: IimnﬁwH(T—/i)nX " =03

Proof: Since T has the single valued extension property by Lemma 2.2, the proof follows from [10].

2.5 Lemma: If T istotally (P, K) - quasiposinormal operator, then it is isoloid.

Proof: Since | has the translation invariance property, it suffices to show that if Oeisoo (T), then O€ o, (T).

Choose p > O sufficiently small that 0 is the only point of O'(T) contained in or on the circle‘/i |= p . Define
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E= J(ll ~T)tda
2 =p
Then E is the Riesz idempotent corresponding to 0. So M =E(H) is an invariant subspace for T M ;t{O}, and
o(T |y, )= 0.since (T |,,) is also totally (p,K) - quasiposinormal operator, T |, = 0. Therefore, T is not one-to-
one. Thus Oe o, (T).

2.6 Theorem: Weyl's theorem holds for any totally (p, k) - quasiposinormal operator.

Proof: If T is totally (p, k) - quasiposinormal operator, then it has the single valued extension property from Lemma
2.2. By [5, Theorem 2], it suffices to show that H (1) is finite dimensional for A€y, (T). If A€y, (T), then
A€ isoo(T) and 0 <dimker (T -1)<oo . Since ker (T —A) is a reducing subspace for T —A, write T —A=

0®(T,—A), where 0 denotes the zero operator on ker(T—A4), and T, —A=(T, —1)|

(er(T )" is injective.

Therefore,

o(T - A)={0}Uo(T, - A)
If T,—4 is not invertible, Oco(T,—2) . Since o(T—A)={GUc(T,—1), o(T-2A)=0c(T,—A1). Since Lex,,(T),
Ae isoo(T,). since T istotally (P, K) - quasiposinormal, it is easy to show that T, is totally (P, K) quasiposinormal
operator. Since T, is isoloid by Lemma 2.5, /160'p (Tl) Therefore, ker(T, —1)#{0} So we have a contradiction. Thus
T,—A is invertible. Therefore, (T —A)((ker(T —2))")=(ker(T —=4))*. Thus (ker(T —4))")c ran(T —=1) Since
ker(T —2) < ker(T —2)" =(ran(T — A))*. Therefore, ran(T —A) = (ker(T—A))>. Thus ran(T—A) is closed. Since
dimker(T —4) <o, T—A is semi-Fredholm. By [11, Lemma 1], H; ({4}) is finite dimensional.
2.7 Definition: An operator T €B(H)is called algebraically totally (p, K) - quasiposinormal operator if there exists a
nonconstant complex polynomial p such that p(T) is totally (p,Kk) - quasiposinormal operator.
The following facts follow from the above definition and the well known facts of totally (P, K) - quasiposinormal operator.

If TeB(H)is algebraically totally (p,k) - quasiposinormal operator and M cH is invariant under T , then T |, is
algebraically totally (p,k) - quasiposinormal operator.

2.8 Lemma: If T eB(H)is algebraically totally (p,k) quasiposinormal operator and quasinilpotent, then T is nilpotent.

Proof: Suppose p(T) is totally (p,k) quasiposinormal operator for some nonconstant polynomial p . Since totally (p, k)

quasiposinormal is translation-invariant, we may assume p(0)=0 .Thus we can write p(l) =

A" (A=4y) -« (A—4,)(M=0, 2; =0) for every 1<i<n.if T is quasinilpotent, then o(p(T))= p(c(T))=p{0})=0, so

that p(T) is also quasinilpotent. Since the only (p, k) - quasiposinormal quasinilpotent operator is zero, it follows that
agT" (T~ 41)-+(T = 24,1)=0

since T =41 is invertible for every 1<i<n., we have T m-0.

2.9 Lemma: If TeB(H) is algebraically totally (P, K) - quasiposinormal operator, then T is isoloid.

Proof: Suppose P(T) is totally (p,k)- quasiposinormal for some nonconstant polynomial p. Let A€ o(T) . Then using
the spectral decomposition, we can represent T as the direct sum T=T, ®T, where o(T;)=Aand o(T,)=c(T) \ A
Note that T; —Al is also algebraically totally (p,k) quasiposinormal. Since T; —Al is quasinilpotent, by Lemma 2.8,
T, —Al is nilpotent. Therefore A€zy(T). This shows that T is isoloid.

2.10 Theorem: Let T be an algebraically totally (p,k) - quasiposinormal operator. Then T is polaroid.
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Proof: Let T be an algebraically totally (p,k)- quasiposinormal operator. Then p(T) is totally (p,k)- quasiposinormal

. 1 _
for some non constant polynomial p. Let A€isoo(T). Using the spectral projection P :E J(,u—T) ld,u, where D is a
oD

T, 0
closed disc centered at x which contains no other point of o(T). We can represent T as the direct sum, T = [Ol T J
2

where o(T;) ={1} and o(T,) =c(T)\{1}. Since T, is algebraically (p,k)- quasiposinormal operator and o(T;)=A1 .
But o(T;)— Al =0 it follows from Lemma 2.8, that T, — Al is nilpotent. Therefore T, — Al has finite ascent and descent.
On the other hand, since T, — Al is invertible, clearly it has finite ascent and descent. Therefore T — Al has finite ascent
and descent. Therefore A is a pole of the resolvent of T. Thus if Aeiso(c(T)) implies A€z (T), and so
is0(o(T)) 7 (T). Hence T is Polaroid.

2.11 Theorem: Let T €B(H) be an algebraically totally (p, k) - quasiposinormal operator. Then T is & - isoloid.
Proof: SupposeT " is algebraically totally (p, k) - quasiposinormal operator. Since T " has SVEP, then o(M)=0,(T) .

Let Aeo,(T)=0(T) .But T “is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence A€ o,(T) . Thus
T is a - isoloid.

2.12 Theorem: Let T be an algebraically totally (P, K) - quasiposinormal operator. Then T has SVEP.

Proof: First we show that if T is totally (p, k) - quasiposinormal operator, then T has SVEP. Suppose that T is totally
(p,k) - quasiposinormal operator. If [Iy(T)=¢ , then clearly T has SVEP. Suppose that [[,(T)# ¢. Let
A(T)=2elTy(T):N(T —2)N(T " -1) . Since T is totally (P, K) - quasiposinormal operator and [T(T)# ¢, A(T)# ¢
. Let M be the closed linear span of the subspaces N(T —A1) with A€A(T). Then M reduces T and we can write T as
T,®T, onH=M®M™*. Clearly A€[ly(T), is normal and [1,(T,)=¢,. Since T, and T, have both SVEP, T has
SVEP. Suppose that T is algebraically totally (p,K) - quasiposinormal operator. Then p(T) is totally (p,K) -
quasiposinormal operator for some non constant polynomial p. Since p(T) has SVEP, it follows from [12, Theorem 3.3.9]

that T has SVEP.

2.13 Theorem: Weyl's theorem holds for algebraically totally (p, k) - quasiposinormal operator.

Proof: Suppose that Aeo (T)\W(T). Then T— A is Weyl and not invertible, we claim that 1€dc(T) . Assume that A is
an interior point of &(T) . Then there exist a neighbourhood U of A , such that dimN(T — 1)>0 for all A € U. It follows
from [6, Theorem 10] that T doesnot have single valued extension property [SVEP]. On the other hand, since p(T) is

(p, k) - quasiposinormal operator for some non constant polynomial p, it follows from Lemma 2.12. That 1" has SVEP. It
is a contradiction. Therefore A€ oo (T).

1 »
Conversely suppose that A €[y (T), . Using the Riesz idempotent E =2_7zi I(ﬂ—T) 'du where D is the closed disk

DA
centered at A which contains no other point of O'(T)

E TOJ where o(T;) ={A} and o(T,) =o(T)\{1}. Now we

We can represent T as the direct sum T :(
2

consider two cases

Case (i) A=0:

Here T1 is algebraically (p, k) - quasiposinormal operator and quasinilpotent. It follows from Lemma 2.8, that Tl is
nilpotent. We claim thatdimR(E) <o . For if N(T;) is infinite dimensional, then0&[140(T), . It is contradiction. Therefore

T1 is a finite dimensional operator. So it follows that T; is Weyl. But since T, is invertible, we can conclude that T is
Weyl. Therefore 0e o(T) \W(T).
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Case (i) A% 0.

Then by Lemma 2.9, that T, —A is nilpotent. Since 1€[]y(T), T;—4 is a finite dimensional operator. So T; -4 is
Weyl. Since T, —Ais invertible, T —Ais Weyl.

By case (i) and case (ii) , Weyl's theorem holds for T .

This completes the proof.
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