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ABSTRACT  

In this paper we study some properties of totally (p,k) -  quasiposinormal operator. And also we show that Weyl's theorem 
and algebraically Weyl's theorem holds for totally (p,k) -quasiposinormal operator.  
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1. INTRODUCTION AND PRELIMINARIES 

Let )(HB  denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space 

H  . Recall that an operator )(HBT  is positive, 0T , if 0),( xTx  for all Hx , and posinormal if there exists 

a positive )(HB  such that TTTT **   . Here   is called interrupter of T . In other words, an operator T  is 

called posinormal if  TTcTT *2*  , where 
*T  is the adjoint of T  and 0c  [4].  An operator T  is said to be p  - 

posinormal if 
pp TTcTT )()( *2*   for some 0c . It is clear that 1 - posinormal is posinormal. The conditionally 

totally posinormal was introduced by Bhagawati prashad and Carlos Kubrusly [1]. Salah Mecheri [9] and D.Senthilkumar 
[14] et al studied  Generalized Weyl's theorem and Weyls theorem for posinormal and p - posinormal operators. Mi young 

Lee and Sang Hun Lee was introduced "on ),( kp   - quasiposinormal operator [13]. In this paper we want to focus that 

Weyl's theorem holds for totally ),( kp  - quasiposinormal operators. 

1.1 Definition :  An operator T  is said to be ),( kp  - quasiposinormal if 

                               ,0))()(( **2*  kppk TTTTTcT  

                          where k  is a positive integer, 10  p  and 0c  . 

1.2 Definition:  An operator T  is called totally ),( kp  - quasiposinormal, if the translate T  is ),( kp  - 

quasiposinormal operator for all C . 

Let )(HB  and )(HK  denote, respectively, the algebra of bounded linear operators and the ideal of compact operators 

acting on an infinite dimensional separable Hilbert space H . If )(HBT  we shall write N(A) and R(T) for the null 

space and the range of T , respectively. Also, let ),(dim:)( TNT   )(dim:)( *TNT  and let ),(T
 

),(Ta and ),(0 T  denote the spectrum, approximate point spectrum and the set of all Riesz points of T , 

respectively. An operator )(HBT  is called Fredholm if it has a closed range, a finite dimensional null space, and its 

range has finite co - dimension. The index of a Fredholm operator is given by 

                                                         ),()(:)( TTAI    

T  is called Weyl if it is of index zero, and Browder if it is Fredholm of finite ascent and decent, equivalently [8, Theorem 

7.9.3] if T  is Fredholm and T  is invertible for sufficiently small ,0
 

C . The essential spectrum

)(Te , the Weyl spectrum )(Tw   and the Browder spectrum )(Tb  of T  are defined by [7, 8] 

                              
}:{)( FredholmnotisTCTe  

 

                              
}:{)( WeylnotisTCTw  

          

                               
}:{)( BrowdernotisTCTb  

                         

respectively. Evidently 

                                       
)()()()()( TaccTTTT ebwe   , 

where we write acc K for the accumulation points of CK  . If we write KaccKisoK \ , then we let 

              
).(\)(:)(},)(0:)({:)( 0000 TTTpTTisoT b   

We say that Weyl's theorem holds for T  if  

                                     ).()(\)( 00 TTT W   

More generally, Berkani in [2] says that the generalized Weyl's theorem holds for T  provided 

                                               ),()(\)( TETT BW   
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where )(TE  and )(TBw  denote the isolated point spectrum which are eigenvalues (with no restriction on multiplicity) 

and the set of complex numbers   for which IT   fails to be Weyl, respectively. Let X be a Banach space. An 

operator )(XBT  is called B-Fredholm by Berkani [2] if there exists Nn   for which the induced operator 

                                                                 )()(: XTXTT nn

n   

is Fredholm in the usual sense, and B-Weyl if in addition nT  has index zero. Note that if the generalized Weyl's theorem 

holds for T , then so does Weyl's theorem [2].  

2. MAIN RESULTS 

In this section we study some properties of totally ),( kp  - quasiposinormal operator. The following lemma 

summarizes the basic properties of such operators. 

2.1 Lemma: If T is totally ),( kp  - quasiposinormal operator, then ,kerker *TT   2kerker TT  , ( )r T T and 

MT |  is a totally ),( kp  quasiposinormal operator, where )(Tr  denotes the spectral radius of T  and M  is any 

invariant subspace for T . 

2.2 Lemma:  Every totally ),( kp  - quasiposinormal operator has the single valued extension property. 

Proof:  It is easy to prove that, by Lemma 2.1, T  has finite ascent for each . Hence T  has the single valued 

extension property by [10]. 

Recall that an operator ),( KHLX  is called a quasiaffinity if it has trivial kernal and dense range. An operator 

)(HLS  is said to be quasiaffine transform of an operator )(KLT  if there is a quasiaffinity ),( KHLX  such that 

TXSX   

2.3 Corollary: Let T  be any totally ),( kp  - quasiposinormal operator. If S  is any quasiaffine transform of T , then S  

has the single valued extension property. 

Proof: Since 
2)ker()ker(   SS , it suffices to show that )ker()ker( 2   SS . If 

2)ker(  Sx , 

then .0)( 2  xS   Let X  be a quasiaffinity such that TXSX  . Then .0)( 2  xSX   Hence .0)( 2  XxT   

Thus .)ker( 2 TXx  Since
2)(ker)ker(   TT by the proof of Lemma 2.2, )ker(  TxX  

Therefore, .0)()(  xXTxSX   Since X  is one-to-one, .0)(  xS   Thus ).ker(  Sx  

If T  has the single valued extension property, then for any Hx there exists a unique maximal open set 

))()(( TxT   and a unique H - valued analytic function f  defined in )(xT  such that xfT  )()(  , 

)(xT . Moreover, if F is a closed set in C  and )()( xTCxT   , then 

                                         })(:{)( FxHxFH TT    

is a linear subspace of H  [3]. 

2.4 Corollary:  If T  is totally ),( kp  - quasiposinormal operator, then 

                                        }0)(lim:{)(

1

 
nn

nT xTHxFH   

Proof: Since T  has the single valued extension property by Lemma 2.2, the proof follows from [10]. 

2.5  Lemma: If T  is totally ),( kp  - quasiposinormal operator, then it is isoloid. 

Proof: Since T  has the translation invariance property, it suffices to show that if )(0 Tiso , then )(0 Tp . 

Choose 0 sufficiently small that 0 is the only point of )(T  contained in or on the circle   . Define 
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                                                             






 dTIE 1)(  

Then E  is the Riesz idempotent corresponding to 0. So )(HEM   is an invariant subspace for T , }0{M , and 

0)|( MT . Since )|( MT  is also totally ),( kp  - quasiposinormal operator, .0| MT Therefore, T  is not one-to-

one. Thus ).(0 Tp  

2.6 Theorem: Weyl's theorem holds for any totally ),( kp - quasiposinormal operator. 

Proof:  If T  is totally ),( kp  - quasiposinormal operator, then it has the single valued extension property from Lemma 

2.2. By [5, Theorem 2], it suffices to show that )(TH  is finite dimensional for )(00 T . If )(00 T , then 

)(Tiso  and  )(kerdim0 T . Since )(ker T  is a reducing subspace for ,T  write T

)(0 1  T , where 0 denotes the zero operator on ),ker( T  and 


))(ker(11 |)(



T

TT  is injective. 

Therefore, 

                                                    )(}0{)( 1   TT   

If 1T  is not invertible, )(0 1   T . Since ),(}0{)( 1   TT   )()( 1   TT . Since )(00 T , 

)( 1Tiso . Since T  is totally ),( kp - quasiposinormal, it is easy to show that 1T  is totally ),( kp quasiposinormal 

operator. Since 1T  is isoloid by Lemma 2.5, )( 1Tp . Therefore, }0{)ker( 1 T  So we have a contradiction. Thus

1T 
 
is invertible. Therefore, ( )((ker( )) ) (ker( )) .T T T  

 
     Thus (ker( )) ) ( )T ran T 


  

 
Since

.))(()ker()ker( *   TranTT Therefore,  )( Tran  .))(ker( T Thus  )( Tran is closed. Since 

  TT ,)ker(dim  is semi-Fredholm. By [11, Lemma 1], })({TH  is finite dimensional. 

2.7 Definition: An operator )(HBT is called algebraically totally ),( kp - quasiposinormal operator if there exists a 

nonconstant complex polynomial p  such that )(Tp  is totally ),( kp - quasiposinormal operator. 

The following facts follow from the above definition and the well known facts of totally ),( kp - quasiposinormal operator. 

If )(HBT is algebraically totally ),( kp - quasiposinormal operator and HM   is invariant under T , then MT |  is 

algebraically totally ),( kp - quasiposinormal operator. 

2.8 Lemma: If )(HBT is algebraically totally ),( kp  quasiposinormal operator and quasinilpotent, then T  is nilpotent. 

Proof: Suppose )(Tp is totally ),( kp quasiposinormal operator for some nonconstant polynomial p . Since totally ),( kp

quasiposinormal is translation-invariant, we may assume 0)0( p .Thus we can write )(p

)0,0)(()( 10  in
m ma    for every .1 ni if T is quasinilpotent, then 0})0({))(())((  pTpTp  , so 

that )(Tp  is also quasinilpotent. Since the only ),( kp - quasiposinormal quasinilpotent operator is zero, it follows that 

                                             0)()( 10  ITITTa n
m    

since IT i  is invertible for every .1 ni , we have 0mT . 

2.9 Lemma: If )(HBT  is algebraically totally ),( kp - quasiposinormal operator, then T  is isoloid. 

Proof:  Suppose )(Tp  is totally ),( kp - quasiposinormal for some nonconstant polynomial p . Let )(T . Then using 

the spectral decomposition, we can represent T  as the direct sum 21 TTT  where  )( 1T and .\)()( 2  TT   

Note that IT 1  is also algebraically totally ),( kp quasiposinormal. Since IT 1  is quasinilpotent, by Lemma 2.8, 

IT 1  is nilpotent. Therefore )(0 T . This shows that T  is isoloid. 

2.10 Theorem: Let T  be an algebraically totally ),( kp - quasiposinormal operator. Then T  is polaroid. 
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Proof: Let T be an algebraically totally ),( kp - quasiposinormal operator. Then )(Tp  is totally ),( kp - quasiposinormal 

for some non constant polynomial p . Let ).(Tiso  Using the spectral projection 




D

dT
i

P 


1)(
2

1
, where D is a 

closed disc centered at   which contains no other point of ).(T  We can represent T  as the direct sum, 









2

1

0

0

T

T
T  

where }{)( 1  T  and }.{\)()( 2  TT   Since 1T  is algebraically ),( kp - quasiposinormal operator and  )( 1T . 

But  0)( 1  IT   it follows from Lemma 2.8, that IT 1  is nilpotent. Therefore IT 1  has finite ascent and descent. 

On the other hand, since IT 1 is invertible, clearly it has finite ascent and descent. Therefore IT   has finite ascent 

and descent. Therefore   is a pole of the resolvent of T. Thus if ))(( Tiso   implies ),(T  and so 

).())(( TTiso   Hence T is Polaroid. 

2.11 Theorem: Let )(* HBT   be an algebraically totally ),( kp - quasiposinormal operator. Then T  is a  - isoloid. 

Proof: Suppose
*T is algebraically totally ),( kp - quasiposinormal operator. Since 

*T has SVEP, then )()( TT a  . 

Let )()( TTa    . But 
*T is polaroid, hence T  is also polaroid. Therefore it is isoloid, and hence )(Tp . Thus 

T  is a - isoloid.  
2.12 Theorem: Let T  be an algebraically totally ),( kp  - quasiposinormal operator. Then T  has SVEP. 

Proof:  First we show that if T  is totally ),( kp  - quasiposinormal operator, then T  has SVEP. Suppose that T  is totally 

),( kp - quasiposinormal operator. If  )(0 T , then clearly T  has SVEP. Suppose that .)(0  T  Let 

)()(:)()( *
0   TNTNTT . Since T  is totally ),( kp - quasiposinormal operator and  )(0 T ,  )(T

. Let M be the closed linear span of the subspaces )( TN with )(T . Then M reduces T  and we can write T  as 

21 TT   on
 MMH . Clearly ),(00 T  is normal and ,)( 20  T . Since 1T  and 2T   have both SVEP, T  has 

SVEP. Suppose that T  is algebraically totally ),( kp - quasiposinormal operator. Then )(Tp  is totally ),( kp - 

quasiposinormal operator for some non constant polynomial p. Since )(Tp  has SVEP, it follows from [12, Theorem 3.3.9] 

that T  has SVEP. 

2.13 Theorem:  Weyl's theorem holds for algebraically totally ),( kp - quasiposinormal operator. 

Proof: Suppose that )(\)( TwT . Then T  is Weyl and not invertible, we claim that )(T  . Assume that   is 

an interior point of )(T . Then there exist a neighbourhood U of  , such that 0)(dim  TN  for all u . It follows 

from [6, Theorem 10] that T  doesnot have single valued extension property [SVEP]. On the other hand, since )(Tp  is 

),( kp - quasiposinormal operator for some non constant polynomial p, it follows from Lemma 2.12. That T  has SVEP. It 

is a contradiction. Therefore )(T  . 

Conversely suppose that ),(00 T . Using the Riesz idempotent 






 


D

dT
i

E 1)(
2

1
   where D is the closed disk 

centered at   which contains no other point of  ).(T  

We can represent T  as the direct sum 









2

1

0

0

T

T
T   where }{)( 1  T and }.{\)()( 2  TT   Now we 

consider two cases 

Case (i) :0  

 Here 1T  is algebraically ),( kp - quasiposinormal operator and quasinilpotent. It follows from Lemma 2.8, that 1T  is 

nilpotent. We claim that )(dim ER . For if )( 1TN  is infinite dimensional, then ),(0 00 T . It is contradiction. Therefore 

1T  is a finite dimensional operator. So it follows that 1T  is Weyl. But since 2T  is invertible, we can conclude that T  is 

Weyl. Therefore )(\)(0 TwT . 
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Case (ii) 0 .  

Then by Lemma 2.9, that 1T  is nilpotent. Since ),(00 T  1T  is a finite dimensional operator. So 1T  is 

Weyl. Since 2T is invertible, T is Weyl. 

By case (i) and case (ii) , Weyl's theorem holds for T . 

This completes the proof. 
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