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MARKOV STOCHASTIC PROCESSES IN BIOLOGY AND
MATHEMATICS — THE SAME, AND YET DIFFERENT

MIIOSIAWA SOKOF

Abstract. Virtually every biological model utilising a random number generator is a Markov
stochastic process. Numerical simulations of such processes are performed using stochastic or inten-
sity matrices or kernels. Biologists, however, define stochastic processes in a slightly different way to
how mathematicians typically do. A discrete-time discrete-value stochastic process may be defined
by a function p : Xo x X — {f : T — [0,1]}, where X is a set of states, X is a bounded subset
of X, T is a subset of integers (here associated with discrete time), where the function p satisfies
0 < p(z,y)(t) <1and 3> p(z,y)(t) = 1. This definition generalizes a stochastic matrix. Although
Xo is bounded, X may include every possible state and is often infinite. By interrupting the process
whenever the state transitions into the X — X set, Markov stochastic processes defined this way may
have non-quadratic stochastic matrices. Similar principle applies to intensity matrices, stochastic and
intensity kernels resulting from considering many biological models as Markov stochastic processes.
Class of such processes has important properties when considered from a point of view of theoretical
mathematics. In particular, every process from this class may be simulated (hence they all exist in
a physical sense) and has a well-defined probabilistic space associated with it.

Key words. stochastic matrix, stochastic kernel, intensity matrix, intensity kernel, simulation
of stochastic process, probability space for Markow stochastic process
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1. Introduction. Many branches of biology have recently realised the educa-
tional value of using modeling to represent the objects of their studies. Biological
models include dynamical models showing a change of some biological quantity in
time or the so-called models of artificial life [9],[11],[12]. Such models are physical in
nature, i.e. they are experiments performed in silico using virtual objects to repre-
sent physical objects (at a scale ranging from genes, cells and organs to individuals,
populations and whole ecosystems) in a programmed environment. As a result, they
allow us to observe the dynamics of various biological phenomena. Despite their com-
plexity, such models are only simplifications of real biological processes which utilise
random number generators to simulate possible events in the system. A probability
of an occurrence of a given event at given point in time depends on the features of
the object and state of the environment at that point in time. Using mathematical
nomenclature, they are stochastic processes with Markov property. In this study,
mathematical properties of these models are discussed.

Numerical simulations of such models may be performed to obtain multiple re-
alizations of the stochastic process. Using data gathered this way, it is possible to
draw conclusions from the model with an aid of statistical methods. The disadvantage
of this approach is that each simulation requires a substitution of numerical values
for model parameters. If the parameters cannot be estimated in a reliable way, the
above approach may not be entirely feasible. There therefore arises a necessity for
mathematical analysis of the properties of this type of models.

Researchers using such models tend not to use mathematical terminology, per-
haps due to the differences (a few minor and one major) in how biologists and math-
ematicians define stochastic processes. For a mathematician, a stochastic process is
a collection of random variables, while for a biologist, it is a probability space with
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functions as events, as summarised in Table 1 below.

TABLE 1
Mathematical and Biological definitions of stochastic processes

mathematical | Stochastic process is a collection of random variables

defined on a common probability space (€2, (), P),

indexed by T which all take values in the same mathematical
measureable space (X, ).

biological | Stochastic process as a probability space (2, 0(2), P)

in which the events are functions ¢ : T — X taking values

in a measureable space (X, ) where ¥ is a o-algebra
generated by sets {o(t);p € A € o(Q)}.

There exists a simple relationship between the mathematical nad biological defini-
tions. For each probability space (2, 0(2), P) whose events are functions ¢ : T — X
one may define a family of functions (&;):cy such that & () = ¢(t), so that (&)ier
form a mathematical stochastic process. In this sense, the mathematical definition of
a stochastic process is perhaps more general.

Biologists are in general aware of the Markov property and often treat it as
an implicit feature of biological models. In such models, the probabilities of events
forming the next state are calculated basing exclusively on the current state of the
system. If we think of an indexing set as time time, then the mathematical and
biological definitions of the Markov property are equivalent. But biologists do not
generalize this property to filtrations, as they consider only very specific indexing
sets: T ={0,1,..., 7T}, T =Ny, T =[0,7] or T = [0, 00).

To correctly analyse a biological model, it is crucial to identify those variables
which allow creating a multidimensional equivalent of the stochastic matrix (for time-
discrete models) or intensity matrix (for time-continuous models). For complicated
models this may prove to be the most difficult part of mathematical analysis (this
problem is not addressed in this article). Each artificial life model, however, has a
collection of variables which form an associated stochastic process with Markov prop-
erty, so that the conditional probabilities (probability rates) in stochastic (intensity)
or matrix, may be expressed using functions with parameters. This is the first step in
translating the biological model to the language of mathematics. For any well-defined
stochastic or intensity matrix, there exists a Markov stochastic process whose realiza-
tions correspond to the model output. Analysis of such a Markov model is simpler
than the analysis of the initial biological model.

2. Stochastic and intensity matrices and kernels. Due to diurnal or annual
fluctuations of probabilities in many biological phenomena, a lot of biological models
are non-homogeneous. But the true reason of starting the theory of Markov processes
from non-homogeneous ones is the fact, that it is easier. Integral equations used to
initialise simulation programs are simpler for a more general theory than its particular
case. So, the items in stochastic or intensity matrix are time-dependent functions
whose values are probabilities or probability rates.

Biologists usually consider states as more important than probabilities or prob-
ability rates. Hence they tend to display two-dimensional stochastic matrices trans-
posed relative to how mathematicians would display them (Fig. 1) [14], [17]. Very
often such matrices include also conditional expected value of the next state which
allows for prediction of the features of a simulation.
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Fi1G. 1. Stochastic matriz in traditional orientation (left) and functional orientation (right).
The way the stochastic matriz is shown is determined by the nature of the states of the stochastic
process (independent of the horizontal azis, but dependent on the vertical axis).

Because the probabilities are calculated according top : X xX — {f : T — [0, 1]},
where X is a space of states, T C N, the stochastic matrix is very often infinite.
No modeller, however, uses such matrices in practice. All simulators of biological
phenomena impose limits on the number of initial states. Without this limitation,
computer programs would be unable to handle the simulations. Simulation of such
processes are nevertheless possible because whenever the subsequent state would leave
the acceptable bounded set of states, the simulation is interrupted (even if the terminal
time has not been reached). The set of target states does not have to be bounded .
Hence modellers use non-square stochastic matrices. No biologist explicitly admits to
using non-square matrices, but many of them do so.

The explicit consideration of non-square stochastic matrices allows for linear re-
gression to be used for experiments where the conditional probabilities of transitions
between the states are estimated using some independent variables (Fig. 2).
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Fi1Gc. 2. The regressions between number of individuals k at time t and the frequency births
and deaths during time [t,t + 1) for t € [10,70] (left). For k < 10 and k > 70 the probabilities of
birth and death are impossible to foresee. The formulas pr(k) and ps(k) allow for calculating the
probability of change of the population size from k to n during time [t,t + 1) using a formula:
pe,n)(t) =3, (5) (8, ) (e (k)" (1 = pr (k)7 (ps (k) E=7F7 (1 — ps (k)"

These probabilities are then inserted into a stochastic matriz (right). The darker the point, the
higher the probability. The probabilities are positive for k € [10,70] and n € [0,2k]. Minimal matrix
which includes all positive probabilities has size [10,70] x [0, 140].

All finite square and not-square stochastic matrices [Zmin, Tmaz] X [Ymin, Ymaz)
may be extended to half-infinite matrices by putting p(z,y) = 0 if y € [Ymin, Ymaz]-

Let X be a subset of states, Xy be a bounded subset of X, 3 be a o-algebra
defined on X, and (& )iey be a stochastic process with probability space (Q2,5(Q2), P).
Because the complicated models have a few variables forming stochastic process with
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Markov property, it is better to accept a more functional definition of the stochastic
matrix (Tab. 2).

TABLE 2
Mathematical and biological definitions of stochastic matriz for discrete-time discrete-value
non-homogeneous Markov stochastic process (t)tex -

mathematical [13], [1], [3] | A stochastic (probability, transition, substitution) matrix is
a collection of conditional probabilities:

Pay(t) = P{&1 = yl& = x}

arranged in a matrix.

biological | A stochastic "matrix” is a function

p: Xox X —={f: T —=10,1]}

and p(z, y)(t) = P{&11 = yl& = «}

The basic properties of this matrix are:

(2.1) VeexoVyexVier 0 < pz,y(t) :p(x7y)(t) <1

(22) vxeXtheT Z pz,y(t) = Z p(x, y)(t) =1

yeX yeX
The same applies to intensity matrices (Tab. 3). The basic properties of this

TABLE 3
Mathematical and biological definitions of intensity matrixz for continuous-time discrete-value
non-homogeneous Markov stochastic process (§t)te -

mathematical [6], [5] | An intensity (probability rate, transition rate) matrix is a collection
of conditional probability rates:
ey (t) = lima_o P{‘ftJrA:y|ft:xi_P{ft:y‘ft:7f}

arranged in a matrix.

biological | A intensity "matrix” is a function
q: Xox X = {f: T —=R;f is integrable}
and ¢(z,y)(t) = lima_,0 P{£t+A:y|£t:wi_P{ft:y‘ft:w}

matrix are:
(2.3) VaexoVyexVier oy(t) = q(z,y)(t) > 0if 2 #y
(24) vxEXovteT qx,z(t) = q(iC,.’L')(t) <0

(2.5) VeexVeer Y doy(®) = Y ala.y)(t) =0

yeX yeX

In biological models, continuous variables appear just as frequently as discrete
ones. This only makes sense if there exist a measure p : ¥ — [0,00) on the subsets
of X. For these variables slightly different definitions of (equivalents of) stochastic
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TABLE 4
Mathematical and biological definitions of a stochastic kernel for discrete-time continuous-value
non-homogeneous Markov stochastic process (t)tex -

mathematical | A stochastic kernel of a stochastic processes is a collection of densities
of probability distributions pi designated for all  and time ¢ such that:
pf+ X —[0,00) and [, pf(y)dy = P{&1 € Ul& = o}

where U is a measurable subset of X.

biological | A stochastic kernel is a function

p: XoXx X = {f:T—[0,00)}

such that [, p(z,y)(t)dy = P{&1 € U — {a}|& = =}

where U is a measurable subset of X.

or intensity matrix are needed. They are called stochastic kernels [10], [15] and for
discrete time models the relevant definitions are shown in Tab. 4.

Note that mathematical and biological definitions are significantly different (not
only due to different domains of the functions p). The basic properties of the mathe-
matical stochastic kernels are:

vaceXovyertGT pm(y)(t) > 0

oexoVier / pa(y)(B)dy = 1
X

The basic properties of the biological stochastic kernels are:

(2.6) VzeXovyEtheT pa:,y(t) >0
(2.7) Viex, Vet /p(:c,y)(t)dy§ 1
X

In many biological models probability of changing from state x to any state y
(y # x) is very small. Many time-steps result in no change of the state z, so modelling
it using a mathematical stochastic kernel may not be necessary. Using biological
definition, a probability of no change of state x is equal to 1 — fy p(z,y)(t)dy. If the
change does not happen, then the next state may be determined from the distribution
with density

p(@,y)(t)

Jx (. y)(t)dy

It is possible to formulate a definition of an intensity kernel (Tab.5). It is necessary
for a Markov continuous-time continuous-value stochastic process. These processes
appear in some biological models, but I was unable to find a mathematical article
with definition of an intensity kernel although such Markov processes were discussed
in mathematics [4], [2].

The basic properties of such intensity kernels are:

pe(t): X >y — € [0, 00)

(28) VwengyertET qgc,y<t) >0

(2.9) IM>0Vaex, Vier / q(z,y)(t)dy < M
X
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TABLE 5
Mathematical and biological definitions of an intensity kernel for continuous-time continuous-
value non-homogeneous Markov stochastic process (€t)tex -

mathematical | 777
biological | An intensity kernel is a function
qg: Xox X = {f: T —=R;f is integrable}
such that [;; ¢(z,y)(t)dy = lima_o P{SHIGU;{“:H&:I},
where U is a measurable subset of X.

Very often in biological models X is a subset of F¥ x N* x R™ (where F is some
finite set). In such a case, in the second property above (and in the corresponding
one for an intensity matrix) the integral would be replaced as a sum of integrals. As
in statistics, when discussing basic theorems it is more convenient to consider discrete
and continuous variables separately.

I will not prove that the biological definitions resulting from the analysis of bio-
logical models are correct, but I am will prove that for any function p : Xg x X —
{f : T — R;f is integrable} with properties (1), (2) or (6), (7), and a function
q: Xox X — {f: T — R;fis integrable} with properties (3), (4), (5) or (8), (9),
there exists a Markov stochastic process such that its stochastic or intensity matrix
or kernel are equivalent to one of these functions. Such existence will be showing that
it is possible to simulate such process. At the end, a construction of the probability
space for such process will be presented.

3. Definitions. Let X be a set of states. Let Xy C X be bounded. Let T =
{0,1,...,T} or T = Ny. For such sets there exist many functions satisfying conditions
(1)-(9) for stochastic or intensity matrix or kernel. We will refer to such function as
a stochastic function or an intensity function.

Definition 1. Let X be finite or countable. A stochastic discrete function is a
function p : Xox X — {f : T — R; f is integrable} satisfying the following conditions:

(31) \V/;cEngyEXVtET 0 < p(l‘,y)(t) < 1
(32) VIEXQVtET Z p(xay)(t) =1
yeX

Definition 2. Let X be finite or countable. An intensity discrete function is a
function ¢ : Xox X — {f : T — R; f is integrable} satisfying the following conditions:

(3.3) Veex, VyexVier q(z,y)(t) > 0if z # y

(3.4) VaexoVier q(z,2)(t) <0

(3.5) Vaex,Vier Z q(z,y)(t) =0
yeX

If X is uncountable, we will refer to the equivalents of stochastic or intensity
kernels as continuous functions, although such functions need not to be continuous
in the topological sense. Similarly as in statistics, a continuous variable need not to
be continuous. However, I am not aware of any biological model with topologically
discontinuous stochastic or intensity kernel.
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Definition 3. Let X be uncountable. A stochastic continuous function is a func-
tion p: Xog x X = {f: T — R, f is integrable} satisfying the following conditions:

(36) VmengyertET P($>y)(t) >0

(3.7) Ve X, Vier / p(z,y)(t)dy <1
X

Definition 4. Let X be uncountable. An intensity continuous function is a func-
tion ¢ : Xog x X — {f : T = R; f is integrable} satisfying the following conditions:

(3.8) Vaex, VyexVier q(z,y)(t) >0

(3.9) An>0Vzex, Vier / q(z,y)(t)dy < M
b'e

For all the functions defined above, physical existence of the corresponding stochas-
tic Markov processes will be proved.

4. Simulation. By ”physical existence of a Markov stochastic process” we un-
derstand that there exists an experiment which allows for simulation of a stochastic
process with the Markov and other appropriate properties. Such an experiment may
be programmed what allows for it multiply faster simulation than simulation of the
original biological model.

There exist easy schemes for an experiment which simulates realizations of a
stochastic process. Given an initial state zg at time ¢ = 0 and a terminal time 7', the
next state at the next timestep is chosen according to a prescribed rule. The outcome
of such an experiment may be thought of as a realization of a stochastic process.
Examples of such schemes are shown in Fig. 3.

Description of the simulation of the process is reduced to an correct choice of
the next transition time and the next state when the state at time ¢ and the values
of stochastic or intensity function are known. By ”correct” we understand that the
mean frequency of the choice of y as the state following state z must be equal to
the formulas shown in biological definitions of stochastic and intensity matrices and
kernels (i.e. Tables 2-4).

Theorem 1. Let p: Xo x X — {f : T — [0,1]} be a stochastic discrete function.
For each state x at time ¢ there exists a rule for choosing the next state y such
that mean frequency of obtaining state y at time t + 1 following state x at time ¢
(probability Pf) is equal to Pf(y) = p(x,y)(¢).

Proof. An algorithm for simulating a discrete-value discrete-time stochastic pro-
cess begins with ordering the states in space X in a sequence (z;)i=0,1,2,.... Let = be a
state at time ¢. A random number « is then drawn from the interval [0, 1]. The next
state y at time ¢ + 1 is equal to such z; that:

(4.1) oe |3 plea)6), 3 plea)()
§=0 3=0

Such state always exists and the method for determining the state y induces a prob-
abilistic space (X, 2%, P?) such that:

(4.2) PP(xi) =Y plx,x;)(8) = > pla,x;)(t) = pla, i) (t) 0
§=0
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X =Xo X = Xo
t=0 t=0
realization = xq realization = xq
I choose the next state y I choose the time t+A of the next transition
\I/ choose the next state y

t=1t+1 \|/

(realization) = (realization, y) t=t+A

(realization) = (realization, y)

FiG. 3. Algorithms for simulating discrete time (left) and continuous time (right) stochastic
processes. By (realization)=(realization,y) we mean appending the next state to the list of previous
states (in a discrete time case) or extending the realization to time t+A with state y (in a continuous
time case).

Theorem 2. Let q : Xg x X — {f : T — R;f is integrable} be an intensity
discrete function. For each state x at time ¢ there exists a rule for choosing the
next state y and the time ¢ + A of transition from x to y such that the mean
frequency of obtaining state y following a state x satisfies the following condition:
lima 0 Pf(y)(t’LAA)_Pf(y)(t) = q(z,y), where P{(y)(t + A) is the probability that the
transition from x to y takes place at time ¢ + A.

Proof. An algorithm for simulating a continuous-time discrete-value stochastic
process begins with ordering the states in space X in a sequence (x;);=0,1,2,.... Let
x =z, be a state at time t. Because ¢(x,z)(t) < 0, the function

(4.3) [0,T) > A — exp (/tHA q(x,x)(s)ds) eR

decreases from 1 to some 6 > 0. A random number « is then drawn from interval
[0,1). If & < 0, then A becomes infinite and the system remains at state z until the
terminal time is reached. Otherwise the time A is determined from the equation

(4.4) a = exp (/tHA q(z, x)(s)ds)

The time of the next transition is equal to t + A. The next state is estimated by
drawing a random number § from [0,1) and choosing such a state z; that:
i—1

(4.5) se[ X d@z)t+8) 5~ w)

2 —awm )+ A) 2, (e, )+ A)
The probability P;® determined using the above rules satisfies the condition:

(46) Ahino th(l')(t + AA) — Ptm(x)(t) _ Pta:(x)(tg_ A) 1 _
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e - t+A
- v ( e )ds) 1:;2[6@([ o) -

= exp (/tt q(m.x)(s)ds) . diA /tHA q(z.z)(s)ds = q(z, x)(t)

For y # x the % is a probability that the state x changes to state y under

the condition that a significant change takes place. Hence:

Bry)t+A) - P y)t) _ Bry)t+A4)

(47) A, A A -
L1 glay)(t D) , _
—i@ozm(l‘ﬂ ()t +8)) =

d )t +8) | 1= Pra)+A)
A—0 —q(z,x)(t+ A) A=0 A

q(z, y)(t)

A simulaton of discrete-time continuous-value stochastic process requires an al-
gorithm to draw random numbers from a given distribution. A small, but effective
and universal physical algorithm is:

1. draw a point from a rectangle containing a large enough part of the graph of
the density of this distribution,
2. if the point lies above the graph of density, reject it and repeat step 1.,
3. read off the first coordinate of the first point which was not rejected in step
2.
Even though the above algorithm is effective, for many distributions there exist more
robust algorithms to draw appropriate random numbers [7], [8].

|

Theorem 3. Let p : Xo x X — {f : T — [0,00)} be a stochastic continuous
function. For each state x at time ¢ there exists a rule of choosing the next state y
such that the mean frequency of obtaining a state from U € ¥ at time ¢t 4 1 following
state x at time ¢ (probability P7) is equal P (U) = [;; p(x,y)(t)dy.

Proof. Let x be a state at time ¢. Then the integral fX p(z,y)(t)dy needs to be
calculated. The number « is drawn from the interval [0,1). If o > [ p(z, y)(t)dy,
then the next state y is equal to z. If @ < [, p(x,y)(t)dy then a state y is drawn
from the distribution with density:

p(z,y)(t)
v Jx plz,y)(t)dy

The above operations induce a probability space (X, X, P*) which may be broke down
as follows: first it is determined whether the state x undergoes a change or not (i.e.
Bernoulli distribution) and if it does, the distribution of the next state has density
4.8. In this probability space, for any U € ¥, we have:

(4.8)

(4.9) PF(U) = PF(U|z changes to y € U)Pf(x changes toy € U) =

_ Jupla,y)(t)dy

X I
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Numbers at time t+1

Population numbers at time t Time

F1G. 4. Left: stochastic matriz calculated in Fig. 2 and a sample realization (w(0),w(1),...) of
the process. Right: a graph with five sample realizations of the process over 100 timesteps.

A simulation of a stochastic process which uses two-dimensional stochastic functions
(stochastic matrix or kernel) has a clear graphical interpretation (Fig. 4).

Theorem 4. Let q: Xo x X — {f : T — [0,00); f is integrable} be a continuous
intensity function. For each state x at time ¢ there exists a rule for choosing the next
state y and time of transition ¢+ A such that the mean frequency of obtaining a state
from U € ¥ following state x at time ¢ satisfies the condition: limAﬁow =
Jiy a(z,y)(t)dy, where PF(U)(t 4+ A) denotes the probability that the transition from
x to any y € U takes place at time ¢ + A.

Proof. Let x be a state at time t. Let ¢y : [0,7) 3 s = [y q(z,y)(s)dy. The

:+A qm’m(s)ds) decreases from 1 to some 6 > 0. If o < 6,

then A becomes infinite and the system remains at state z until the terminal time is
reached. Otherwise the time A is determined from the equation:

function A — exp ( —

(4.10) a = exp ( - /:—irA qmﬁm(s)d8>

The time of the next transition is equal to ¢t + A. The next state y is estimated by

the drawing a random number from the distribution with density y — %.

A probability space (X, 3, PF) formed by the above rules satisfies the condition:
BrU)(t+A)

(4.11) lim s~ =

1 , t+ A)d
= limA—»(JZ fU q;fmy(i(Jr A) ) yPtx {z changes to any state at t + A} =

1 )t 4+ A)d
= lz’mA_mZ Ju qéjzy()t(—&— A) Jdy (1 — P#{z does not change in [t,t + A)}) =

= limAﬁolfU al@,y)(t+ A)dy (1 — exp ( - /H_A qxx(s)ds)> =

A gea(t+A)
_ M (1 — exp ( _ tt+A qwx(s)ds>) )

li
oo (t) 1TMA—0 A

_ _W;A exp ( - /tH_A qw)x(s)ds) =
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Jy a(z, y)(t)dy /t d A
:——exp<— qm,msds)—(—/ Qo0 sds)z
Qo2 (1) t (s) dA t (s)
Juala,y)(t)dy

= A ) = [ a0y

If there exists a probability space (€2, 0(£2), P) on the set of all realizations of the
simulations, then for any state x and time t: P{p € Q;(t) = 2} = 0 for continuous
stochastic functions and continuous intensity functions. Therefore the probabilities P}
are defined inside a set of measure 0. It is sensible, similarly as it is sensible to define
length or area for one- or two-dimensional geometric objects in a three-dimensional
space.

It remains to be discussed whether the probabilistic space (2, 0(Q), P) exists.

d

5. Probability space for limited time. The classical theorem about the prob-
ability space for a stochastic process induced by finite square stochastic and intensity
matrices goes back to Kolmogorov in as early as late 40s. But for some infinite ma-
trices, the sum of probabilities over all trajectories is less than 1. But what may be
said about half-infinite matrices?

In this section I will show that there exists a probability space (£2,0(2), P) for
any stochastic or intensity function defined in chapter 3 such that:

1. Qis a set of all realizations of the simulations described in chapter 4,

2. o(Q) is a sigma-algebra on €,

3. P is a probability that a specified realization appears during simulation.
Therefore the stochastic processes will be considered more from a biologist’s than a
mathematician’s perspective.

Theorem 5. Let X be a countable set of states. Let Xy be finite. Let T be the
(finite) terminal time. Let zg € Xp. Let p: Xo x X — f:0,1,...,T €[0,1] be a
discrete stochastic function. Then a structure (£2,0(£2), P) such that:

1. Q = {(zo, 21, -, T¢,,); T0, X1,y oy Ty, —1 € Xg and if t,,, < T then x;,, € X —

X0}7
2. o(Q) =29,
3. ifa = (xg, 1, ..., 21, ) is a realization of a simulation, then P(a) = H§:1 p(xi1,x;),
4. if A C Q then P(A) =} ., P(a),

is a well-defined probability space.

Proof. The set ) is countable, so P is a measure. It is necessary to prove that
P(Q2) = 1. But for any T we have:

T—1
> > >
% | ko o X0 a0 X~ Xo P20 1) (0)-(Tr, -1, T, ) (b — 1)+

tm

2 ISP

(5.1) T Xy o aeXo ITexp(xo,xl)(O)...p(xT_l,asT)(T -1)=1
We will use mathematical induction over the terminal time 7. If T = 1, then real-

izations are precisely the pairs (g, ), where z is any state from X. Because p is a
stochastic function:

(52) P©) = 2 plaar) = 1
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If the assumption is true up to time 7', then for 7'+ 1:

Py = = = >

- tm:1 ﬂ?lEXo “.Cl?t.m_1€X0 It"nGX—Xop(qu’xl)(o)...p(xt7n_1’xt’rﬂ)(tm - 1)+

XXX

(53) + $1€X0 " wreXo ET+1€Xp(:EO’ ml)(O)...p(mT,xTﬂ)(T) =

DY >
= to—=1 z1€X0 " @, —1€X0 xtmex_Xop(mO’w1)<0)“'p(xtm*1’wtm)(tm - 1>+

2 2 2

+I1EX0 e 1€Xo mTex_XOp(x(bxl)(o)"‘p(foler)(T - ]-)+

+x1§(0 "'xTZE:Xop(x(J’xl)(o)"'p(xT—lvxT)(T - 1)$T§€X pler, xr)(T) =
X >

= 421 21€Xo e, _1€X0 mtmeX—Xgp(xO’xl)(o)”'p(xtm—l’xtm)(tm — 1)+

2 2 2

21€X0 T -1€X0 ET€X7X0p

> X

T ol exo  apexo PE0; 21)(0).plzr—1,27)(T = 1) =

_y X 2 2

tm=1 21€X0 " Tt,, —1€Xo0 wtmEX*Xop(IO’xl)(o)"'p(xtm_l’xtm)(tm o 1)+

2 IOEEDY

z1€X0 "zT-1€X0 ITGXp

(20,21)(0)..p(@p—1,27)(T — 1)+

+ (aco,xl)(O)...p(xT_l,xT)(T — 1) =1

according to the inductive assumption. So P(€2) = 1 for any finite time 7. |

This theorem cannot be extended to infinite time, which is unfortunate, as the
infinite time case often appears in biology. The probability space for infinite time will
be discussed in the next chapter.

For a discrete intensity function, a realization is a step-function and it is often
denoted by xg 3 T z.= T, Where t; is a time of transition from x;_; to z;. Note
that zg,z1,...,xm-1 € Xo always, and if ¢,,iT, then z,, € X — Xy. The set of
realizations {2 consists of all such functions. Construction of the probability space
is similar to a construction of the Lebesgue measure in R™. First, the base sets of
realisations (equivalents of n-dimensional rectangles) will be defined.

Definition 5. A base set BR"!"\""™ is a subset of Q determined by a sequence
of states (xo,x1,,2mn) and sequence of half-open intervals (A1, Ag,, A,,) included in
[0,T] such that:

1. 9,21, ..., Zpm_1 € Xp and z,,, € X,
2. ViVien,Voen, i, t < s,
3. Uz A’i = [O7tm)7
4. if t,, < T then z,, € X — X,
L0, L1, Tom t1 t2 tm
Then BA17~~~7A;n = {1‘0 I Im,vt1t1 S Az}

Base sets are sets of realizations which differ in transition times between states
(Fig.5).

A function p (equivalent to n-dimensional volume of n-dimensional rectangles) is
defined over the base sets.
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states
states

Definition 6. p(BR" A" ™) = [1i%) p(BA""") and when A; = [t; 1, t;):
1. if Ti—1 =T; =X then:

(5.4) (B ) =exp /t (e, 2)(s)ds )

ti—1
2. if ;1 # x; and z; € Xg then:

(5.5) (B 1) =

—/tti q(xi_l,xi)(t)exp(/j Q(xi_l,xi_l)(s)der/tti (J(Sri,xi)(s)ds)dt

i—1 i—1

3. if ;1 #x; and z; € X — X then:

(5.6) p(Bﬁi’ij’ti)) = /ti q(xi_1,7;)(t) exp (/t q(xi,l,xi,l)(s)ds)dt

ti71 tifl

These formulas do not come from nowhere. They are motivated by the approxi-
mation of the intensity function by the stochastic functions with decreasing timesteps
and the necessity to calculate the probability of the occurrence of a given realization
as a product of the suitable values of the stochastic functions. From these products,
in a limiting case, we obtain precisely the formulas presented above.

It can be proved that such functions are well-defined and that they are countably
additive. It can be proved that all assumptions of the Caratheodory theorem in the
measure theory are satisfied. Hence an outer measure p* on 2 such that for any
ACQ:

P (A) = Uli3r711f2A Z ©(By,) where B, is base set
may be defined. The outer measure limited to sets A C Q satisfying Caratheodory
condition:

v

cca® (A=C)+p"(ANC) = p*(4)

is a measure. But it may be proved that p*(2) = 1, so it is in fact a probability.
Proofs of all theorems mentioned above were already published [16] and the details
are omitted from this work for clarity. The constraints imposed on Xy and time T'
are of significance when proving that p*(Q2) = 1.

Constructions of probability spaces for continuous stochastic and intensity func-
tions are analogous to constructions of probability spaces for discrete and intensity
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functions. But using two types of integral functions (on R and on X with different
variables used as abscissa) results in proofs of poor readability. I believe a better
strategy is to associate with the set of all possible realizations described in chapter 4
the sequence of ascending probabilistic spaces formed by discrete stochastic functions.
The resulting corresponding theorems could read as follows:

Theorem 6. Let (X, %, 1) be a set of states with measure p : ¥ — [0,00). Let
Xo be a bounded subset of X. Let p: Xo x X — {f : T — [0,00); f is integrable }
be a stochastic continuous function. For any n there exists a sequence (A}, A7, ...) of
measureable sets on X such that:

al. Vi,j;i;ﬁjA? N A;L = @7

a2. |J2, A" = X and Ui, A7 = X,

a3. vAnﬂaAnA"“ C A",

ad. v VZM(A") .
If X,, = {A}, A},..} and X, = {4} AQ,.. A} } and Pn 2 Xno X Xn — {f :
T — [0,00)}, and pn(A” AR)(t) = A" L4, fA (t)dydx where i # j, and

P(AZ, AT () = A" fA fA (t)dydx + 1 — #(A?) fAi Jx p(z,y)(t)dydz, then

Prn is a discrete stochastlc functlon

If (,,0(2,), P,) is a probability space for the stochastic discrete function p,,
then the structure (2, 0(Q2), P) such that

t1. 2 is a set of all sequences zog — 1 — ... = x¢,, such that g, 21,...2¢,,—1 € Xo
and if ¢, < T then z; , € X — X,

t2. if 7, (A = A3 — .. = AP ) = {z0 = 1 — .. = 2, € Qa; € AY}
and Yycay, H(U) = {Af — A3 — ... = A} yn(Af — A3 — ... — A} ) € U} and
Yo (0(Qm)) = {0, (U); U € 0(Q)} then o(Q) = U, 7, (0(2m)),

t3. Yueo()P(U) = limy oo Pa(7;,H(U)),
is a probabilistic space.

Theorem 7. Let (X, X, 1) be a set of states with measure p : ¥ — [0,00). Let
Xo be a bounded subset of X. Let p: Xo x X — {f: T — [0,00); f is integrable }
be an intensity continuous function. For any n there exist a sequence (A}, A%, ...) of
measureable sets on X such that:
al. \V/i,j;i?ng;L N A;L = @,
a2. U2, A7 = X and I, A7 = X,
n+1 n
ad. VA?-H ElA;?Ai - Aj s
ad. VpVipu(A?) < 3.
If X, = {A}, A}, ..} and X, = {A} Ag,.. A} } and Pn ¢ Xno X Xn — {f :
T — [0, oo)} and pn(A” A”) = A" L4, fA (t)dydx where i # j, and
Pa(AZ, ATY( A" fA fA dydm (A?) fAi pr x,y)(t)dydz, then p, is
an mtenblty dlscrete functlon

If (Q,,0(2,),P,) is a probability space for the discrete intensity function p,,
then a structure (2, 0(Q2), P) such that:
ta

t tm
tl. Q is a set of all step functions xg TR T, such that zg, z1,...x,, € Xo
and if ¢,,, < T then z,, € X Xo,
ta

£2. if 7 (AR LA AR ) = (g Doy 3 Y m € Qyms € AP and Ve, HU) =
(Ap B AP AT (AR S AY S L AT € UY and 7, (0(R0) = {07 (U):U €

o(€2,)} then 0( ) = Un 7 ' (Qn),
3. Vo P(U) = lim,, o0 (v (U)),



¢

ISSN: 2347-1921
Volume: 14 Issue: 01
Journal of Advances in Mathematics

MARKOV STOCHASTIC PROCESSES IN BIOLOGY AND MATHEMATICS 15

is a probabilistic space.

Both theorems are extensive because they assume and demonstrate a lot of simpler
propositions. Both theorems are very similar, as they are based on the same intuition
of transferring theorems about discrete distributions to continuous ones.

6. Probability space for infinity time. For stochastic and intensity functions,
probabilistic spaces for T' = oo must be different than those described in chapter 5.

It is clear for stochastic discrete functions:

is such that p(z,y)(¢)

suppose p : Xo x X — {f :— [0,1]}

=0ify € X — Xy and for all z,y € Xy it is always that
p(z,y)(t) <1—€ Then P(zg — 1 — ...) =

H;ﬁl p(xi—1,x;) = 0 for all realizations

in infinite time. Hence P defined as such a product is not a probability.

Let th

be a set of all sequences or step functions such that the last state at time

tm is included X — X. Let Qo be a set of all sequences N — X or all step functions

[0,00) = Xp. Let Q@ =Q;, UQ

For any stochastic or intensity function let (Qr, o(2r), Pr) be a probability space

formed for a finite time T'. Let vp :

Q3 ¢ — vl € Q. Then a set of subsets of

given by {y~}(U); U € o(Qr)} is a o-algebra on Q, denoted by o7 (). It is generated

by sets consisting of g — 1 — .
or step functions defined for times

states
states

.= Ty, OF BZO’QJAI; 5., and all possible sequences
greater than t,, or Z A; (Fig.6).

A

........

444444

F1G. 6. The idea of base sets in o (£2).

Let Th < T <

oT, (Q) g
o() = U, oy (Q),
2. Vaeo@

yInA € o7, () and then P(A)

.. be a countable, unbounded sequence of times. Then op, (2) C
. So a probability space (2, 5(Q2), P) may be defined as follows:

= Pr,(4).

This probability space is well-defined.

In all previous considerations, the starting time for all simulations was ¢ = 0 and
initial state was zg. But all the proofs were independent of the choices of initial time
and state. In fact the initial time and state may be chosen to be any numbers from R
and X respectively. Probability space for initial time T, initial state z( and terminal

time Ty will be denoted as (Q[T T 0 a(Q8
Let © € Xy and t € [T, Ty). The set {¢ € o (R

as Af. Then Pr, r,)(Af) =

(6.1) At = {p e a(Q
then
(62) PR (A7) =

Pty (AP, (A P

,.1,)> 1, 1p1)-

7, 1y))i 9 (t) = 2} will be denoted

Pir, +)(Af) and generally, if

[Ts,Tf))HP(h) =1z and ... and p(t,) = z,}

an
tn—1,ln

(A8))

This is a result of deﬁmng a probability of any realization as a product of proba-
bilities given by stochastic functions from successive time intervals.
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7. Probability space for unbounded X;. The ideas applied in the past chap-
ter may be used to construct a probability space for a stochastic function p : X x X —
{f: T — R} and intensity function ¢: X x X — {f: T — R}.

Let © be the set of all sequences or all step functions defined on N x X or
[Ts,00) x X. Tt consists of all infinite sequences or step functions, as well as sequences
converging to infinity and all step functions converging to infinity in finite time or
step functions wchich any subset of values converging to infinity in finite time (and,
more general, all step function which subset of value converging to infinity or minus
infinity in finite time).

Let Xg € X7 € Xs... be bounded subsets of X such that Un X, = X. For all
there X, exists a probability space (Q,,0(£2,), P,) defined by stochastic or intensity
function whose domain is X,, x X. Let m,(p) = min{t € T;p(t) € X — X,,} for
0 € Q. Let y7: 23 0 = ©lj0.m,(0)] € - Then we may define a o-algebra on 2 as
0u(Q) = {371 (A); A € ().

These o-algebras satisfy conditions: ¢1(2) C o2(w) C .... Furthermore their
union o(Q) = |Jon(R) is a g-algebra on Q. A function P : o(2) — [0,1] such that:
if A€ 0,(9) then P(A) = P,(A), is a probability. Thus (2, 0(Q2), P) is a probability
space for stochastic or intensity function X x X — f: T — R. It differs from the
mathematical probability space (,a(92), P') of a Markov stochastic process (if it
exists) only in the set of events. The set  is larger than €.

8. Stochastic process defined by a stochastic and an intensity functions.
Ifweset & : Q23 ¢ — ¢(t) € X, then & is arandom variable and (&;):c is a stochastic
process with probability space (€2, (Q2), P). This is a stochastic process defined by
stochastic or intensity functions Xg x X — {f : T — R}. This stochastic process has
the Markov property. This is a simple conclusion of equation (6.2).

To finish the proof of the general theorem it is necessary to prove that the condi-

tional probabilities P{&;+1 = y|& = 2} or conditional probability rates lima o P{g”A:ylgt:zifp{gt:ylgt:z}
are equal to respectively p(z,y) or g(x,y) (or they are derivatives of this functions).
Theorem 8. Let p: Xog x X — {f : T — [0,1]} be a discrete stochastic function.

Let (& )ier be a stochastic process defined by this stochastic function. Then for any
x € Xpand y € X and t € Y we have: P{&11 = y|& = 2} = p(x,y)

Proof. Let (2, 0(2), P) be a probability space for the function p. Then, according

to (5.5):
_ e _a_Pleelt)=z0t+1) =y} _
(5 Pleen =le=ah = P{p;o(t) = a3} -
_ Pty (A7) - p(2,y)(t) - Py (U ) _
P[ﬂ(ﬂ)ot)(Ata:) ’ ZzeQ p(xa Z)(t) ’ P[%JFLT] (Q?[JtJrl,T])
__ply)
ST Y :

Theorem 9. Let ¢ : Xo x X — {f : T — [0,1]} be a discrete intensity function.
Let (& )ter be a stochastic process defined by this stochastic function. Then for any
r€ Xgand y € X and t € T we have:

lim P{&yn = yl& = 2} — P{& = yl& = =} _
A—0 A

q(z,y)
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Proof. Let (2,0(2), P) be a probability space for the function ¢. Let:
(8.2) Ur(z,y)(t,t + A) =

3
={peMolt)=2,0t+A) =y, ., .o oo —onP(ti) # o(tiv1)}

In other words, U, (x,y)(t,t + A) consists of these realizations in which = changes to
y after exactly r significant transitions in time period [t,¢ + A). Using this notation

we have:
(8.3) lim Pllipa =2|& = a} — P{& = 2l = o}
A50 A
= lim Pléia =26 =2} —1 —
A—0 A
0
i PWo@2)(t e+ 8)) =1 S~ PN 2)(t E 4+ A))
A—0 A g A0 A

According to (5.4) in definition 6 of probability P:

G4 g PU@oGrA) -1 exp (T gl a)(s)ds) — 1

AS0 A A=0 A

% exp (/tHA Q(Jﬁ’x)(s)“) ’A:O N

exp (/tt q(x@)(s)ds) . d% /tH-A q(z, x)(s)als‘A = q(z,z)(t)

For = # y:

(8.5) lim P{&ra =yl& =a} — P{& =yl =} _
. A—0 A =

i Ptéra =yl& =2} _

A—0 A
Pz y)(EE+A) - PUi(z,y)(Et+ A))
ilino A + Alino Z A

r=2
If y € Xo, then according to (5.5) in definition 6 of probability P:
PUi(z,y)(t, t + A))

(86) ilglo A B

S a@y)(s) exp ([ alw, ) )du+ [ gly, y) (w)du ) ds
A0 A ’A:O

t t
= q(z,y)(t) exp (/ q(x,x)(U)dU+/ Q(y,y)(U)dU) =q(z,y)
t t
Similarly, for z # y and y € X — X using equation (5.6):

(8.7) Jim P(U(z, y)A(t, t+4) _
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S5 qla,y)(s) exp ( 7 q(a, x)(u)du) ds
A—0 A ‘A:O

= a0 ( [ o)) =atr.)

For r > 2 it may be proved that:

(8.8) PU(z,y)(t,t + A)) =

= > /;JFAq(”T’Z)(S)eXp(/tsq(x’x)(u)du>P(Ur1(Zvy)(svt+A))d8

rFET,2AY
what allows a simple inductive proof that for all » > 2:

(8.9) i DU, y)(t:t + A))

A—0 A =0

By (8.3), (8.4) and (8.9) we see that:

lim P{&in = 2|§ = 2} — P{& = 2(§ =z} _

(8.10) Jim x q(x, )

By (8.5), (8.6), (8.7) and (8.9) we see that:

lim P{&yn = yl& = 2} — P{& = yl& = v} _
A—0 A

(8.11) q(z,y) U
Using theorems similar to theorem 6 and 7, it can be proved that P(&41 €
Alg = x) = [, p(x,y)dy for discrete-time, continuous-value stochastic process and

P{(£t+A€AA—{$}|§z:£E)} = [, q(z,y)dy.

9. Conclussions. The class of Markov stochastic processes defined by non-
square stochastic and intensity functions is very wide. They may be used to model
almost all biological phenomena. They are well-defined stochastic processes with
well-defined probability spaces. These probability spaces are defined according to
the biological definitions of the stochastic process, so they all have a clear interpre-
tation. The probabilities are given by explicit formulas which allows for calculating
probabilities for large numbers of realizations, albeit the calculations may sometimes
prove to be complex or difficult. It is therefore possible to calculate many statistical
characteristics of random variables defined on probability spaces as it is often done in
biological applications.

Stochastic or intensity functions are not always calculated for biological models,
although their Markov property is easy to show. Sometimes the calculations prove
themselves to be too difficult, but in principle these functions always exists. For
mathematicians, stochastic functions with non-square domains are not particularly
elegant, perhaps because even the most common theorems do not translate into the
non-square case. Chapman-Kolmogorov equation for Markov homogeneous processes
is frequently presented as a product of stochastic matrices P(t+s) = P(t)P(s) (where
P(v) is a collection of probabilities that state z transits to state y after v steps). It
is clearly possible to formulate it this way only for square matrices. However, a more
general version of this theorem may be formulated for the processes described in this
article. In proof of the ergodic theorem, the square shape of the stochastic matrix

lima o
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is a sufficient assumption. The consequences of the ergodic theorem are apparent
in many biological models (right panel of Fig. 4) and one may say, that they are
desirable. Parameters of the models are chosen so that a stabilization of the variables
distribution during simulations is observed. But this stabilization is observed only for
realizations which are not interrupted prior to the terminal time. Hence the processes
defined by a stochastic function p : Xo x X — {f : T — R} may can be analysed only
using a stochastic processes induced by a function p*? : Xg x Xg — {f : T — R} such

that p*(z,y)(t) = %

Kolmogorov equations are formed for such continuous-time discrete-value Markov
stochastic processes, that functions (¢,s) — P{& = y|& = x} are differentiable.
Then function ®, ,(t,s) = P{{ = y|& = «} with domain {(¢,s);t < s} satisfies the
conditions:

(9.1) %(u $) =Y P®a.(t,s)q(z,)(s)

%(t, 5) =— Z q(z, 2) (1) =,y (t, 5)

z

(9.2)

These equation may be shown to be true for non-square stochastic and inten-
sity functions, but the theorems described in this article are more general, i.e. they
do not require these functions to be differentiable. For infinite intensity matri-
ces, the functions which are solutions to these equations may satisfy the condition
>y Puy(t,s) < 1. This poses an obstacle in mathematical definition of a continuous-
time discrete-value Markov stochastic processes, but in the biological case, the value
1—3, ®zy(t,s) < 1is a probability that the realizations of the stochastic process
become infinite in a time period [t,s). This is a result of having a broader space of
events (2, as well as an additional interpretation of an ”explosive” Markov stochastic
processes.
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