

Stability of Fibonacci Functional Equation

Sandeep* and Sushma**

A.I.J.H.M college Rohtak*

Kanya Mahavidayalaya Kharkhoda, Sonepat**.

E-mail: lathersushma@yahoo.com

Abstract. In this paper, we solve the Fibonacci functional equation, f(x) = f(x-1) + f(x-2) and discuss its generalized Hyers-Ulam-Rassias stability in Banach spaces and stability in Fuzzy normed space.

Indexing terms/Keywords: Fibonacci Functional Equation

Language: English

Date of Submission: 2018-01-27

Date of Acceptance: 2018-02-20

Date of Publication: 2018-03-01

ISSN: 2347-1921

Volume: 14 Issue: 01

Journal: Journal of Advances in Mathematics

Publisher: CIRWORLD

Website: https://cirworld.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

Introduction.

A question in the theory of functional equations is the following "When is it true that a function which approximately satisfies a functional equation \in must be close to an exact solution \in ?" If the problem accepts a solution, we say that the equation \in is stable.

In 1940, S.M. Ulam [8] gave a wide-ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphism:

Let $(G_1, {}^*)$ be a group and $(G_2, {}^{\circ}, d)$ be a metric group with the metric d. Given $\in >0$, does there exists a $\delta_{\in} >0$ such that if a mapping h: $G_1 \to G_2$ satisfies the inequality $d(h(x^*y),h(x) \circ h(y)) < \delta_{\in} \ \forall \ x, \ y \in G_1$, then there is a mapping H: $G_1 \to G_2$ such that for each $x, \ y \in G_1 \ H(x^*y) = H(x) \circ H(y)$ and $d(h(x),H(x)) < \in ?$

In the next year, D. H. Hyers [3], gave answer to the above question for additive groups under the assumption that groups are Banach spaces. In 1978, T. M. Rassias [7] proved a generalization of Hyers' theorem for additive mapping as a special case in the form of following result.

Suppose that E and F are real normed spaces with F a complete normed space, f: $E \rightarrow F$ is a mapping such that for each fixed $x \in E$ the mapping $t \rightarrow f$ (tx) is continuous on R, and let there exist $e \ge 0$ and $e \in E$ and $e \in E$ the mapping that $e \in E$ the mapping $e \in E$ the mapping that $e \in E$ that $e \in E$ the mapping that $e \in E$ that $e \in E$ the mapping that $e \in E$ that $e \in E$ the mapping that $e \in E$ the mapping that $e \in E$ tha

$$||f(x+y)-f(x)-f(y)|| \le \varepsilon(||x||^p + ||y||^p)$$
 x, y \in E.

Then there exists a unique linear mapping T: E \rightarrow F s.t $||f(x) - T(x)|| \le \varepsilon \frac{||x||^p}{(1-2^{p-1})}$, $x \in E$.

In this paper we discuss the stability of Fibonacci functional equation

$$f(x) = f(x-1) + f(x-2). (1)$$

A function f: $R \rightarrow X$ will be called a Fibonacci functional equation if it satisfies (1), for all $x \in R$, where X is a real vector space. By α and β we denote the positive and negative roots respectively of the quadratic equation $x^2-x-1=0$. i.e., $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ for any $x \in R$. M. M. Parizi and M. E. Gordji [11] proved the stability of Fibonacci functional equation in Modular functional spaces. S. M. Jung [10] also proved the stability of Fibonacci functional equation in real Banach space as following:

Theorem1: Let (X, ||.||) be a real Banach space. If a function $f: R \to X$ satisfies the inequality, $||f(x)-f(x-1)-f(x-2)|| \le \epsilon$ (1.1)

for all xeR and for some ϵ >0, Then there exists a Fibonacci function F: R \rightarrow X such that $||f(x)-F(x)|| \le \left(1+\frac{2}{\sqrt{5}}\right)\varepsilon$ (1.2)

for all xeR.

Proof. We get from (1.1),

$$||f(x)-\alpha f(x-1)-\beta [f(x-1)-\alpha f(x-2)]|| \le \epsilon, \tag{1.3}$$

For each $x \in \mathbb{R}$. If we replace x by x-k in (1.3), then we have,

$$||f(x-k)-\alpha f(x-k-1)-\beta [f(x-k-1)-\alpha f(x-k-2)]|| \le \epsilon$$

And

$$\|\beta^{k}[f(x-k)-\alpha f(x-k-1)]-\beta^{k+1}[f(x-k-1)-\alpha f(x-k-2)]\| \le \beta^{k} \in (1.4)$$

Thus, we have,

$$||f(x)-\alpha f(x-1)-\beta^{n}||f(x-n)-\alpha f(x-n-1)|| \leq \sum_{k=0}^{n-1} \left| \left| \beta^{k} [f(x-k)-\alpha f(x-k-1)] - \beta^{k+1} [f(x-k-1)-\alpha f(x-k-2)] \right| \right| \leq \sum_{k=0}^{n-1} |\beta|^{k} \varepsilon$$
(1.5)

From (1.4), we get $\{\beta^k[f(x-n)-\alpha f(x-n-1)\}\)$ is a Cauchy sequence. Therefore, we can define a function $F_1: R \to X$ by

 $F_1 = \lim_{n \to \infty} \beta^k [f(x-n) - \alpha f(x-n-1)]$, since X is complete so F_1 is in X. We obtain that

$$\begin{split} \mathsf{F}_1(\mathsf{x}\text{-}1) + \mathsf{F}_1(\mathsf{x}\text{-}2) &= \beta^{-1} \lim_{n \to \infty} \beta^{n+1} [f(x-n-1) - \alpha f(x-n)] \\ &+ \beta^{-2} \lim_{n \to \infty} \beta^{n+2} [f(x-(n+2)) - \alpha f(x-(n+2)-1)] \\ &= \beta^{-1} \mathsf{F}_1(\mathsf{x}) + \beta^{-2} \mathsf{F}_1(\mathsf{x}) = \mathsf{F}_1(\mathsf{x}), \end{split}$$

For all x \in R. Hence F_1 is a Fibonacci function. If n goes to infinity, then (1.5) implies

$$||f(x)-\alpha f(x-1)-F_1(x)|| \le \frac{3+\sqrt{5}}{2}\epsilon$$
 (1.6)

For every xeR.

From (1.1)

$$||f(x)-\beta f(x-1)-\alpha [f(x-1)-\beta f(x-2)]|| \le \epsilon,$$
 (1.7)

For each $x \in \mathbb{R}$. If we replace x by x+k in (1.7), then we have,

$$||f(x+k)-\beta f(x+k-1)-\alpha[f(x+k-1)-\beta f(x+k-2)]|| \le \epsilon$$

And

$$\|\alpha^{-k} [f(x+k)-\beta f(x+k-1)] - \alpha^{-k+1} [f(x+k-1)-\beta f(x+k-2)]\| \le \alpha^{-k} \in$$
 (1.8)

Thus, we have,

$$\begin{aligned} & \left\| \alpha^{-n} [f(x+n) - \beta f(x+n-1) - [f(x) - \beta f(x-1)] \right\| \leq \sum_{k=0}^{n} \left| \left| \alpha^{-k} [f(x+k) - \beta f(x+k-1)] - \alpha^{-k+1} [f(x+k-1) - \beta f(x+k-1)] \right| \\ & \leq \sum_{k=0}^{n} \alpha^{-k} \varepsilon \end{aligned} \tag{1.9}$$

From (1.8), we get $\{\alpha^{-n}[f(x+n)-\beta f(x+n-1)]\}$ is a Cauchy sequence. Therefore, we can define a function F_2 : $R \to X$ by

 $F_2 = \lim_{n \to \infty} \alpha^{-n} [f(x+n) - \beta f(x+n-1)]$, since X is complete so F_2 is in X. We obtain that

$$\begin{aligned} \mathsf{F}_2(\mathsf{x}\text{-}1) + \mathsf{F}_2(\mathsf{x}\text{-}2) &= \alpha^{-1} \lim_{n \to \infty} \alpha^{-(n-1)} [f(x+n-1) - \beta f(x+n-1)] \\ &+ \alpha^{-2} \lim_{n \to \infty} \alpha^{-n+2} [f(x+n-2)) - \beta f(x+(n-2)-1)] \\ &= \alpha^{-1} \mathsf{F}_2(\mathsf{x}) + \alpha^{-2} \mathsf{F}_2(\mathsf{x}) = \mathsf{F}_2(\mathsf{x}), \end{aligned}$$

For all x \in R. Hence F_2 is a Fibonacci function. If n goes to infinity, then (1.9) implies

$$\|F_2(x)-f(x)+\beta f(x-1)\| \le \frac{\sqrt{5}+1}{2}\epsilon$$
 (1.10)

For every xeR.

From (1.6) and (1.10), we have

$$\begin{split} \|f(x) - \left[\frac{\beta}{\beta - \alpha} F_1(x) - \frac{\alpha}{\beta - \alpha} F_2\right] \| &= \frac{1}{|\beta - \alpha|} \|(\beta - \alpha) f(x) - [\beta F_1(x) - \alpha F_2(x)] \| \\ &\leq \frac{1}{\alpha - \beta} \|\beta f(x) - \alpha \beta f(x - 1) - \beta F_1(x)\| + \frac{1}{\alpha - \beta} \|\alpha F_2(x) - \alpha f(x) + \alpha \beta f(x - 1)\| \\ &\leq \left(1 + \frac{2}{\sqrt{5}}\right) \epsilon \end{split}$$

For all xeR. Now we set

$$F(x) = \frac{\beta}{\beta - \alpha} F_1(x) - \frac{\alpha}{\beta - \alpha} F_2$$

Clearly F(x) is the Fib0nacci function.

Now we prove the stability of Fibonacci functional equation in fuzzy normed space.

Theorem 2: Let (X, N) and (Y, N') be fuzzy normed spaces. If $f: R \rightarrow X$ satisfies the inequality

$$N(f(x)-f(x-1)-f(x-2), t) \ge N'(\phi(x), t)$$
 (2.1)

for all x∈R, then there exists a Fibonacci function F: R→X such that

$$N(f(x)-F(x)) \ge N'(\varphi(x), \left(1+\frac{2}{\sqrt{5}}\right)t).$$

Proof. We get from (2.1),

$$N(f(x)-\alpha f(x-1)-\beta [f(x-1)-\alpha f(x-2)], t) \ge N'(\phi(x), t)$$
(2.2)

For each $x \in \mathbb{R}$. If we replace x by x-k in (2.2), then we have,

$$N(f(x-k)-\alpha f(x-k-1)-\beta [f(x-k-1)-\alpha f(x-k-2)], t) \ge N'(\phi(x-k), t)$$

And

N
$$(\beta^{k} [f(x-k)-\alpha f(x-k-1)]-\beta^{k+1} [f(x-k-1)-\alpha f(x-k-2)], \beta^{k} t) \ge N'(\phi(x-k), t)$$
 (2.3)

Thus, we have,

$$N(f(x)-\alpha f(x-1)-\beta^n[f(x-n)-\alpha f(x-n-1)], \sum_{k=0}^{n-1}|\beta|^k t) \geq \min\{N(\beta^k f(x-k)-\alpha f(x-k-1)-\beta^{k+1}[f(x-k-1)-\alpha f(x-k-2), \beta^k \quad t), k=0,1,....n-1\} \geq N'(\varphi(x), \sum_{k=0}^{n-1}|\beta|^k t) \qquad (2.4)$$

From (2.4), we get $\{\beta^n[f(x-n)-\alpha f(x-n-1)\}\)$ is a Cauchy sequence. Therefore, we can define a function $F_1: R \to X$ by

 $F_1 = \lim_{n \to \infty} \beta^k [f(x-n) - \alpha f(x-n-1)]$, since X is complete so F_1 is in X. We obtain that

$$\begin{aligned} \mathsf{F}_1(\mathsf{x}\text{-}1) + \mathsf{F}_1(\mathsf{x}\text{-}2) &= \beta^{-1} \lim_{n \to \infty} \beta^{n+1} [f(x-n-1) - \alpha f(x-n)] \\ &+ \beta^{-2} \lim_{n \to \infty} \beta^{n+2} [f(x-(n+2)) - \alpha f(x-(n+2)-1)] \\ &= \beta^{-1} \mathsf{F}_1(\mathsf{x}) + \beta^{-2} \mathsf{F}_1(\mathsf{x}) = \mathsf{F}_1(\mathsf{x}), \end{aligned}$$

For all $x \in \mathbb{R}$. Hence F_1 is a Fibonacci function. If n goes to infinity, then (2.4) implies

$$N(f(x)-\alpha f(x-1)-F_1(x),t) \ge N'(\phi(x), (\frac{3+\sqrt{5}}{2})t)$$
 (2.5)

For every xeR.

From (2.1)

$$N(f(x)-\beta f(x-1)-\alpha [f(x-1)-\beta f(x-2)],t) \ge N'(\phi(x), t), \tag{2.6}$$

For each $x \in \mathbb{R}$. If we replace x by x+k in (2.6), then we have,

$$N(f(x+k)-\beta f(x+k-1)-\alpha [f(x+k-1)-\beta f(x+k-2)],t) \ge N'(\varphi(x+k),t)$$

And

$$N(\alpha^{-k} [f(x+k)-\beta f(x+k-1)] - \alpha^{-k+1} [f(x+k-1)-\beta f(x+k-2)], \ \alpha^{-k} \ t) \ \geq N'(\varphi(x+k), \ t) \ \ (2.7)$$

Thus, we have,

$$N(\alpha^{-n}[f(x+n)-\beta f(x+n-1)-[f(x)-\beta f(x-1)],\sum_{k=0}^{n-1}\alpha^{-k}t)])$$

$$\geq \min\{N(\alpha^{-k}f(x+k)-\beta f(x+k-1)-\alpha^{-k+1}[f(x+k-1)-\beta f(x+k-2),\alpha^{-k}t),k=0,1,....n-1\}$$

$$\geq N'(\phi(x), \sum_{k=0}^{n-1} \alpha|^{-k}t)$$
 (2.8)

From (2.7), we get $\{\alpha^{-n}[f(x+n)-\beta f(x+n-1)]\}$ is a Cauchy sequence. Therefore, we can define a function $F_2: R \to X$ by

 $F_2 = \lim_{n \to \infty} \alpha^{-n} [f(x+n) - \beta f(x+n-1)]$, since X is complete so F_2 is in X. We obtain that

$$\begin{aligned} \mathsf{F}_2(\mathsf{x}\text{-}1) + \mathsf{F}_2(\mathsf{x}\text{-}2) &= \alpha^{-1} \lim_{n \to \infty} \alpha^{-(n-1)} [f(x+n-1) - \beta f(x+n-1)] \\ &+ \alpha^{-2} \lim_{n \to \infty} \alpha^{-n+2} [f(x+n-2)) - \beta f(x+(n-2)-1)] \\ &= \alpha^{-1} \mathsf{F}_2(\mathsf{x}) + \alpha^{-2} \mathsf{F}_2(\mathsf{x}) = \mathsf{F}_2(\mathsf{x}), \end{aligned}$$

For all x \in R. Hence F_2 is a Fibonacci function. If n goes to infinity, then (2.8) implies

$$N(F_2(x) - f(x) + \beta f(x-1), t) \ge N'(\varphi(x), \left(\frac{\sqrt{5}+1}{2}\right)t) \tag{2.9}$$

For every xεR.

From (2.5) and (2.9), we have

$$\mathsf{N}(\mathsf{f}(\mathsf{x}) - \left[\frac{\beta}{\beta - \alpha} F_1(\mathsf{x}) - \frac{\alpha}{\beta - \alpha} F_2\right], \mathsf{t}) = \mathsf{N}((\beta - \alpha) \mathsf{f}(\mathsf{x}) - [\beta \mathsf{F}_1(\mathsf{x}) - \alpha \mathsf{F}_2(\mathsf{x})], \ |\beta - \alpha| \mathsf{t})$$

$$\geq \min\{N(\beta f(x)-\alpha\beta f(x-1)-\beta F_1(x),\frac{\alpha-\beta}{2}t),\ N(\alpha\ F_2\ (x)-\alpha f(x)+\alpha\beta f(x-1),\frac{\alpha-\beta}{2}t\)$$

$$\geq N'(\phi(x), \left(1 + \frac{2}{\sqrt{5}}\right)t)$$

For all xeR. Now we set

$$F(x) = \frac{\beta}{\beta - \alpha} F_1(x) - \frac{\alpha}{\beta - \alpha} F_2$$

Clearly F(x) is the Fibonacci function.

References

[1] Hyers, D.H., Isac, G. and Rassias, Th.M., On the asymptoticity aspect of Hyers–Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998) 425–430.

- [2] Hyers, D.H., Isac, G. and Rassias, Th.M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [3] Hyers, D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222–224.
- [4] Hyers, D.H. and Rassias, Th.M. Approximate homomorphisms, Aequationes Math. 44 (1992) 125–153.
- [5] Rassias, T.M. On the Stability of Functional Equations and a Problem of Ulam, Acta Appl. Math., 62(2000), 123-130.
- [6] Rassias, Th. M., On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
- [7] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.Soc. 72 (1978) 297–300.
- [8] Ulam, S.M., A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
- [9] Ulam, S.M., Problems in Modern Mathematics, John Wiley & Sons, New York, USA, 1964.
- [10] S.M.Jung., Hyers-Ulam stability of Fibonacci functional equation, Bulletin of Iranian Mathematical society, 35(2),2009, 217-227.
- [11] M.N.Parizi and M.E.Gordji, Hyers-Ulam stability of Fibonacci functional equation in Modular functional spaces, Journal of mathematics and computer science, 10(2014) 1-6.