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Abstract 

In this work, we examined reacting laminar  flow of a third grade fluid in a channel filled with saturated porous media under 
the effect of applied  magnetic field and variable thermal conductivity. It is assumed that the fluid has temperature-
dependent viscosity and reacts satisfying Arrhenius law. We employed Galerkin weighted residual method to solve the 
resulting non-linear equations. The results show the effects of variable viscosity parameter, Brinkman number, Reynolds 

number, Prandtl number, Darcy number, Hartmann number and iKamenetskiFrank  parameter on the flow system. 

Keywords:  Non-Newtonian fluid; weighted residual method; Laminar flow; Magnetic field and  Arrhenius reaction. 
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INTRODUCTION 

Flow of reactive fluids in porous media not only presents a theoretically challenging problem but also has a wide range of 
scientific, technological and engineering applications. This type of flow system can be found in, among others, packed bed 
chemical reactors, geothermal energy reservoirs, petroleum reservoirs, material processing industries, automobile exhaust 
systems, drying of food, waste disposal systems, insulation of buildings, groundwater movement, oil and gas production, 
to mention but just a few applications. 

Heat transfer problem of Laminar flow and third grade fluids without heat source has been studied by several authors: 
Hayat et al [1] considered partial slip effect on the flow and heat transfer characteristics in a third grade fluid. Fosdick and 
Rajagopal [2] performed a complete thermodynamic analysis of constitutive equations for the third grade fluid involving 
heat transfer process. Massoudi and Christie [3] analyzed numerically the flow of a third grade fluid in a pipe without heat 
source where the shear viscosity was assumed to be temperature dependent. Olajuwon [4] examined the flow and natural 
convection heat transfer in a power-law fluid past a vertical plate with heat generation.  

Jayeoba and Okoya [5] employed analytical approximation to determine the velocity and temperature fields for steady flow 
of a third grade fluid in a pipe. Rilvin and Ericksen [6] analyzed stress deformation relation for isotropic materials. 
Motivated by the work of Szeri  and Rajagopal [7] which examined the effects of variable viscosity parameter and viscous 
dissipation parameter on the flow of a Non-Newtonian fluid between heated parallel plates. Their results show that the 
temperature and velocity distribution remain sensibly invariant with respect to the variable viscosity parameter. Haroon et 
al [8] examined analysis of poiseuille flow  of a reactive power-law fluid between parallel plates. The results show that the 
shear thinning/thickening behavior depends on the power-law index and the pressure gradient. 

Motivated by the work of Lazarus [9] which studied the effects of variable viscosity on the velocity fluid and temperature 
fluid using semi-implicit finite difference scheme of unsteady Laminar flow in a channel filled with saturated porous media. 
The results show that the velocity fluid and temperature fluid increases as variable viscosity parameter increases. In this 
work, we considered a fully developed, steady and reacting flow of an incompressible fluid. 

 GOVERNING EQUATIONS AND METHOD OF SOLUTION 

The basic governing equations are the conservation of mass, conservation of momentum and conservation of energy for 
an incompressible fluid. 

Following [9] the momentum and energy equation are modified as follows: 

,0udiv            (1) 

dt

dv
bTdiv             (2)  

Following Szeri and Rajagopal [7] an incompressible, homogeneous fluid of third grade is characterized by Cauchy stress 
  of the following form: 
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where pI denote the indeterminate part of the stress due to the constraint of incompressibility  T is the coefficient of 

viscosity and    TT 21 ,  are material moduli, usually referred to as normal stress coefficients. The kinematic tensors 

1A , 2A  are defined by [7] through 

   vgradvgradA 1          (4) 
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Here 
dt

d
denotes material time derivative and v is the velocity vector. The above model contains, as a special subclass, 

the classical linearly viscous model (the case when all the coefficients expect  are set equal to zero).  
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Together with the initial and boundary conditions 
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 where Q
 
is the heat release per units mass, E  is the activating energy, R

 
 is the universal gas constant, -is the 

dimensionless temperature, K is the permeability of the porous media, k
 
is the thermal conductivity,  is the density, pC

 

is the specific heat at constant pressure,  is the dynamic viscosity, 
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is the dimensionless numerical exponent,
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is the thermal expansion, 

0T is the fluid initial 

temperature, 
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is the ambient temperature, T

 
is the absolute temperature within the boundary layer, TTT ,.....  , 21  

-  

Temperature at the plate, h is the Boltzmann’s constant, 0C is the initial concentration of the reactant species, a is the 

channel width, l is the Plank’s number, 1h is the heat transfer coefficient at lower plate, 2h is the heat transfer coefficient 

at the  upper plate and 31 & are the material coefficients. 

From equation (25) we seek variable thermal conductivity  Tk  of the form  

   ekTk 0            (12) 

we introduce the following dimensionless variables and parameters 
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    being iKamenetskiFrank   parameter for the system.  

Substituting (13) into (6) and (7), considering a steady case  we obtain  
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Following [9] Equations (14) and (15) are to be solved subject to the boundary conditions: 
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We now proceed to solve equations (14) and (15) subject to (16) numerically using Galerkin-Weighted Residual Method 
as follows:  
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A maple 14 pseudo code was used to perform the iterative computation and results are presented in Figures 1-6 as 
follows: 

 

Fig .1: Graph of the velocity function u against the similarity variable y when  

0.1Pr,75.0Re,0.2,5.0  GBr . 
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Fig.2: Graph of the temperature  function   against the similarity variable y of Da  

when .0.1PrRe,5.0 Br  

 

Fig .3: Graph of the velocity function u against the similarity variable y when  

25.0Re,0.3,2.1,5.0,1.0,5.0  GSm   
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Fig.4: Graph of the temperature  function   against the similarity variable y of 

.01.0,2.1,0.1,5.0,0,0.3,01.0,2.0Re,75.0Pr,25.0,5.0 21  SBiBim a  

 

Figure 5: Graph of the velocity function  u against the similarity variable y when  

25.0Re,0.3,2.1,5.0,1.0,5.0  GSm   
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Figure 6: Graph of the temperature  function   against the similarity variable y of 

.01.0,2.1,0.1,5.0,0,0.3,01.0,2.0Re,75.0Pr,25.0,5.0 21  SBiBim a  

 

Figure 7: Graph of the velocity function u against the similarity variable y when  

25.0Re,0.3,2.1,5.0,1.0,5.0  GSm   
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Figure 8: Graph of the temperature  function   against the similarity variable y of 

.01.0,2.1,0.1,5.0,0,0.3,01.0,2.0Re,75.0Pr,25.0,5.0 21  SBiBim a  

Discussion of Results 

The study of heat transfer and reactive non-Newtonian fluids is extremely important due to its   wide variety of practical 
applications in processes such as filtration of polymer solutions and soil remediation through the removal of liquid 
pollutants to mention but just a few. It is observed from Figures 1,3,5 and 7 that the velocity profile decreases with 

increase in each of  non-Newtonian parameter, Hartmann number, Darcy number and  iKamenetskiFrank 

parameter. It is also noticed from Figures 2,4,6 and 8 that the temperature profile increases as 1 variable thermal 

conductivity parameter, S Darcy number, Hartmann number and  iKamenetskiFrank  parameter increases.  

Conclusion 

A comprehensive set of graphical results for velocity profile and temperature profile are discussed. It is observed that the 

temperature fluid increases as variable thermal conductivity parameter, Darcy number and iKamenetskiFrank 
parameter increases. We observed that there is a transient decrease in the fluid velocity with an increase in the fluid 
viscosity (which decreases the viscosity). A transient increase in  the fluid temperature is observed with increase in 

iKamenetskiFrank  parameter,  ,  non-Newtonian parameters and Darcy  number which decreases the 

porosity in the flow.  

 For engineering purpose, the flow model of our problem represents the oils well and as the 1  viscosity parameter is 

increasing there is quick recovery of oil from the oils well. Also, the results of this work are of great interest in production 
processing, automobile engine, for the safety of life and proper handling of the materials during processing. 
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