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ABSTRACT

The response of a ship model with non-linearly coupled pitch and roll modes under modulated external and
parametric solved and studied. The active control is applied to reduce the vibration of the system . The method of multiple
scale perturbation technique is applied to obtain the periodic response equation near the primary resonance in the
presence of internal resonance of the system. The objective of this research is focused on the stability of this periodic
solution, dynamical properties and chaotic response. The stability of the obtained numerical solution is studied using both
frequency response equation and phase-plane methods. The effects of some parameters on the vibrating system are

investigated and reported in this paper.
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1- INTRODUCTION

Nayfeh and others [1- 4] studied the non-stationary responses of a non-linearly two-degree-of-freedom system
under non-stationary excitation. The basic two-degree-of freedom ship model under a sinusoidal excitation with either a
slowly varying amplitude or frequency . Nayfeh, Mook and Marshall’s study [5-7]. They used first order multiple time scale
method to analyze this system of ship model and a saturation phenomenon of the second mode has been reported. The
authors [8, 9] have studied the same saturation phenomenon theoretically and experimentally. Many investigators have
studied chaos in non-linear multi degree-of-freedom systems with internal resonance. For instance, quadratically coupled
oscillators with 1:2 internal resonance [10,11], a harmonically excited mechanical system with one to one internal
resonance [12], a parametrically and externally excited dynamical system with2:1 internal resonance [13,14] have been
studied. Davis and Pan studied a system of a ship model using both first order multiple time scale and averaging method,
and a more accurate analytical solution and bifurcation diagrams are obtained and reported [15-17]. They also studied the
same system of ship model, when it has both a 2:1 internal resonance. Furthermore, the case of periodic response and
chaotic response of the same system under modulated excitation has been studied. Also, the stability of the two modes of
a ship motions near primary resonance in the presence of internal resonance has been studied and reported [10, 14, 17].
The stability of the numerical solution is investigated using both phase plane methods and frequency response equations.
The stability of the proposed solution is determined applying Lyapunov’s first method and the stability of the obtained
numerical solution of the considered system is studied applying Runge-Kutta method [18,19]. Eissa and El-Bassiouny [20]
construct a second-order uniform expansion of the non-linear rolling response of a ship in regular beam seas by method
of multiple time scales. The analysis took into consideration linear, quadratic, cubic, quintus, and seven terms in the
polynomial expansion of the relative roll angle. Eissa, El-Ganaini andHamed [21] Saturation phenomena may occur in
non-linear vibrating systems. This phenomena is very useful in suppressing the undesired vibrations and saturation is
investigated in a non-linear oscillating system subject to multi-parametric excitation. Kamel [22] studied the response of a
two-degree-of-freedom system with quadratic coupling under a modulated amplitude sinusoidal excitation is studied and
solved.. EL-Sayed, Kamel and Eissa [23] studied an application of passive vibration control to a non-linear spring
pendulum system simulating a ship’s roll motion. This leads to a four-degree-of-freedom (4-DOF) system subjected to
multi external and parametric excitations. Sayed and Hamed [24] studied deals with the response of a two- degree-of-
freedom(2DOF) system with quadratic coupling under parametric and harmonic excitations. The method of multiple scale
perturbation technique is applied to solve the nonlinear differential equations and obtain approximate solutions up to and
including the second order approximations.

Sayed and Kamel [25, 26] studied the effect of different controllers on the vibrating system and the saturation
control of a linear absorber to reduce vibrations due to rotor blade flapping motion. Kamel, El-Ganaini and Hamed[27] the
coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process is
investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. Dostal, Kreuzer
and Navaratnam[28] studied Multi-degree-of-freedom ship motion and ship stability in random seas are of major interest
for the development of new advanced intact stability criteria and improve the safety of new ship designs, but the results
are relevant also for other engineering systems involving multiple scales.

We focus on roll-pitch and roll-heave motion in random seas. The random wave excitation is modeled by a non-
white stationary process. This process is derived from a spectral description of the random seaway using traveling
effective wave. The aim of this work is to control the main system behavior at simultaneous primary and internal
resonance condition, where the system damage is probable. Multiple scale perturbation method is applied to obtain the
solution up to the second order approximations and Some of resonance cases are investigated. The effects of natural and
excitation frequencies on the response of the system are investigated and discussed.

2- MATHEMATICAL MODELING
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Fig.1a The body - fixed coordinates system OxyyoZ,. b coordinates system Gxyz and OxgygZq

In this paper, we consider a ship model with non linear coupled pitch and roll modes subjected to a sinusoidal harmonic
excitation and parametric excitations [24]. The nonlinear system can be written as:

X +20,X +o’X +a,XY =G, cosQt +XF sinQut +T, (1a)
Y +20Y +oY +a,X>=F cosQt +YF,sinQt +T, (1b)

where X andY are the roll and pitch mode amplitudes, ]11 and ﬂz the modal damping coefficients, m;and ®, the
natural angular frequencies of the roll and pitch modes, and Ql, tahe excitations or wave frequencies. G0 , F1
andF , F, are the excitation force amplitudes of the roll and pitch modes, G, and O, non linear coefficients.

T, = —6Gl)< *,and i, =26 2Y * are the absorbers of the system. All the coefficients in the above equations are

complicated functions of the various ship moments of inertia, fluid parameters, boat speed, etc. The linear viscous
damping forces, exciting forces and controller are assumed to be

a,=¢en, F,=¢F 0o, =¢ca G,=¢G, F =¢F, (n=12)

n n n n
where € is a small perturbation parameter and 0 < g <1. Gl and G2 are gains of the absorbers.

2.1-Perturbation analysis

The method of multiple time scale is applied to determine a first order uniform expansion for the solution of equations (1a)
and (1b) as in the form:

X (t,e)= X, (@T,, T)+ex,(T,, T,)+&*,(T,, T,)+&x,(T,, T,)+0(") (2a)
Y (t,S): A US T1)+8y1(To’ T1)+82y2(TO, T1)+83y3(To’ T1)+O(84) (2b)

where € is a small perturbation parameter, TO :t,T1 =gt are fast and slow time scales respectively, and the time

derivatives became

2
j_t: D, +¢D, +¢°D, ,jt—z =D/ +2¢D,D, +&*(D2+2D,D,) @)

Substituting equations (2a),(2b) and (3) in to equations (1a) and (1b) and equating the coefficients of the same power of €
in both sides, we obtain

(D2 +w?)x, =0 (42)

(D& +w3)y, =0 (4b)
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(D +w?)x, =—2D,D,x, —2,D X, —a, (D, X, )(D,Y,)+X FsinQt -G, (D x,)* +G,cosQt (5a)
(D02 +O‘)§)y1 =_2Do Dlyo _2“2Doyo _O(’Z(Doxo)2 + I:o COSQlt + yoFZ Siant _GZ(DOyO)3 (5b)

(Do2 +(Df)X2 = _D12X0 - 2Do Dle _2H1(D0X1 + Dlxo) _al((Doxo)(Doyl) _K;l(DoXo)z(DoXl + Dlxo)
+(D0X0)(Dlyo) +(Do yo)(DoXl)+(Do yo)(DlXO))+XlF1 SinQZt (6a)

(D +wi)y,=-D}y, -2D,D,y,—2u,(D,y, +D,y,)—20,(Dx,)(D X, +Dx, ) +y,F,sinQ;t
~3G,(D,Y,)* (D, +DyY,) (6b)
(DZ + o)X, =-Dx,—2D,Dx, —2u,(D,x, +Dx,)—a, ((D,x,+Dx, )x(D,y,+D,y,)
+(D,x,)(D,y,+D,y,)+(D,y, ) (D, X, +Dx,)+x,F sinQt -3G,((D,x,)(D X, +Dx,)
+(D,X,)?(D X, +D,x,)) (7)

(D¢ +wi)y,=-D/y,—2D,D,y,-2u,(D,y, +D,y,)—a,((D,X, +D,;x,)*+2(D X, )(D X, +DxX,))

+y2F2 Sin ta _wz((Doyo )(Doyl 4 Dlyo )2+(Doyo)2(Doy 2 my Dlyl)) (7b)
The general solution of equations (4a) and (4b) are given by
Xo(To T = A, (T)e T +A, (T, )e ™ (8a)
Yoo T) =B, (T )" +B, (T )e ™" (8b)

where AO ] B0 are complex function in T1 and cc represents the complex conjugate of the preceding terms. Substituting

equations (8a) and (8b) in to equations (5a) and (5b), and eliminating the secular terms, then the general solution
obtained as

Xl('I'O,Tl)zcleio»J0 +Cze3i®1T0 +C3ei£11TD +C4ei(031+m2)T0 +C5ei(oJl—m2)T0 +C6ei(92+"’1)T°
+CYOR CC o

yl(To’T1):C1*eiw2To +C2*83im2T° +C3*82i(”1T° +C:€inT° +C5*ei(92“°2”° +Cgei(ngm2)To

i (Q,—0,)T

+Cge °+C; +cC (9b)

where C.and C," (i =1,2,...,7) are complex function inT,, cc are complex conjugate. Similarly, Substituting from

equations (8a), (8b), (9a) and (9b) into equations (6a) and (6b) we get

X,(T, T)=Ng' T +N g% + N g% +N e +N g' ()l 4 N g (a0
+ N 7e i(0+20,)T, + N 8e i (o —2m,)T, + N ge i (o+30,)T, + N 1Oei (00, —30,)T, + N lle i (Bwy+0,)T,
+ N 12ei (30)1._(’32)T0 + N 13ei (g)’l+QZ )To + N l4e i ((21_02 )To + N 15e i (Q’J.'HD].)TO + N 16e i (gll_(’Jl)To
+N 17ei (2 +204)T, +N £ P (Q-20,)T, +N £ P (Q+0,)T, +N zoei (C-0,)T, +N € P (Qo+aq)T,

i1 (Qy—)T, i (Qy+30)T, i (=30, i1 (295+0)T, i1 (29Q,—o)T,
+N,e " +N,e "7 +N,, e +N e +N e
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Yo, T)=Me' " +M g3 + M g% + M g% + MM + M, g Correr)lo

+M, el () g2l (M @2l o M e 1 M e

+M 12ei (+9Q,)T, +M lgei (-Q,)T, +M 14e i (+o)T, +M 15e i (Q—0)T, +M lsei (+20,)T,

+ M 17e i1 (—20,)T, +M 18ei (Qy+2ay)T, +M 1gei (Qy—20)T, +M Zoe i1 (Qy+0,)T, +M Zle i1 (Qy—0,)T,

+M 0! 0oy M g1 (B30l g\ @l Breallo p (@ Bmelo 1 M e (10b)

where N _(m=12,..,30)and M, (i =1,2,...,26) are complex functions in T,, cc are complex conjugates.
Similarly, substituting from equations (8a), (8b), (9a), (9b), (10a) and (10b)in to equations (7a) and (7b) we get,

SioT 5i T TioT,

X, (T, T) =we' " +w e¥ tw e pw e pw e pw 2%

i (0+2m,)T,

+W 7e i ((DlJr(DZ )To +W Se i (0)170)2 )To +W ge ° W 10e i (('01_2(’)2 )To

i(o+40,)T

i (o+3,)T, i (0—3w,)T, o i (0 —4m,)T,
W, e 2o 1w e 2o 1w e W € 2

+W 15e i ((1)_|_+5(,02 )To +W ]_Ge i (0)1_5(’32 )To +W 17e i (0‘).I.+6(")2 )To +W 18e i ((D.L_G(DZ )To
+W 19e i (Bo+,)T, +W Zoe i (Boy+,)T, +W 21e i (B +2m,)T, +W 22e i (30, —2m,)T,

3i (o +,)T, 3i (0—,)T, i (50,+®,)T, i (50,—m,)T,
+W e 2o t+w e o +w e 2o tw e :

1(Q—Q,)T 1(+20,)T 1(9—20,)T,

i (Q‘FQ )TO o o
+W € 270 +W e +W € +W ;€

i ()T, i (@), i (Q+20)T i (20T,
+W e +W e +w e “h i

° W e
W et Ty o (uBeTe 4y gl @ttoTe 4y o (-do,
FW e @rolle @i @oalT Ly i (ui20aTe 4y i (4200,
T e )Ty ol @Sole gy ol GO |y i GO,

1 (€+3m,)T

i (Q+0,)T, i (Qy—o)T, o i (Q—o)T,
+w e el gy el (2medlo Ly o Fw e (2

i (Qy+5m)T

o i (Q,—50)T, 1 (2Q,+0,)T, i (2Q,—o))T,
+W e +W e’ W et +W et

i (2Q,+30)T, i (20,-30y)T, i (30, +o,)T, i (30, -w))T,
+W € 2 +W € 2 +W e 2 +W € 2

g ey oI @ (oredlly gl @urloroa Ly g @(or-ooTy
'HIV 63e| (()l+((1)1+20)2 ))Tu _I_W 64e| (Qif(mFLZ(DZ ))To _I_W 65e| (Ql+(0)172m2 ))To _I_W Gsel (5217(0)172(02 ))To

'HIV 67e i (QflJr(ZCUlerZ ))To +W 68e i (917(2(1)1+C02 ))To +W 69e i (()1+(2(1)1*(D2 ))To _I_W 70e i (917(20)1*(1)2 ))To
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_HN 7le i (QZJr(('OPLO‘)Z ))To +W 7ze| (927(0)1+m2 ))To _I_W 73e i (QZ+(“)].7“)2 ))To _I_W 74e i (sz(wlfwz ))To

i (Q (o +200,))T i (Qy (0 +2,))T i (Qy (e —20,))T i (Qy (e —20,))T,

HW 8 "W e "W 2 "W e
iy 79ei (Q+H(y+30,))T, +W 80ei (Q~(y+30,))T, +W 81ei (Q+(y=30,))T, +W 82e i (Qy~(1-30,))T,
W 83ei (€ +(3ay+,))T, +W 84e i (Q—(3ay+m,))T, +W 85ei (€ +(3ay—wy))T, +W 86ei () (3 —,))T,
W 87ei (29 +(o+0,))T, +W 88ei (29 —(ay+a, )T, +W Bgei (2% +( =, )T, +W 909 i (2Q)—(w—my))T,
g (el Ly gl (@)oo Ly oI (bl 4y oi (@),
o (2T 1O 2Ty 1Oy Ly ol (40200,

(0T, ()0, ()0, ()0,
W e RNy @l @ HERTERT Ly @I o0

y3(|—0’-|—1):zleic02T0 _|_Zze2ic02TD +de3i0)2To _|_Z4e5ic02TrJ _|_Z5e6io)2T0 _|_Z6e7ia)2T0

+7 e 2T, Zse‘“ ol 4 de Siol, Zloeingo i lee 2T, | leeiQZTO
+7 13e2iQZTO 4 Zl4e‘ (@+20,)T, 215ei (o —20,)To Zleei (o +3w,)T,
y Zl7e‘ (=80T, leei (0 +4@)T, Zlgei (=40)T, | 7 e I (2an+0,)T
+7 21ei Qoy=p)To | 7 i R 02 )T, & 7 £ 2i (=), | 7 24ei (20, +30,)T,
L7 € [ o=30,)T, | 7 26ei Qo +40,)T, | 7 27ei Co-40,)T, | 7 28ei (4o, )T,
+ zgei (4op=,)T, | 7 I § Qoprar))Tly |, 7 € 2i 2o —,)T, 4 7 o i (Q+0,)T,
+Z 33ei (Q-o)To | 7 34ei (Q+20)T, | 7 3sei §F 320 TR 7 e (€ +30,)T,
L7 e H(Q-3e)T, , 7 e (20,00 4 7 e H( =200, 7 W i (©+30,)T,
L7 41ei (Q-80,)T, | 7 42ei (@Q+40)T, 4 7 e H(=40,)T, | 7 44ei (29 +@, )T,

i (20 —w,)T, i (Q+20,)T, i (Q,—2m))T, i (Qy+40,)T,
+Z,£e 270 4 7,0 o +Z,£ 7

i (Qy,—4m)T, i (Qy+,)T, i (Qy—,)T, i (Q+2m,)T,

+Z,8 °+Z. £ +Z.€ °+Z £

i (Q—2m,)T, i (Q4+3w,)T, i (Q;—3w,)T i (Q+5m,)T,

+Z £ °+Z. e °+Z8 °+Z. £

i (Q,—5w,)T, 2i (Qy+m )T, 2i (Qy—my )T, i (2Q,+m,)T,
+Z e T 7 e 2 +Z.£ 2 +Z £ 272

i (20, —w,)T i (20,+3w,)T i (20,—3w,)T i (3Q,+1,)T,

+Ze c+Z e °+Z. £ c+Ze

i (3Q-w,)T, i (O +(o+0,))T, i (Q—(+m,))T, i (Q+(0—,))T,
+Z T+ L 8 o+ LR U AN I

17,0 oo L7 gl @20 7 oi@(oui20y 4 7 gi (o200,
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+7 739 (€~ —200))T, +7 74ei (Q+(20+0;))T, +7 759 I (20, +0,))T, +7 76ei (0 +(20-00;))T,
+Z 77ei (% —~(20,—02))T, + Z 78e i (Qp+(+30,))Ty + Z 798 i (Q (e +3m,))T, + Z 80e i (Qp+(e—3,))Ty
+ Z 82ei (Qy (20 )T, + Z 83ei (= (20 +,))T, + Z 84e i (Qp+(201-0,))T, + Z 85ei (Qp—(20y-0,))T,

+7 86ei (Q+2(w+0,))T, +7 87ei (Qp=2(+,))Ty +7 88ei (Qp+2(y—wp))Ty +7 896 i (Q=2(wy-w)))T,

+7 goe i (+0Q,)T, +7 919 i (Q-Q,)T, +7 92e i (+20,)T, +7 93e i(-20,)T,
17,8 O | 7 i (i) 4 7 i (0o L7 o (@ 0o)orl,

i (+Q))+20,)T, i (+Qy)-2m,)T, i ((—Q,)+20,)T, 1 (—Q,)-2w,)T,
+Z 4 prle + 7 £ 2 + 7o 2o + 7 o 2o

+Z,,, +CC (11b)
where W (M =12,..,103)and Z, (i =1,2,...,102) are complex functions in T, cc are complex conjugates.
From above-proposed solution, the reported resonance cases are :
(a) Trivial resonance: Q.l = Q2 =W =M, = 0
(b) Primary resonance: () = ®;, (2, = ®,
(c) Internal resonance: ()@ =Ny, (2) Wy =Ny ,n=1,2345 QE)N@W = Mw,,n=2,3, m=3,5

(d) Sub-harmonic resonance: (1) £ =N, @, =nw,, n=2, 3, 4,5 3) Q,=mao,

@ Q, =Mo,, m=2,4,6

(e) Combined resonance: (1) Q, = ®, + ®, 2 Q=2(nto,) ?) Q = (20, £3w,)
@ =(0+20,) 6 Q=20 tn,) ©6 2Q,=220 tn,) 7Q,=2(n tn,)
® Q, = (4o, to,) © Q, = (20, T ®,)

(f) Simultaneous resonance:

Any combination of the above resonance cases is considered as a simultaneous resonance one.

2.2-Stability Analysis

Stability analysis is limited to the first order approximation. Then all the solution coefficients are functions in Tl only.
Applying an absorber to the main system at internal resonance 0, = 20)1. Introducing the detuning parameters 01 and

O 5 in the primary and internal resonance to convert the small-divisor terms into the secular terms according to
Q =m +£0, and ®, =20, +£0, (12)

Eliminating the secular terms of both X, and Y, of equations (5a) and (5b), leads to the solvability conditions, and noting

that A, and B, are functions in T, only, we get
. . — G, — i (o
[2i o,(D,A, +w,A,)—3iIG,0’AZA '™ + 7°e Ao _ o, 0,00,A,B e e =0 (13)
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[-2i ©,(D,B, +1,B,)—3iG,0;BB, ' +o,m’A%e? ™ =0 (13b)
Putting the polar form
1 72Ty 1 i7,(T)
A, = Ea1(T1)e S, B, = Eaz(Tl)e o 14)

where @,,a,,}; and y,are real. Substituting Equations (14) into equations (13a), (13b), and separating real and
imaginary parts we get the following

3 G, .. :
a =—pa, — gGlo)faf s ° sin@, —%cozala2 sino, (15a)
0)1
G
ay, = %o)zaia2 cos0, — —2-cos6, (15b)
1
3 ‘a’ .
a) =—p,a, ——G,wa; — %0 iy 0, (15¢)
4o,
272
ay, = —% oS0, (15d)
2

where 491 = (O'2T1 Ty, — 27/1) and (92 = O'lT1 —),- For steady state solutions, a{ =a, = 9; — 6'2 =0, and
equations (15a), (15b), (15c) and (15d) becomes

3 G, . !
0=—pa —glefaf B °sin0, —%o\)zala2 sino, (162)
1
G
o, = %(ozaia2 C0s0, ——>Co0s0, (16b)
1
2
0=—p,a, - §Gzco§a§ _ %% g 0, (16¢)
8 4w,
242
(20,-0,)a, = _ %98 o 0, (16d)
®,

Squaring equations (16a), (16b) and adding the result, we get the corresponding frequency response equations (FRE) are

3 G 1 G
alof + (1, + @iGa) — %~ ofulalal + 220 g, =0 )
1 1
Similarly, from equations (16c)and (16d), we get
3 2,2
8} (20, ~0,) + (2, + SG,0a3)” —(P22%)7 =0 @
2

From equations (17) and (18) we have the following cases:

()Casel a, #0, a,=0
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3 G?
812012 + (u1a1 + gmfGlais)z - 4 02 =0 (19)
0y
(i) case2 a,=0,a,#0
2 2 3 24~3\2
a,(20,—0,) + (12, + ngcozaz) =0 (20)

(i) Case 3 @, # 0, a, # O represented by equations (17) and (18).The steady state solution of the obtained fixed

points will be determined as follows:

Let AO and B o Expressed in Cartesian form as following:

1 H iv 1 - iv
AO(Tl):E(pl_Iql)e i ’Bo(rl)zg(pz_lqz)e & (21)

where P, and (,, (n=1,2) are real values and. Inserting equations (19) in to the linear form of equations (13a) ,(13b)

and separating real and imaginary parts, the following system of equations is obtained as:

p; +v,P; —77.0, =0 (22a)
q, +v,a, +72,p, =0 (22b)
P, +Vv,P, —77,0, =0 (220)
q; +v,Q, +7,p, =0 (22d)

(o 0.
where 771:&’ 772:&,\/12—1, V2:—2
@ @, @y @,
The stability of linear solution is investigated from the zero characteristics matrix
A+v, -1 0 0
n Aty 0 0 0
0 0 X+v, -,
0 0 n, A+v,
The eigen values are given by
4 3 2
AT+ + LA+ A+, =0
r,=2( ), =0 +n.+4 L v?
where, 1= eUn+1]), =m0 +1; + 417, TV +V,

2 2 2 2 2 2
ry =200, +1,) = 2n,vy +2nv5, 1, = (g + vy )(v; +175)
According to the Routh-Hurwitz criterion, the linear solution is stable if the following are satisfied
r,>0, rr,-r,>0, r(r,-r)-r’r,>0, r,>0
4- RESULTS AND DISCUSSION

A non —linear control low is proposed to suppress the vibration of the pitch-roll ship under modulated external and
parametric excitation. The system is modeled by two second order non-linear ordinary differential equations and the
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()

control is based on cubic velocity feedback. The numerical solutions are given by Runge—kutta 4™ order method at non
resonance case as shown in Fig. 2, which consider as basic case. From this figure it can be seen that the amplitudes of
roll(x)and pitch (y)are about 0.02 and 0.012 respectively.

0,04 f ﬁ_l’\

0.02

velocity

-0j03

-0.02

-0.04

0 100 200 300 400 500

0.02

0.01

(=]

-0.01

-0.02

003 . N A " TT5
0 100 200 300 400 500 an

time

Fig.2. The Plot of basic case
4.1- Effect of parameters

i) For the positive damping coefficients the amplitudes of roll and pitch are monotonic decreasing functions on
y24 and M, respectively as shown in Figs. 3a, 3b, and more increasing values of 4 and M, leads to saturation
phenomena.

i) From Figs. 3c, 3d, we can see that the steady state amplitude of the roll and pitch are monotonic decreasing functions

of the nonlinear parameters ¢, and «, .

iii) The steady state amplitude of the roll and pitch are monotonic increasing functions of the excitation force amplitude
G, ,FE,Fand F,, which leads to the system is becomes un stable. as shown in Figs. 3e, 3f, 3g, 3h, and 3i

respectively.
4.2- Effect of the control

From Figs. 3j and 3k, the steady state amplitude of the roll and pitch are monotonic decreasing functions of the gains of

control Gl and G2 respectively. but more increasing of values G1 and G2 leads to saturation phenomena.
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4.3- Resonance cases

All resonance cases of the system which are studied numerically obtain the worst case. From table 1, we find that the

worst resonance case is simultaneous primary resonance Ql =0,0, = 20)1, so we take this case to study the effect
of control on the system Fig.4, shows the steady state amplitudes of the system at Ql =W, M, = 2601, without
control (Gl = G2 =0), from this figure we see that the amplitude of the roll is increased to about 0.67 (34 times) and
the amplitude of the pitch is increased to about 0.064(6times ) respectively, of the basic case which shown in Fig.2.

Fig.5 illustrate the response of the system with control, which shows that the steady state of the roll is decreased to about
0.14 and steady state of the pitch is decreased to about 0.005, which means that the control are effective and Ea is 4.7

and 12.8 respectively.

i
0 100 200 300 400 500 g 100 200 300 400 500
time time

Fig. 4. Shows that the steady state amplitude without control at simultaneous primary resonance
Q =m,0,=20m,

0.2
0.1
> 0 =
0.1
0.2 ‘ - . . -0.01 : - ‘ .
0 100 200 300 400 500 0 100 200 300 400 500
time time

Fig. 5. The response for the system with absorber at the simultaneous primary resonance Ql = ®,, ®, = 2(,0l
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To summaries the worst resonance cases with and without absorber

Table 1. Summary of worst resonance case

Cases Without control With control E E Remarks
a a
X y
X y X y
~ 0.63 0.037 0.14 0.0368 4.5 1 Limit cycle
Q= y
~ 0.046 0.3 0.0458 0.10 1 3 Limit cycle
Q=ow, y
O, = (Qz +(02) 14 0.99 0.020 0.22 0.012 4.5 1.7 Limit cycle
~ ~ 0.63 0.0358 0.14 0.0352 4.5 1 Limit cycle
Q=0,Q, =0 imit cy
~ ~ 0.62 0.33 0.147 0.116 4.2 2.8 Limit cycle
Q=0,0,=0, y
Q1 = 0,0, = 2(01 0.67 0.064 0.14 0.005 4.7 12.8 Multi Limit
cycle
Q=w,0 =30,/4 | 0.65 0.018 0.14 0.012 4.6 15 Limit cycle
Q=o,0,=3Q,/2 0.63 0.014 0.147 0.002 4.3 7 Limit cycle
Q2 =00, = 2@1 0.048 0.037 0.014 0.0112 3.4 3.3 Limit cycle
~ ~ 0.63 0.33 0.136 0.12 4.6 2.75 Limit cycle
Q=0w,0,=0 y
O, = o

4.4- Frequency response curves

The frequency response equations 17-20 are nonlinear equations of the amplitudes of the roll ( @, ) and the pitch ( a,)
against the detuning parameters 0;, 0, , which solved numerically as shown in Figs. (6-8) respectively. From these
figures we find the amplitude of the roll is monotonic decreasing functions of the damping coefficient (4 and natural
frequency ; and the nonlinear parameter 0, and the gain G1 as shown in Figs. 6a, b, ¢ and Figs. 8a, b, c. But the
steady state amplitude of the roll( @, ) is monotonic increasing function in the excitation amplitude Go as shown in Figs.
6d, 8d. Similarly, the steady state of the pitch ( @, ) is monotonic decreasing function of the damping coefficient £z, and

natural frequency ., and the gain G2 and the nonlinear parameter 0., as shown in Figs. 7a, b, c and Figs. 8e, f, g, h

which are a good agreement of the effect of parameter shown in Fig.2.
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o~

Fig.8. Frequency response curves of the first case (Q, # 0, a, # 0)
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5- CONCLUSIONS

The vibration of second order coupled system simulating the vibration of the roll-ship motion subjected to excitation
forces is studied at the simultaneous primary resonance case. A control low based on cubic velocity feedback is proposed.
The method of multiple scales is used to obtain the approximate solution of the system. The stability and effect of
parameters are studied numerically. From the above study the following may be concluded

1- For the positive damping coefficients the amplitudes of roll and pitch are monotonic decreasing functions on

4 and e,

2- The steady state amplitude of the roll and pitch are monotonic decreasing functions of the nonlinear
parameters ; and «, .

3- The steady state amplitude of the roll and pitch are monotonic increasing functions  of the excitation force amplitude
G, ,F,FandF,, which leads to the system is unstable.

4- The worst resonance case is simultaneous primary resonance Ql =0,0, = 20)1, which the amplitudes of the roll

and the pitch are increased to about 0.67 (34 times) and 0.064 (6times ) respectively, of the basic case .

5-The steady state amplitude of the roll( &, ) is monotonic decreasing functions of the gain Gl, the steady state of the

pitch (' &, ) is monotonic decreasing function of the gain G2
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