Active Control of a Non-Linear Ship model with External and Parametric Excitation

Y. A. Amer ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Zagazig University, Egypt. E-mail: yaser31270@yahoo.com
\section*{E. El Emam. Ahmed}
${ }^{2}$ Department of Basic Science, Higher Technological Institute, $10^{\text {th }}$ of Ramadan City, Egypt. E-mail: basma200767@yahoo.com

Abstract

The response of a ship model with non-linearly coupled pitch and roll modes under modulated external and parametric solved and studied. The active control is applied to reduce the vibration of the system. The method of multiple scale perturbation technique is applied to obtain the periodic response equation near the primary resonance in the presence of internal resonance of the system. The objective of this research is focused on the stability of this periodic solution, dynamical properties and chaotic response. The stability of the obtained numerical solution is studied using both frequency response equation and phase-plane methods. The effects of some parameters on the vibrating system are investigated and reported in this paper.

Keywords: Pitch-roll ship ; Vibration; Nonlinear system; Periodic solution; Stability; Chaos; Phase-Plane.

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics
Vol 8, No 1
editor@cirjam.com
www.cirjam.org, www.cirworld.org

1- INTRODUCTION

Nayfeh and others [1-4] studied the non-stationary responses of a non-linearly two-degree-of-freedom system under non-stationary excitation. The basic two-degree-of freedom ship model under a sinusoidal excitation with either a slowly varying amplitude or frequency. Nayfeh, Mook and Marshall's study [5-7]. They used first order multiple time scale method to analyze this system of ship model and a saturation phenomenon of the second mode has been reported. The authors [8, 9] have studied the same saturation phenomenon theoretically and experimentally. Many investigators have studied chaos in non-linear multi degree-of-freedom systems with internal resonance. For instance, quadratically coupled oscillators with $1: 2$ internal resonance [10,11], a harmonically excited mechanical system with one to one internal resonance [12], a parametrically and externally excited dynamical system with2:1 internal resonance [13,14] have been studied. Davis and Pan studied a system of a ship model using both first order multiple time scale and averaging method, and a more accurate analytical solution and bifurcation diagrams are obtained and reported [15-17]. They also studied the same system of ship model, when it has both a $2: 1$ internal resonance. Furthermore, the case of periodic response and chaotic response of the same system under modulated excitation has been studied. Also, the stability of the two modes of a ship motions near primary resonance in the presence of internal resonance has been studied and reported [10, 14, 17]. The stability of the numerical solution is investigated using both phase plane methods and frequency response equations. The stability of the proposed solution is determined applying Lyapunov's first method and the stability of the obtained numerical solution of the considered system is studied applying Runge-Kutta method [18,19]. Eissa and El-Bassiouny [20] construct a second-order uniform expansion of the non-linear rolling response of a ship in regular beam seas by method of multiple time scales. The analysis took into consideration linear, quadratic, cubic, quintus, and seven terms in the polynomial expansion of the relative roll angle. Eissa, El-Ganaini andHamed [21] Saturation phenomena may occur in non-linear vibrating systems. This phenomena is very useful in suppressing the undesired vibrations and saturation is investigated in a non-linear oscillating system subject to multi-parametric excitation. Kamel [22] studied the response of a two-degree-of-freedom system with quadratic coupling under a modulated amplitude sinusoidal excitation is studied and solved.. EL-Sayed, Kamel and Eissa [23] studied an application of passive vibration control to a non-linear spring pendulum system simulating a ship's roll motion. This leads to a four-degree-of-freedom (4-DOF) system subjected to multi external and parametric excitations. Sayed and Hamed [24] studied deals with the response of a two-degree-offreedom(2DOF) system with quadratic coupling under parametric and harmonic excitations. The method of multiple scale perturbation technique is applied to solve the nonlinear differential equations and obtain approximate solutions up to and including the second order approximations.

Sayed and Kamel [25, 26] studied the effect of different controllers on the vibrating system and the saturation control of a linear absorber to reduce vibrations due to rotor blade flapping motion. Kamel, El-Ganaini and Hamed[27] the coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process is investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. Dostal, Kreuzer and Navaratnam[28] studied Multi-degree-of-freedom ship motion and ship stability in random seas are of major interest for the development of new advanced intact stability criteria and improve the safety of new ship designs, but the results are relevant also for other engineering systems involving multiple scales.

We focus on roll-pitch and roll-heave motion in random seas. The random wave excitation is modeled by a nonwhite stationary process. This process is derived from a spectral description of the random seaway using traveling effective wave. The aim of this work is to control the main system behavior at simultaneous primary and internal resonance condition, where the system damage is probable. Multiple scale perturbation method is applied to obtain the solution up to the second order approximations and Some of resonance cases are investigated. The effects of natural and excitation frequencies on the response of the system are investigated and discussed.

2- MATHEMATICAL MODELING

Fig. 1a The body - fixed coordinates system $\mathrm{Ox}_{0} \mathrm{y}_{0} \mathrm{z}_{\mathrm{o}}$. b coordinates system Gxyz and $\mathrm{Ox}_{0} \mathrm{y}_{0} \mathrm{z}_{0}$
In this paper, we consider a ship model with non linear coupled pitch and roll modes subjected to a sinusoidal harmonic excitation and parametric excitations [24]. The nonlinear system can be written as:
$\ddot{X}+2 \tilde{\mu}_{1} \dot{X}+\omega_{1}^{2} X+\tilde{\alpha}_{1} \dot{X} \dot{Y}=\tilde{G}_{o} \cos \Omega_{1} t+X \tilde{F}_{1} \sin \Omega_{2} t+T_{1}$
$\ddot{Y}+2 \tilde{\mu}_{2} \dot{Y}+\omega_{2}^{2} Y+\tilde{\alpha}_{2} \dot{X}^{2}=\tilde{F}_{o} \cos \Omega_{1} t+Y \tilde{F}_{2} \sin \Omega_{2} t+T_{2}$
where X and Y are the roll and pitch mode amplitudes, $\tilde{\mu}_{1}$ and $\tilde{\mu}_{2}$ the modal damping coefficients, ω_{1} and ω_{2} the natural angular frequencies of the roll and pitch modes, and Ω_{1}, Ω_{2} the excitations or wave frequencies. $\tilde{G}_{o}, \tilde{F}_{1}$ and $\tilde{F}_{o}, \tilde{F}_{2}$ are the excitation force amplitudes of the roll and pitch modes, $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ non linear coefficients. $T_{1}=-\varepsilon G_{1} \dot{X}^{3}$, and $T_{2}=-\varepsilon G_{2} \dot{Y}^{3}$ are the absorbers of the system. All the coefficients in the above equations are complicated functions of the various ship moments of inertia, fluid parameters, boat speed, etc. The linear viscous damping forces, exciting forces and controller are assumed to be

$$
\tilde{\mu}_{n}=\varepsilon \mu_{n} \quad \tilde{F}_{n}=\varepsilon F_{n} \quad \tilde{\alpha}_{n}=\varepsilon \alpha_{n} \quad \tilde{G}_{o}=\varepsilon G_{o} \quad \tilde{F}_{o}=\varepsilon F_{o} \quad(n=1,2)
$$

where ε is a small perturbation parameter and $0<\varepsilon<1 . G_{1}$ and G_{2} are gains of the absorbers.

2.1-Perturbation analysis

The method of multiple time scale is applied to determine a first order uniform expansion for the solution of equations (1a) and (1b) as in the form:
$X(t, \varepsilon)=x_{o}\left(T_{o}, T_{1}\right)+\varepsilon x_{1}\left(T_{o}, T_{1}\right)+\varepsilon^{2} x_{2}\left(T_{o}, T_{1}\right)+\varepsilon^{3} x_{3}\left(T_{o}, T_{1}\right)+O\left(\varepsilon^{4}\right)$
$Y(t, \varepsilon)=y_{o}\left(T_{o}, T_{1}\right)+\varepsilon y_{1}\left(T_{o}, T_{1}\right)+\varepsilon^{2} y_{2}\left(T_{o}, T_{1}\right)+\varepsilon^{3} y_{3}\left(T_{o}, T_{1}\right)+O\left(\varepsilon^{4}\right)$
where ε is a small perturbation parameter, $T_{o}=t, T_{1}=\varepsilon t$ are fast and slow time scales respectively, and the time derivatives became
$\frac{d}{d t}=D_{o}+\varepsilon D_{1}+\varepsilon^{2} D_{2}, \frac{d^{2}}{d t^{2}}=D_{o}^{2}+2 \varepsilon D_{o} D_{1}+\varepsilon^{2}\left(D_{1}^{2}+2 D_{o} D_{2}\right)$
Substituting equations (2a),(2b) and (3) in to equations (1a) and (1b) and equating the coefficients of the same power of ε in both sides, we obtain
$\left(D_{o}^{2}+\omega_{1}^{2}\right) x_{o}=0$
$\left(D_{o}^{2}+\omega_{2}^{2}\right) y_{o}=0$

$$
\begin{align*}
& \left(D_{o}^{2}+\omega_{1}^{2}\right) x_{1}=-2 D_{o} D_{1} x_{o}-2 \mu_{1} D_{o} x_{o}-\alpha_{1}\left(D_{o} x_{o}\right)\left(D_{o} y_{o}\right)+x_{o} F_{1} \sin \Omega_{2} t-G_{1}\left(D_{o} x_{o}\right)^{3}+G_{0} \cos \Omega_{1} t \tag{5a}\\
& \left(D_{o}^{2}+\omega_{2}^{2}\right) y_{1}=-2 D_{o} D_{1} y_{o}-2 \mu_{2} D_{o} y_{o}-\alpha_{2}\left(D_{o} x_{o}\right)^{2}+F_{o} \cos \Omega_{1} t+y_{o} F_{2} \sin \Omega_{2} t-G_{2}\left(D_{0} y_{0}\right)^{3} \tag{5b}\\
& \left(D_{o}^{2}+\omega_{1}^{2}\right) x_{2}=-D_{1}^{2} x_{o}-2 D_{o} D_{1} x_{1}-2 \mu_{1}\left(D_{o} x_{1}+D_{1} x_{o}\right)-\alpha_{1}\left(\left(D_{o} x_{o}\right)\left(D_{o} y_{1}\right)-3 G_{1}\left(D_{o} x_{o}\right)^{2}\left(D_{o} x_{1}+D_{1} x_{o}\right)\right. \\
& \left.+\left(D_{o} x_{o}\right)\left(D_{1} y_{o}\right)+\left(D_{o} y_{o}\right)\left(D_{o} x_{1}\right)+\left(D_{o} y_{o}\right)\left(D_{1} x_{o}\right)\right)+x_{1} F_{1} \sin \Omega_{2} t \tag{6a}\\
& \left(D_{o}^{2}+\omega_{2}^{2}\right) y_{2}=-D_{1}^{2} y_{o}-2 D_{o} D_{1} y_{1}-2 \mu_{2}\left(D_{o} y_{1}+D_{1} y_{o}\right)-2 \alpha_{2}\left(D_{o} x_{o}\right)\left(D_{o} x_{1}+D_{1} x_{o}\right)+y_{1} F_{2} \sin \Omega_{2} t \\
& \quad-3 G_{2}\left(D_{o} y_{o}\right)^{2}\left(D_{o} y_{1}+D_{1} y_{o}\right) \tag{6b}\\
& \left(D_{o}^{2}+\omega_{1}^{2}\right) x_{3}=-D_{1}^{2} x_{1}-2 D_{o} D_{1} x_{2}-2 \mu_{1}\left(D_{o} x_{2}+D_{1} x_{1}\right)-\alpha_{1}\left(\left(D_{o} x_{1}+D_{1} x_{o}\right) \times\left(D_{o} y_{1}+D_{1} y_{o}\right)\right. \\
& \left.\quad+\left(D_{o} x_{o}\right)\left(D_{o} y_{2}+D_{1} y_{1}\right)+\left(D_{o} y_{o}\right)\left(D_{o} x_{2}+D_{1} x_{1}\right)\right)+x_{2} F_{1} \sin \Omega_{2} t-3 G_{1}\left(\left(D_{o} x_{o}\right)\left(D_{o} x_{1}+D_{1} x_{o}\right)^{2}\right. \\
& \left.\quad+\left(D_{o} x_{o}\right)^{2}\left(D_{o} x_{2}+D_{1} x_{1}\right)\right) \tag{7a}\\
& \left(D_{o}^{2}+\omega_{2}^{2}\right) y_{3}=-D_{1}^{2} y_{1}-2 D_{o} D_{1} y_{2}-2 \mu_{2}\left(D_{o} y_{2}+D_{1} y_{1}\right)-\alpha_{2}\left(\left(D_{o} x_{1}+D_{1} x_{o}\right)^{2}+2\left(D_{o} x_{o}\right)\left(D_{o} x_{2}+D_{1} x_{1}\right)\right) \\
& \quad+y_{2} F_{2} \sin \Omega_{2} t-3 G_{2}\left(\left(D_{o} y_{o}\right)\left(D_{o} y_{1}+D_{1} y_{o}\right)^{2}+\left(D_{o} y_{o}\right)^{2}\left(D_{o} y_{2}+D_{1} y_{1}\right)\right)
\end{align*}
$$

$$
\begin{align*}
& +N_{27} e^{i\left(\Omega_{2}+\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+N_{28} e^{i\left(\Omega_{2}-\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+N_{29} e^{i\left(\Omega_{2}+\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+N_{30} e^{i\left(\Omega_{2}-\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+c c \tag{10a}\\
& y_{2}\left(T_{o}, T_{1}\right)=M_{1} e^{i \omega_{2} T_{o}}+M_{2} e^{3 i \omega_{2} T_{o}}+M_{3} e^{5 i \omega_{2} T_{o}}+M_{4} e^{2 i \omega_{1} T_{o}}+M_{5} e^{4 i \omega_{1} T_{o}}+M_{6} e^{i\left(2 \omega_{1}+\omega_{2}\right) T_{o}} \\
& +M_{7} e^{i\left(2 \omega_{1}-\omega_{2}\right) T_{o}}+M_{8} e^{2 i\left(\omega_{1}+\omega_{2}\right) T_{o}}+M_{9} e^{2 i\left(\omega_{1}-\omega_{2}\right) T_{o}}+M_{10} e^{i \Omega_{1} T_{o}}+M_{11} e^{i \Omega_{2} T_{o}} \\
& +M_{12} e^{i\left(\Omega_{1}+\Omega_{2}\right) T_{o}}+M_{13} e^{i\left(\Omega_{1}-\Omega_{2}\right) T_{o}}+M_{14} e^{i\left(\Omega_{1}+\omega_{1}\right) T_{o}}+M_{15} e^{i\left(\Omega_{1}-\omega_{1}\right) T_{o}}+M_{10} e^{i\left(\Omega_{1}+2 \omega_{2}\right) T_{o}} \\
& +M_{17} e^{i\left(\Omega_{1}-2 \omega_{2}\right) T_{o}}+M_{18} e^{i\left(\Omega_{2}+2 \omega_{1}\right) T_{o}}+M_{19} e^{i\left(\Omega_{2}-2 \omega_{1}\right) T_{o}}+M_{20} e^{i\left(\Omega_{2}+\omega_{2}\right) T_{o}}+M_{21} e^{i\left(\Omega_{2}-\omega_{2}\right) T_{o}} \\
& +M_{24} e^{i\left(\Omega_{2}+3 \omega_{2}\right) T_{o}}+M_{23} e^{i\left(\Omega_{2}-3 \omega_{2}\right) T_{o}}+M_{24} e^{i\left(2 \Omega_{2}+\omega_{2}\right) T_{o}}+M_{25} e^{i\left(2 \Omega_{2}-\omega_{2}\right) T_{o}}+M_{26}+c c \tag{10b}
\end{align*}
$$

where $N_{m}(m=1,2, \ldots, 30)$ and $M_{i}(i=1,2, \ldots, 26)$ are complex functions in T_{1}, cc are complex conjugates. Similarly, substituting from equations (8a), (8b), (9a), (9b), (10a) and (10b)in to equations (7a) and (7b) we get,

$$
\begin{aligned}
& x_{3}\left(T_{o}, T_{1}\right)=w_{1} e^{i \omega_{1} T_{o}}+w_{2} e^{3 i \omega_{1} T_{o}}+w_{3} e^{5 i \omega_{1} T_{o}}+w_{4} e^{7 i \omega_{1} T_{o}}+w_{5} e^{i \Omega_{1} T_{o}}+w_{6} e^{2 i \Omega_{1} T_{o}} \\
& +w_{7} e^{i\left(\omega_{1}+\omega_{2}\right) T_{o}}+w_{8} e^{i\left(\omega_{1}-\omega_{2}\right) T_{o}}+w_{9} e^{i\left(\omega_{1}+2 \omega_{2}\right) T_{o}}+w_{10} e^{i\left(\omega_{1}-2 \omega_{2}\right) T_{o}} \\
& +w_{11} e^{i\left(\omega_{1}+3 \omega_{2}\right) T_{o}}+w_{12} e^{i\left(\omega_{1}-3 \omega_{2}\right) T_{o}}+w_{13} e^{i\left(\omega_{1}+4 \omega_{2}\right) T_{o}}+w_{14} e^{i\left(\omega_{1}-4 \omega_{2}\right) T_{o}} \\
& +w_{15} e^{i\left(\omega_{1}+5 \omega_{2}\right) T_{o}}+w_{16} e^{i\left(\omega_{1}-5 \omega_{2}\right) T_{o}}+w_{17} e^{i\left(\omega_{1}+6 \omega_{2}\right) T_{o}}+w_{18} e^{i\left(\omega_{1}-6 \omega_{2}\right) T_{o}} \\
& +w_{19} e^{i\left(3 \omega_{1}+\omega_{2}\right) T_{o}}+w_{20} e^{i\left(3 \omega_{1}+\omega_{2}\right) T_{o}}+w_{21} e^{i\left(3 \omega_{1}+2 \omega_{2}\right) T_{o}}+w_{22} e^{i\left(3 \omega_{1}-2 \omega_{2}\right) T_{o}} \\
& +w_{23} e^{3 i\left(\omega_{1}+\omega_{2}\right) T_{o}}+w_{24} e^{3 i\left(\omega_{1}-\omega_{2}\right) T_{o}}+w_{25} e^{i\left(5 \omega_{1}+\omega_{2}\right) T_{o}}+w_{26} e^{i\left(5 \omega_{1}-\omega_{2}\right) T_{o}} \\
& +w_{27} e^{i\left(\Omega_{1}+\Omega_{2}\right) T_{o}}+w_{28} e^{i\left(\Omega_{1}-\Omega_{2}\right) T_{o}}+w_{29} e^{i\left(\Omega_{1}+2 \Omega_{2}\right) T_{o}}+w_{30} e^{i\left(\Omega_{1}-2 \Omega_{2}\right) T_{o}} \\
& +w_{31} e^{i\left(\Omega_{1}+\omega_{1}\right) T_{o}}+w_{32} e^{i\left(\Omega_{1}-\omega_{1}\right) T_{o}}+w_{33} e^{i\left(\Omega_{1}+2 \omega_{1}\right) T_{o}}+w_{34} e^{i\left(\Omega_{1}-2 \omega_{1}\right) T_{o}} \\
& +w_{35} e^{i\left(\Omega_{1}+3 \omega_{1}\right) T_{o}}+w_{36} e^{i\left(\Omega_{1}-3 \omega_{1}\right) T_{o}}+w_{37} e^{i\left(\Omega_{1}+4 \omega_{1}\right) T_{o}}+w_{38} e^{i\left(\Omega_{1}-4 \omega_{1}\right) T_{o}} \\
& +w_{39} e^{i\left(\Omega_{1}+\omega_{2}\right) T_{o}}+w_{40} e^{i\left(\Omega_{1}-\omega_{2}\right) T_{o}}+w_{41} e^{i\left(\Omega_{1}+2 \omega_{2}\right) T_{o}}+w_{42} e^{i\left(\Omega_{1}-2 \omega_{2}\right) T_{o}} \\
& +w_{43} e^{i\left(\Omega_{1}+3 \omega_{2}\right) T_{o}}+w_{44} e^{i\left(\Omega_{1}-3 \omega_{2}\right) T_{o}}+w_{45} e^{i\left(2 \Omega_{1}+\omega_{1}\right) T_{o}}+w_{46} e^{i\left(2 \Omega_{1}+\omega_{1}\right) T_{o}} \\
& +w_{47} e^{i\left(\Omega_{2}+\omega_{1}\right) T_{o}}+w_{48} e^{i\left(\Omega_{2}-\omega_{1}\right) T_{o}}+w_{49} e^{i\left(\Omega_{2}+3 \omega_{1}\right) T_{o}}+w_{50} e^{i\left(\Omega_{2}-\omega_{1}\right) T_{o}} \\
& +w_{51} e^{i\left(\Omega_{2}+5 \omega_{1}\right) T_{o}}+w_{52} e^{i\left(\Omega_{2}-5 \omega_{1}\right) T_{o}}+w_{53} e^{i\left(2 \Omega_{2}+\omega_{1}\right) T_{o}}+w_{54} e^{i\left(2 \Omega_{2}-\omega_{1}\right) T_{o}} \\
& +w_{55} e^{i\left(2 \Omega_{2}+3 \omega_{1}\right) T_{o}}+w_{56} e^{i\left(2 \Omega_{2}-3 \omega_{1}\right) T_{o}}+w_{57} e^{i\left(3 \Omega_{2}+\omega_{1}\right) T_{o}}+w_{58} e^{i\left(3 \Omega_{2}-\omega_{1}\right) T_{o}} \\
& +w_{59} e^{i\left(\Omega_{1}+\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{60} e^{i\left(\Omega_{1}-\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{61} e^{i\left(\Omega_{1}+\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+w_{62} e^{i\left(\Omega_{1}-\left(\omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +w_{63} e^{i\left(\Omega_{1}+\left(\omega_{1}+2 \omega_{2}\right)\right) T_{o}}+w_{64} e^{i\left(\Omega_{1}-\left(\omega_{1}+2 \omega_{2}\right)\right) T_{o}}+w_{65} e^{i\left(\Omega_{1}+\left(\omega_{1}-2 \omega_{2}\right)\right) T_{o}}+w_{60} e^{i\left(\Omega_{1}-\left(\omega_{1}-2 \omega_{2}\right)\right) T_{o}} \\
& +w_{67} e^{i\left(\Omega_{1}+\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{68} e^{i\left(\Omega_{1}-\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{69} e^{i\left(\Omega_{1}+\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}}+w_{70} e^{i\left(\Omega_{1}-\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}}
\end{aligned}
$$

$$
\begin{aligned}
& +w_{71} e^{i\left(\Omega_{2}+\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{72} e^{i\left(\Omega_{2}-\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{73} e^{i\left(\Omega_{2}+\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+w_{7 e} e^{i\left(\Omega_{2}-\left(\omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +w_{75} e^{i\left(\Omega_{2}+\left(\omega_{1}+2 \omega_{2}\right)\right) T_{o}}+w_{70} e^{i\left(\Omega_{2}-\left(\omega_{1}+2 \omega_{2}\right)\right) T_{o}}+w_{77} e^{i\left(\Omega_{2}+\left(\omega_{1}-2 \omega_{2}\right)\right) T}+w_{78} e^{i\left(\Omega_{2}-\left(\omega_{1}-2 \omega_{2}\right)\right) T_{o}} \\
& +w_{79} e^{i\left(\Omega_{2}+\left(\omega_{1}+3 \omega_{2}\right)\right) T_{o}}+w_{80} e^{i\left(\Omega_{2}-\left(\omega_{1}+3 \omega_{2}\right)\right) T_{o}}+w_{81} e^{i\left(\Omega_{2}+\left(\omega_{1}-3 \omega_{2}\right)\right) T_{o}}+w_{82} e^{i\left(\Omega_{2}-\left(\omega_{1}-3 \omega_{2}\right)\right) T_{o}} \\
& +w_{83} e^{i\left(\Omega_{2}+\left(3 \omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{84} e^{i\left(\Omega_{2}-\left(3 \omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{85} e^{i\left(\Omega_{2}+\left(3 \omega_{1}-\omega_{2}\right)\right) T_{o}}+w_{88} e^{i\left(\Omega_{2}-\left(3 \omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +w_{8} e^{i\left(2 \Omega_{2}+\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{88} e^{i\left(2 \Omega_{2}-\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+w_{89} e^{i\left(2 \Omega_{2}+\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+w_{90} e^{i\left(2 \Omega_{2}-\left(\omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +w_{91} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)+\omega_{1}\right) T_{o}}+w_{92} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)-\omega_{1}\right) T_{o}}+w_{93} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)+\omega_{1}\right) T_{o}}+w_{94} e^{\left.i\left(\Omega_{1}-\Omega_{2}\right)-\omega_{1}\right) T_{o}} \\
& +w_{95} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)+2 \omega_{1}\right) T_{o}}+w_{96} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)-2 \omega_{1}\right) T_{o}}+w_{97} e^{\left.i\left(\Omega_{1}-\Omega_{2}\right)+2 \omega_{1}\right) T_{o}}+w_{98} e^{\left.i\left(\Omega_{1}-\Omega_{2}\right)-2 \omega_{1}\right) T_{o}} \\
& +w_{99} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)+\omega_{2}\right) T_{o}}+w_{100} e^{\left.i\left(\Omega_{1}+\Omega_{2}\right)-\omega_{2}\right) T_{o}}+w_{101} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)+\omega_{2}\right) T_{o}}+w_{102} e^{\left.i\left(\Omega_{1}-\Omega_{2}\right)-\omega_{2}\right) T_{o}}+\mathrm{cc} \\
& y_{3}\left(T_{o}, T_{1}\right)=Z_{1} e^{i \omega_{2} T_{o}}+Z_{2} e^{2 i \omega_{2} T_{o}}+Z_{3} e^{3 i \omega_{2} T_{o}}+Z_{4} e^{5 i \omega_{2} T_{o}}+Z_{5} e^{6 i \omega_{2} T_{o}}+Z_{6} e^{7 i \omega_{2} T_{o}} \\
& +Z_{7} e^{2 i \omega_{1} T_{o}}+Z_{8} e^{4 i \omega_{1} T_{o}}+Z_{9} e^{6 i \omega_{1} T_{o}}+Z_{10} e^{i \Omega_{1} T_{o}}+Z_{11} e^{2 i \Omega_{1} T_{o}}+Z_{12} e^{i \Omega_{2} T_{o}} \\
& +Z_{13} e^{2 i \Omega_{2} T_{o}}+Z_{14} e^{i\left(\omega_{1}+2 \omega_{2}\right) T_{o}}+Z_{15} e^{i\left(\omega_{1}-2 \omega_{2}\right) T_{o}}+Z_{16} e^{i\left(\omega_{1}+3 \omega_{2}\right) T_{o}} \\
& +Z_{17} e^{i\left(\omega_{1}-3 \omega_{2}\right) T_{o}}+Z_{18} e^{i\left(\omega_{1}+4 \omega_{2}\right) T_{o}}+Z_{19} e^{i\left(\omega_{1}-4 \omega_{2}\right) T_{o}}+Z_{20} e^{i\left(2 \omega_{1}+\omega_{2}\right) T_{o}} \\
& +Z_{21} e^{i\left(2 \omega_{1}-\omega_{2}\right) T_{o}}+Z_{22} e^{2 i\left(\omega_{1}+\omega_{2}\right) T_{o}}+Z_{23} e^{2 i\left(\omega_{1}-\omega_{2}\right) T_{o}}+Z_{24} e^{i\left(2 \omega_{1}+3 \omega_{2}\right) T_{o}} \\
& +Z_{25} e^{i\left(2 \omega_{1}-3 \omega_{2}\right) T_{o}}+Z_{26} e^{i\left(2 \omega_{1}+4 \omega_{2}\right) T_{o}}+Z_{27} e^{i\left(2 \omega_{1}-4 \omega_{2}\right) T_{o}}+Z_{28} e^{i\left(4 \omega_{1}+\omega_{2}\right) T_{o}} \\
& +Z_{29} e^{i\left(4 \omega_{1}-\omega_{2}\right) T_{o}}+Z_{30} e^{2 i\left(2 \omega_{1}+\omega_{2}\right) T_{o}}+Z_{31} e^{2 i\left(2 \omega_{1}-\omega_{2}\right) T_{o}}+Z_{32} e^{i\left(\Omega_{1}+\omega_{1}\right) T_{o}} \\
& +Z_{33} e^{i\left(\Omega_{1}-\omega_{1}\right) T_{o}}+Z_{34} e^{i\left(\Omega_{1}+2 \omega_{1}\right) T_{o}}+Z_{35} e^{i\left(\Omega_{1}-2 \omega_{1}\right) T_{o}}+Z_{36} e^{i\left(\Omega_{1}+3 \omega_{1}\right) T_{o}} \\
& +Z_{37} e^{i\left(\Omega_{1}-3 \omega_{1}\right) T_{o}}+Z_{38} e^{i\left(\Omega_{1}+2 \omega_{2}\right) T_{o}}+Z_{39} e^{i\left(\Omega_{1}-2 \omega_{2}\right) T_{o}}+Z_{40} e^{i\left(\Omega_{1}+3 \omega_{2}\right) T_{o}} \\
& +Z_{41} e^{i\left(\Omega_{1}-3 \omega_{2}\right) T_{o}}+Z_{42} e^{i\left(\Omega_{1}+4 \omega_{2}\right) T_{o}}+Z_{43} e^{i\left(\Omega_{1}-4 \omega_{2}\right) T_{o}}+Z_{44} e^{i\left(2 \Omega_{1}+\omega_{2}\right) T_{o}} \\
& +Z_{45} e^{i\left(2 \Omega_{1}-\omega_{2}\right) T_{o}}+Z_{46} e^{i\left(\Omega_{2}+2 \omega_{1}\right) T_{o}}+Z_{47} e^{i\left(\Omega_{2}-2 \omega_{1}\right) T_{o}}+Z_{48} e^{i\left(\Omega_{2}+4 \omega_{1}\right) T_{o}} \\
& +Z_{49} e^{i\left(\Omega_{2}-4 \omega_{1}\right) T_{o}}+Z_{50} e^{i\left(\Omega_{2}+\omega_{2}\right) T_{o}}+Z_{51} e^{i\left(\Omega_{2}-\omega_{2}\right) T_{o}}+Z_{52} e^{i\left(\Omega_{2}+2 \omega_{2}\right) T_{o}} \\
& +Z_{53} e^{i\left(\Omega_{2}-2 \omega_{2}\right) T_{o}}+Z_{54} e^{i\left(\Omega_{2}+3 \omega_{2}\right) T_{o}}+Z_{55} e^{i\left(\Omega_{2}-3 \omega_{2}\right) T_{o}}+Z_{56} e^{i\left(\Omega_{2}+5 \omega_{2}\right) T_{o}} \\
& +Z_{57} e^{i\left(\Omega_{2}-5 \omega_{2}\right) T_{o}}+Z_{58} e^{2 i\left(\Omega_{2}+\omega_{1}\right) T_{o}}+Z_{59} e^{2 i\left(\Omega_{2}-\omega_{1}\right) T_{o}}+Z_{60} e^{i\left(2 \Omega_{2}+\omega_{2}\right) T_{o}} \\
& +Z_{61} e^{i\left(2 \Omega_{2}-\omega_{2}\right) T_{o}}+Z_{62} e^{i\left(2 \Omega_{2}+3 \omega_{2}\right) T_{o}}+Z_{63} e^{i\left(2 \Omega_{2}-3 \omega_{2}\right) T_{o}}+Z_{64} e^{i\left(3 \Omega_{2}+\omega_{2}\right) T_{o}} \\
& +Z_{65} e^{i\left(3 \Omega_{2}-\omega_{2}\right) T_{o}}+Z_{66} e^{i\left(\Omega_{1}+\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{6} e^{i\left(\Omega_{1}-\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{68} e^{i\left(\Omega_{1}+\left(\omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +Z_{69} e^{i\left(\Omega_{1}-\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+Z_{70} e^{i\left(\Omega_{1}+\left(\omega_{1}+2 \omega_{2}\right)\right) T}+Z_{71} e^{i\left(\Omega_{1}-\left(\omega_{1}+2 \omega_{2}\right)\right) T}+Z_{72} e^{i\left(\Omega_{1}+\left(\omega_{1}-2 \omega_{2}\right)\right) T_{o}}
\end{aligned}
$$

$$
\begin{align*}
& +Z_{73} e^{i\left(\Omega_{1}-\left(\omega_{1}-2 \omega_{2}\right)\right) T_{o}}+Z_{74} e^{i\left(\Omega_{1}+\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{75} e^{i\left(\Omega_{1}-\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{76} e^{i\left(\Omega_{1}+\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +Z_{77} e^{i\left(\Omega_{1}-\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}}+Z_{78} e^{i\left(\Omega_{2}+\left(\omega_{1}+3 \omega_{2}\right)\right) T_{o}}+Z_{79} e^{i\left(\Omega_{2}-\left(\omega_{1}+3 \omega_{2}\right)\right) T_{o}}+Z_{80} e^{i\left(\Omega_{2}+\left(\omega_{1}-3 \omega_{2}\right)\right) T_{o}} \\
& +Z_{82} e^{i\left(\Omega_{2}+\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{83} e^{i\left(\Omega_{2}-\left(2 \omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{84} e^{i\left(\Omega_{2}+\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}}+Z_{85} e^{i\left(\Omega_{2}-\left(2 \omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +Z_{80} e^{i\left(\Omega_{2}+2\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{87} e^{i\left(\Omega_{2}-2\left(\omega_{1}+\omega_{2}\right)\right) T_{o}}+Z_{88} e^{i\left(\Omega_{2}+2\left(\omega_{1}-\omega_{2}\right)\right) T_{o}}+Z_{89} e^{i\left(\Omega_{2}-2\left(\omega_{1}-\omega_{2}\right)\right) T_{o}} \\
& +Z_{90} e^{i\left(\Omega_{1}+\Omega_{2}\right) T_{o}}+Z_{91} e^{i\left(\Omega-\Omega_{2}\right) T_{o}}+Z_{92} e^{i\left(\Omega_{1}+2 \Omega_{2}\right) T_{o}}+Z_{93} e^{i\left(\Omega_{1}-2 \Omega_{2}\right) T_{o}} \\
& +Z_{94} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)+\omega_{1}\right) T_{o}}+Z_{95} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)-\omega_{1}\right) T_{o}}+Z_{96} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)+\omega_{1}\right) T_{o}}+Z_{97} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)-\omega_{1}\right) T_{o}} \\
& +Z_{98} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)+2 \omega_{2}\right) T_{o}}+Z_{99} e^{i\left(\left(\Omega_{1}+\Omega_{2}\right)-2 \omega_{2}\right) T_{o}}+Z_{100} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)+2 \omega_{2}\right) T_{o}}+Z_{101} e^{i\left(\left(\Omega_{1}-\Omega_{2}\right)-2 \omega_{2}\right) T_{o}} \\
& +Z_{102}+c c \tag{11b}
\end{align*}
$$

where $w_{m}(m=1,2, \ldots, 103)$ and $Z_{i}(i=1,2, \ldots, 102)$ are complex functions in T_{1}, cc are complex conjugates.
From above-proposed solution, the reported resonance cases are :
(a) Trivial resonance: $\quad \Omega_{1} \cong \Omega_{2} \cong \omega_{1} \cong \omega_{2}=0$
(b) Primary resonance: $\Omega_{1} \cong \omega_{1}, \Omega_{2} \cong \omega_{2}$
(c) Internal resonance:
(1) $\omega_{1} \cong n \omega_{2}$
(2) $\omega_{2} \cong n \omega_{1}, \mathrm{n}=1,2,3,4,5$
(3) $n \omega_{1} \cong m \omega_{2}, \mathrm{n}=2,3, \mathrm{~m}=3,5$
(d) Sub-harmonic resonance:
(1) $\quad \Omega_{1} \cong n \omega_{1}$
(2) $\Omega_{1} \cong n \omega_{2}, \quad \mathrm{n}=2,3,4,5$
(3) $\Omega_{2} \cong m \omega_{1}$
(4) $\Omega_{2} \cong m \omega_{2}, \mathrm{~m}=2,4,6$
(e) Combined resonance:
(1) $\Omega_{1} \cong \omega_{1} \pm \omega_{2}$
(2) $\Omega_{1} \cong 2\left(\omega_{1} \pm \omega_{2}\right)$
(3) $\Omega_{1} \cong\left(2 \omega_{1} \pm 3 \omega_{2}\right)$
(4) $\Omega_{1} \cong\left(\omega_{1} \pm 2 \omega_{2}\right)$
(5) $\Omega_{1} \cong\left(2 \omega_{1} \pm \omega_{2}\right)$
(6) $2 \Omega_{2} \cong\left(2 \omega_{1} \pm \omega_{2}\right)$
(7) $\Omega_{2} \cong 2\left(\omega_{1} \pm \omega_{2}\right)$
(8) $\Omega_{2} \cong\left(4 \omega_{1} \pm \omega_{2}\right)$
(9) $\Omega_{2} \cong\left(2 \omega_{1} \pm \omega_{2}\right)$
(f) Simultaneous resonance:

Any combination of the above resonance cases is considered as a simultaneous resonance one.

2.2-Stability Analysis

Stability analysis is limited to the first order approximation. Then all the solution coefficients are functions in T_{1} only. Applying an absorber to the main system at internal resonance $\omega_{2} \cong 2 \omega_{1}$. Introducing the detuning parameters σ_{1} and σ_{2} in the primary and internal resonance to convert the small-divisor terms into the secular terms according to

$$
\begin{equation*}
\Omega_{1} \cong \omega_{1}+\varepsilon \sigma_{1} \text { and } \omega_{2} \cong 2 \omega_{1}+\varepsilon \sigma_{2} \tag{12}
\end{equation*}
$$

Eliminating the secular terms of both x_{1} and y_{1} of equations (5a) and (5b), leads to the solvability conditions, and noting that A_{o} and B_{o} are functions in T_{1} only, we get
$\left[-2 i \omega_{1}\left(D_{1} A_{o}+\mu_{1} A_{o}\right)-3 i G_{1} \omega_{1}^{3} A_{o}^{2} \bar{A}_{o}\right] e^{i \omega_{o} T_{o}}+\frac{G_{o}}{2} e^{i \Omega T_{o}}-\alpha_{1} \omega_{1} \omega_{2} \bar{A}_{o} B_{o} e^{i\left(\omega_{1}-\omega_{2}\right) T_{o}}=0$
$\left[-2 i \omega_{2}\left(D_{1} B_{o}+\mu_{2} B_{o}\right)-3 i G_{2} \omega_{2}^{3} B_{o}^{2} \bar{B}_{o}\right] e^{i \omega_{2} T_{o}}+\alpha_{2} \omega_{1}^{2} A_{o}^{2} e^{2 i \omega_{1} T_{o}}=0$
Putting the polar form

$$
\begin{equation*}
A_{o}=\frac{1}{2} a_{1}\left(T_{1}\right) e^{i \gamma_{1}\left(T_{1}\right)}, B_{o}=\frac{1}{2} a_{2}\left(T_{1}\right) e^{i \gamma_{2}\left(T_{1}\right)} \tag{14}
\end{equation*}
$$

where a_{1}, a_{2}, γ_{1} and γ_{2} are real. Substituting Equations (14) into equations (13a), (13b), and separating real and imaginary parts we get the following

$$
\begin{align*}
& a_{1}^{\prime}=-\mu_{1} a_{1}-\frac{3}{8} G_{1} \omega_{1}^{2} a_{1}^{3}+\frac{G_{o}}{2 \omega_{1}} \sin \theta_{1}-\frac{\alpha_{1}}{4} \omega_{2} a_{1} a_{2} \sin \theta_{2} \tag{15a}\\
& a_{1} \gamma_{1}^{\prime}=\frac{\alpha_{1}}{4} \omega_{2} a_{1} a_{2} \cos \theta_{2}-\frac{G_{o}}{2 \omega_{1}} \cos \theta_{1} \tag{15b}\\
& a_{2}^{\prime}=-\mu_{2} a_{2}-\frac{3}{8} G_{2} \omega_{2}^{2} a_{2}^{3}-\frac{\alpha_{2} \omega_{1}^{2} a_{1}^{2}}{4 \omega_{2}} \sin \theta_{2} \tag{15c}\\
& a_{2} \gamma_{2}^{\prime}=-\frac{\alpha_{2} \omega_{1}^{2} a_{1}^{2}}{4 \omega_{2}} \cos \theta_{2} \tag{15d}
\end{align*}
$$

where $\theta_{1}=\left(\sigma_{2} T_{1}+\gamma_{2}-2 \gamma_{1}\right)$ and $\theta_{2}=\sigma_{1} T_{1}-\gamma_{1}$. For steady state solutions, $a_{1}^{\prime}=a_{2}^{\prime}=\theta_{1}^{\prime}=\theta_{2}^{\prime}=0$, and equations (15a), (15b), (15c) and (15d) becomes
$0=-\mu_{1} a_{1}-\frac{3}{8} G_{1} \omega_{1}^{2} a_{1}^{3}+\frac{G_{o}}{2 \omega_{1}} \sin \theta_{1}-\frac{\alpha_{1}}{4} \omega_{2} a_{1} a_{2} \sin \theta_{2}$
$a_{1} \sigma_{1}=\frac{\alpha_{1}}{4} \omega_{2} a_{1} a_{2} \cos \theta_{2}-\frac{G_{o}}{2 \omega_{1}} \cos \theta_{1}$
$0=-\mu_{2} a_{2}-\frac{3}{8} G_{2} \omega_{2}^{2} a_{2}^{3}-\frac{\alpha_{2} \omega_{1}^{2} a_{1}^{2}}{4 \omega_{2}} \sin \theta_{2}$
$\left(2 \sigma_{1}-\sigma_{2}\right) a_{2}=-\frac{\alpha_{2} \omega_{1}^{2} a_{1}^{2}}{4 \omega_{2}} \cos \theta_{2}$
Squaring equations (16a), (16b) and adding the result, we get the corresponding frequency response equations (FRE) are
$a_{1}^{2} \sigma_{1}^{2}+\left(\mu_{1} a_{1}+\frac{3}{8} \omega_{1}^{2} G_{1} a_{1}^{3}\right)^{2}-\frac{G_{o}^{2}}{4 \omega_{1}^{2}}-\frac{1}{16} \alpha_{1}^{2} \omega_{2}^{2} a_{1}^{2} a_{2}^{2}+\frac{G_{o} \alpha_{1} \omega_{2}}{\omega_{1}} a_{1} a_{2}=0$
Similarly, from equations (16c)and (16d), we get
$a_{2}^{2}\left(2 \sigma_{1}-\sigma_{2}\right)^{2}+\left(\mu_{2} a_{2}+\frac{3}{8} G_{2} \omega_{2}^{2} a_{2}^{3}\right)^{2}-\left(\frac{\alpha_{2} \omega_{1}^{2} a_{1}^{2}}{4 \omega_{2}}\right)^{2}=0$
From equations (17) and (18) we have the following cases:
(i) Case $1 \quad \mathrm{a}_{1} \neq 0, \mathrm{a}_{2}=0$

$$
\begin{equation*}
a_{1}^{2} \sigma_{1}^{2}+\left(\mu_{1} a_{1}+\frac{3}{8} \omega_{1}^{2} G_{1} a_{1}^{3}\right)^{2}-\frac{G_{o}^{2}}{4 \omega_{1}^{2}}=0 \tag{19}
\end{equation*}
$$

(ii) Case 2 $\mathrm{a}_{1}=0, \mathrm{a}_{2} \neq 0$

$$
\begin{equation*}
a_{2}^{2}\left(2 \sigma_{1}-\sigma_{2}\right)^{2}+\left(\mu_{2} a_{2}+\frac{3}{8} G_{2} \omega_{2}^{2} a_{2}^{3}\right)^{2}=0 \tag{20}
\end{equation*}
$$

(iii) Case $3 \quad a_{1} \neq 0, a_{2} \neq 0$ represented by equations (17) and (18). The steady state solution of the obtained fixed points will be determined as follows:

Let A_{o} and B_{o} Expressed in Cartesian form as following:

$$
\begin{equation*}
A_{0}\left(T_{1}\right)=\frac{1}{2}\left(p_{1}-i q_{1}\right) e^{i v_{1} T_{1}}, B_{0}\left(T_{1}\right)=\frac{1}{2}\left(p_{2}-i q_{2}\right) e^{i v_{2} T_{1}} \tag{21}
\end{equation*}
$$

where p_{n} and $q_{n},(\mathrm{n}=1,2)$ are real values and. Inserting equations (19) in to the linear form of equations (13a),(13b) and separating real and imaginary parts, the following system of equations is obtained as:

$$
\begin{align*}
& \quad p_{1}^{\prime}+v_{1} p_{1}-\eta_{1} q_{1}=\mathrm{O} \tag{22a}\\
& q_{1}^{\prime}+v_{1} q_{1}+\eta_{1} p_{1}=\mathrm{O} \tag{22b}\\
& p_{2}^{\prime}+v_{2} p_{2}-\eta_{2} q_{2}=\mathrm{O} \tag{22c}\\
& q_{2}^{\prime}+v_{2} q_{2}+\eta_{2} p_{2}=\mathrm{O} \tag{22d}\\
& \text { where } \quad \eta_{1}=\frac{\mu_{1}}{\omega_{1}}, \eta_{2}=\frac{\mu_{2}}{\omega_{2}}, v_{1}=\frac{\sigma_{1}}{\omega_{1}}, v_{2}=\frac{\sigma_{2}}{\omega_{2}}
\end{align*}
$$

The stability of linear solution is investigated from the zero characteristics matrix

$$
\left|\begin{array}{cccc}
\lambda+v_{1} & -\eta_{1} & 0 & 0 \\
\eta_{1} & \lambda+v_{1} & 0 & 0 \\
0 & 0 & \lambda+v_{2} & -\eta_{2} \\
0 & 0 & \eta_{2} & \lambda+v_{2}
\end{array}\right|=0
$$

The eigen values are given by

$$
\lambda^{4}+r_{1} \lambda^{3}+r_{2} \lambda^{2}+r_{3} \lambda+r_{4}=0
$$

where,

$$
\begin{aligned}
& r_{1}=2\left(\eta_{1}+\eta_{2}\right), \quad r_{2}=\eta_{1}^{2}+\eta_{2}^{2}+4 \eta_{1} \eta_{2}+v_{1}^{2}+v_{2}^{2} \\
& r_{3}=2 \eta_{1} \eta_{2}\left(\eta_{1}+\eta_{2}\right)-2 \eta_{2} v_{1}^{2}+2 \eta_{1} v_{2}^{2}, r_{4}=\left(\eta_{1}^{2}+v_{1}^{2}\right)\left(v_{2}^{2}+\eta_{2}^{2}\right)
\end{aligned}
$$

According to the Routh-Hurwitz criterion, the linear solution is stable if the following are satisfied

$$
r_{1}>0, \quad r_{1} r_{2}-r_{3}>0, \quad r_{3}\left(r_{1} r_{2}-r_{3}\right)-r_{1}^{2} r_{4}>0, \quad r_{4}>0
$$

4- RESULTS AND DISCUSSION

A non -linear control low is proposed to suppress the vibration of the pitch-roll ship under modulated external and parametric excitation. The system is modeled by two second order non-linear ordinary differential equations and the
control is based on cubic velocity feedback. The numerical solutions are given by Runge-kutta $4^{\text {th }}$ order method at non resonance case as shown in Fig. 2, which consider as basic case. From this figure it can be seen that the amplitudes of roll(x) and pitch (y)are about 0.02 and 0.012 respectively.

4.1- Effect of parameters

i) For the positive damping coefficients the amplitudes of roll and pitch are monotonic decreasing functions on μ_{1} and μ_{2} respectively as shown in Figs. $3 \mathrm{a}, 3 \mathrm{~b}$, and more increasing values of μ_{1} and μ_{2} leads to saturation phenomena.
ii) From Figs. 3c, 3d, we can see that the steady state amplitude of the roll and pitch are monotonic decreasing functions of the nonlinear parameters α_{1} and α_{2}.
iii) The steady state amplitude of the roll and pitch are monotonic increasing functions of the excitation force amplitude $\mathrm{G}_{o}, \mathrm{~F}_{o}, \mathrm{~F}_{1}$ and F_{2}, which leads to the system is becomes un stable. as shown in Figs. $3 \mathrm{e}, 3 \mathrm{f}, 3 \mathrm{~g}$, 3 h , and 3 i respectively.

4.2- Effect of the control

From Figs. 3 j and 3 k , the steady state amplitude of the roll and pitch are monotonic decreasing functions of the gains of control G_{1} and G_{2} respectively. but more increasing of values G_{1} and G_{2} leads to saturation phenomena.

Fig.3. Effects of parameters

4.3- Resonance cases

All resonance cases of the system which are studied numerically obtain the worst case. From table 1, we find that the worst resonance case is simultaneous primary resonance $\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$, so we take this case to study the effect of control on the system Fig.4, shows the steady state amplitudes of the system at $\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$, without control ($G_{1}=G_{2}=0$), from this figure we see that the amplitude of the roll is increased to about 0.67 (34 times) and the amplitude of the pitch is increased to about 0.064 (6times) respectively, of the basic case which shown in Fig.2.
Fig. 5 illustrate the response of the system with control, which shows that the steady state of the roll is decreased to about 0.14 and steady state of the pitch is decreased to about 0.005 , which means that the control are effective and E_{a} is 4.7 and 12.8 respectively.

Fig. 4. Shows that the steady state amplitude without control at simultaneous
primary resonance $\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$

Fig. 5. The response for the system with absorber at the simultaneous primary resonance $\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$

To summaries the worst resonance cases with and without absorber
Table 1. Summary of worst resonance case

Cases	Without control		With control		$\begin{gathered} E_{a} \\ \mathbf{x} \end{gathered}$	$\begin{gathered} E_{a} \\ \mathbf{y} \end{gathered}$	Remarks
	x	y	x	y			
$\Omega_{1} \cong \omega_{1}$	0.63	0.037	0.14	0.0368	4.5	1	Limit cycle
$\Omega_{1} \cong \omega_{2}$	0.046	0.3	0.0458	0.10	1	3	Limit cycle
$\omega_{1} \cong\left(\Omega_{2}+\omega_{2}\right) / 4$	0.99	0.020	0.22	0.012	4.5	1.7	Limit cycle
$\Omega_{1} \cong \omega_{1}, \Omega_{2} \cong \omega_{1}$	0.63	0.0358	0.14	0.0352	4.5	1	Limit cycle
$\Omega_{1} \cong \omega_{1}, \omega_{2} \cong \omega_{1}$	0.62	0.33	0.147	0.116	4.2	2.8	Limit cycle
$\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$	0.67	0.064	0.14	0.005	4.7	12.8	Multi Limit cycle
$\Omega_{1} \cong \omega_{1}, \omega_{1} \cong 3 \omega_{2} / 4$	0.65	0.018	0.14	0.012	4.6	1.5	Limit cycle
$\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 3 \Omega_{2} / 2$	0.63	0.014	0.147	0.002	4.3	7	Limit cycle
$\Omega_{2} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$	0.048		0.014	0.0112	3.4	3.3	Limit cycle
$\begin{aligned} & \Omega_{1} \cong \omega_{1}, \Omega_{2} \cong \omega_{1} \\ & , \omega_{2} \cong \omega_{1} \end{aligned}$	0.63	0.33	0.136	0.12	4.6	2.75	Limit cycle

4.4- Frequency response curves

The frequency response equations 17-20 are nonlinear equations of the amplitudes of the roll (a_{1}) and the pitch (a_{2}) against the detuning parameters σ_{1}, σ_{2}, which solved numerically as shown in Figs. (6-8) respectively. From these figures we find the amplitude of the roll is monotonic decreasing functions of the damping coefficient μ_{1} and natural frequency ω_{1} and the nonlinear parameter α_{1} and the gain G_{1} as shown in Figs. 6a, b, c and Figs. 8a, b, c. But the steady state amplitude of the roll $\left(a_{1}\right)$ is monotonic increasing function in the excitation amplitude G_{o} as shown in Figs. $6 \mathrm{~d}, 8 \mathrm{~d}$. Similarly, the steady state of the pitch $\left(a_{2}\right)$ is monotonic decreasing function of the damping coefficient μ_{2} and natural frequency ω_{2} and the gain G_{2} and the nonlinear parameter α_{2} as shown in Figs. 7a, b, c and Figs. 8e, f, g, h which are a good agreement of the effect of parameter shown in Fig.2.

Fig. 6 Frequency response curves of the first case $\left(a_{1} \neq 0, a_{2}=0\right)$

Fig. 7 Frequency response curves of the first case $\left(a_{1}=0, a_{2} \neq 0\right)$

Fig.8. Frequency response curves of the first case ($a_{1} \neq 0, a_{2} \neq 0$)

5-CONCLUSIONS

The vibration of second order coupled system simulating the vibration of the roll-ship motion subjected to excitation forces is studied at the simultaneous primary resonance case. A control low based on cubic velocity feedback is proposed. The method of multiple scales is used to obtain the approximate solution of the system. The stability and effect of parameters are studied numerically. From the above study the following may be concluded
1- For the positive damping coefficients the amplitudes of roll and pitch are monotonic decreasing functions on μ_{1} and μ_{2}.

2- The steady state amplitude of the roll and pitch are monotonic decreasing functions of the nonlinear parameters α_{1} and α_{2}.

3- The steady state amplitude of the roll and pitch are monotonic increasing functions of the excitation force amplitude $\mathrm{G}_{o}, \mathrm{~F}_{o}, \mathrm{~F}_{1}$ and F_{2}, which leads to the system is unstable.

4- The worst resonance case is simultaneous primary resonance $\Omega_{1} \cong \omega_{1}, \omega_{2} \cong 2 \omega_{1}$, which the amplitudes of the roll and the pitch are increased to about 0.67 (34 times) and 0.064 (6times) respectively, of the basic case .

5-The steady state amplitude of the roll($\left.a_{1}\right)$ is monotonic decreasing functions of the gain G_{1}, the steady state of the pitch $\left(a_{2}\right)$ is monotonic decreasing function of the gain G_{2}

REFERENCES

[1] A. H. Nayfeh and D. T. Mook, 1979 " Nonlinear Oscillations ", John Wiley, New York
[2] M. Tran and R. Evan-Iwanowski, " Non-stationary responses of self-excited driven system ", Int. J. of Non - linear Mech., Vol. 25,pp. 285-297, 1990.
[3] R. M. Evan - Iwanowski, " Nonstationary vibrations of mechanical systems ", J. of Appl. Mech. Rev., Vol. 22, pp. 213219, 1969.
[4] A. Nayfeh, D. Mook and L. Marshall, " Perturbation-energy approach for the development of the nonlinear of ship motions ", J. of Hydronautics, Vol. 8, pp. 130-136, 1974.
[5] A. Nayfeh, D. Mook and L. Marshall, " Nonlinear coupling of pitch and roll modes in ship motions ", J. of Hydronautics, Vol. 7, pp. 145-152, 1973.
[6] A. H. Nayfeh, " On the undesirable roll characteristics of ships in regular seas ", J. of Ship Research, Vol. 32, pp. 92100, 1988.
[7] I. Oh, A. Nayfeh and D. Mook, " Theoretical and experimental study of the nonlinear coupled heave, pitch and roll motions of a ship in longitudinal waves ", Proceeding of the 19th Symposium on Naval Hydrodynamics, Seoul, Korea, 1992.
[8] I. Oh, 1992 " Theoretical and experimental nonlinear dynamics of floating oscillatory systems ", Ph. D. Dissertation, Virginia Polytechnic Institute and StateUniversity, Virginia.
[9] A. G. Haddow, A. D. Barr and D. T. Mook, " Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure ", J. of Sound and Vib., Vol. 97, pp. 451-473,1984.
[10] W. K. Lee and H. D. Park, " Second-order approximation for chaotic responses of a harmonically excited spring pendulum system ", Int. J. Non-linear Mech., Vol. 34, pp. 749-757, 1999.
[11] B. Banerjee and A. Bajaj, " Chaotic responses in two degree of freedom systems with 1:2 internal resonances ", Fields Institute communications, Vol. 9,pp. 1-21, 1996.
[12] S. Natsiavas and P. Tratskas, " On vibration isolation of mechanical system with non - linear foundations ", J. of Sound and Vib., Vol. 194(2), pp. 173-185, 1996.
[13] A. Nayfeh and B. Balachandran, " Applied non - linear mechanics ", (Wiley- Interscience, New York), 1994.
[14] A. El-Bassiouny, M. Kamel and A. Abdel-Khalik, " Two-to-one internal in non - resonances linear two degree of freedom system with parametric and external excitations ", J. of Math. and Comp. in Simulation,Vol. 145, pp421-442 , 2003.
[15] H. Davies and R. Pan, " Nonstationary oscillations about a simple bifurcation ", J. of Sound and Vib., Vol. 172, pp. 155-170,1994.
[16] R. Pan and H. G. Davies, " Response of a nonlinearly coupled pitch- roll ship model under modulated excitation ", Journal of Nonlinear Dynamics, 1994.
[17] R. Pan and H. Davies, " Non-stationary response of a non-linear coupled pitch- roll ship model under modulated excitation ", J. of Sound and Vib.,Vol. 192, pp. 669-699, 1996.
[18] S. Yakowitz and F. Szidaouszky, "An introduction to numerical computation ", (Macmillan publishing company, New York), 1992.
[19] E. Isaacson and H. Keller, "Analysis of numerical methods", Dover, 1994.
[20] M. Eissa and A.F. El-Bassiouny, "Analytical and numerical solutions of a non-linear ship rolling motion ",Applied Mathematics and Computation, Vol.134(2-3), pp. 243-270,2003.
[21] M. Eissa, W.A.A. El-Ganaini andY.S. Hamed, "Saturation, stability and resonance of non-linear systems", Physica A: Statistical Mechanics and its Applications, Vol. 356(2-4), pp. 341-358,2005.
[22] M.M. Kamel, "Bifurcation analysis of a nonlinear coupled pitch-roll ship", Mathematics and Computers in Simulation, Vol. 73(2), pp. 300-308, 2007.
[23] A.T. EL-Sayed, M. Kamel and M. Eissa, " vibration reduction of a pitch-roll ship model with longitudinal and transverse absorbers under multi excitations," Mathematical and Computer Modelling, Vol. 52(9-10), pp1877-1898, 2010.
[24] M. Sayed and Y. S. Hamed, "Stability and response of a nonlinear coupled pitch- roll ship model under parametric and harmonic excitations", Nonlinear Dynamics, Vol. 64, pp.207-220, 2011.
[25] M. Sayed and M. Kamel, "Stability study and control of helicopter blade flapping vibrations ", Applied Mathematical Modeling, Vol.35, pp.2820-2837, 2011.
[26] M. Sayed and M. Kamel, "1:2 and 1:3 internal resonance active absorber for non-linear vibrating system ", Applied Mathematical Modeling,Vol. 36,pp.310-332, 2012.
[27] M.M. Kamel, W.A.A. El-Ganaini, Y.S. HamedVibration suppression in ultrasonic machining described by non-linear differential equations via passive controller Applied Mathematics and Computation, Vol. 219(9), pp. 4692-4701,2013.
[28] Leo Dostal, Edwin Kreuzer and Navaratnam Sri Namachchivaya, "Stochastic Averaging of Roll-pitch and Roll-Heave Motion in Random Seas," Procedia IUTAM, Vol. 6, pp132-140, 2013.

