
ISSN 2347-1921                                                           

1571 | P a g e                                                            M a y  1 2 ,  2 0 1 4  

Bayes Estimators of the Scale Parameter of an Inverse Weibull 

Distribution under two different Loss Functions 

Tasnim H.K. Al-Baldawi, Huda A. Rasheed, Nadia J. Al-Obedy 
Dept. of  Math. / College of Science, University of Baghdad, Baghdad- Iraq 

tasnim@scbaghdad.edu.iq 
tasnim_hk2005@yahoo.com 

Dept. of  Math. / College of Science, Al-Mustansiriya University, Baghdad- Iraq 

iraqalnoor1@gmail.com 
Dept. of  Math. / College of Science, Al-Mustansiriya University, Baghdad- Iraq 

 

ABSTRACT 

In this paper, we obtain Bayesian estimators of the scale parameter of the inverse Weibull distribution (IWD). We derive 
those estimators under two different loss functions: the quasi-squared error loss function and the nonlinear exponential 
loss function (NLINEX). Two priors are considered for finding the estimators: a class of natural–conjugate informative 
prior, namely; the exponential prior information and inverted-Levy prior information. Based on a Monte Carlo simulation 
study, the performance of those estimators is compared. The comparison criteria, the mean square errors (MSE) are 
computed and presented in tables. Comparison results show that MLE was the best followed by Bayes estimators based 
on the inverse Levy prior under NLINEX loss function which was preferable among the others. 
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Inverse Weibull distribution; MLE; Bayes’ Estimators; exponential prior; inverse-Levy prior; quasi-quadratic loss functions; 
NLINEX loss function. 
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INTRODUCTION  

The inverse Weibull distribution (IWD) is a life time probability distribution which is widely used in reliability engineering 
and plays an important role in many applications. It can be used to model a variety of failure characteristics such as infant 
mortality, random failures, wear-out, and failure-free periods. The IWD can also be used to determine the cost 
effectiveness and maintenance periods of reliability-centered maintenance activities [3].  

The inverse Weibull distribution may be used to analyze data coming from a distribution that have non-monotone hazard 
function and is uni-modal. The Bayes estimation for the IW parameters was discussed in [1, 4, 5, and 6]  

The present paper describes the classical and the Bayes estimators of the scale parameter of inverse Weibull distribution 
based on two informative priors, under two different loss functions. The proposed estimators have been compared on the 
basis of the mean square of the estimates. 

The estimators are derived in the following order: Maximum likelihood estimator, Bayes estimators with exponential prior 
and inverted Levy prior, under quasi-quadratic loss function, and the non- linear exponential loss function (NLINEX). 
Comparison was made through a Monte Carlo simulation study on the performance of these estimators.  

MODEL DESCRIPTION AND MAXIMUM LIKELIHOOD ESTIMATOR 

A random variable X is said to follow the two parameter IW distribution if its pdf is given by: 

                                                                        (1) 

where α and β are the scale and shape parameters respectively 

The cumulative distribution function (cdf) in its simplest form is given by: 

 

Let X1, X2, …, Xn be a random sample each of them has IW distribution having unknown scale parameter α. The likelihood 
function of the sample observations x1, x2, …,xn is: 

 

The log likelihood function is: 

 

Differentiating the log likelihood with respect to α and then equating to zero we have 

 

Hence, the MLE of α is: 

                                                                                                                                                (2) 

BAYES’ ESTIMATORS 

To obtain Bayes estimators, we assume that α is a real valued random variable with probability density function g(α). The 
posterior distribution of α is the conditional probability density function of α given the data. A loss function is used to 
represent a penalty associated with each estimate. The loss should be zero if and only if . 

Prior and Posterior Distributions 

Under the assumption that the shape parameter β is known, Bayes' estimators for the scale parameter α is considered 

with informative prior information. We consider two informative priors the exponential prior and the inverted Levy prior 

distributions.The parameters of the prior distribution are called hyper-parameters
 
[9].  
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 1. Posterior Distribution of the Scale Parameter Based on an Exponential Prior: 

The exponential prior is assumed to be 

          λ > 0 , α > 0 

where λ is the hyper-parameter. 
The posterior distribution of the scale parameter α given the data (x1, x2… xn) is given by:  

 

 

 

This posterior density is recognized as the density of the gama distribution. That is 

.  

And 

 

2. Posterior Distribution of the Scale Parameter α Based on an Inverted Levy Prior: 

The inverted Levy prior is assumed to be [8] 

 

where θ is the hyper parameter. 

The posterior distribution of the scale parameter α given the data (x1, x2… xn) is given by 

 

 

This posterior density is also recognized as the density of the gama distribution. That is, 

. 
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with, 

 

Loss Functions     

The choice of loss functions is an essential part in the estimation problems. In the present work, we consider both 
symmetric as well as asymmetric loss functions. The first is the quasi-quadratic loss function which is classified as a 
symmetric function and associates equal importance to the losses [7]. The second is the non-linear exponential loss 
function proposed by Islam, A., F.M. Saiful et al., which is quite asymmetric in nature [2]. 

1.The Quasi-Quadratic Loss Function 

By using the quasi-quadratic loss function: 

 
where c ≠ 0, is the scale parameter of the loss function. Bayes' estimator will be the estimator that minimizes the posterior 
risk given by 

 
which is minimized when 

 

Where  

Now based on exponential prior, we have: 

 

 

 

 

Hence, Bayes estimator is: 

                                                                                                     (3)    

And based on inverse Levy prior, we have: 
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Hence, Bayes estimator is: 

                                                                                                   (4) 

2. The Non-Linear Exponential Loss Function: (NLINEX) 

It is given by 

 

Where D represents the estimator error i.e., . Without loss of generality, we take k to be 1. And Bayes' 

estimator will be the estimator that minimizes the posterior risk given by 

 
which is minimized when 

                                                                                              

Where 

 
Now Bayes estimator of α based on exponential prior is given by: 

                                                          (5) 
Also bayes estimator of α based on inverted Levy prior is given by 
 

                                                         (6) 

SIMULATION AND RESULTS  
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In our simulation study, we generated samples of size n = 20, 50, and100 from IWD distribution with α =1.5, and 3. The 

values of the hyper parameters are chosen as λ = 2, 4, θ = 2, 4 and c = 1, 3. The process was repeated 3000 times and 

the expected values for the maximum likelihood estimates and Bayes estimates of the parameter α are obtained along 

with their mean square error (MSE), where 

 

The results are summarized and tabulated in the following tables for each estimator and for all sample sizes.  

Table 1. Expected values of the parameter α and MSE with α = 1.5 and c = 1 

n Criteria MLE 

Quasi-quadratic NLINEX 

Exponential prior Inverse Levy prior Exponential prior Inverse Levy prior 

λ =2 λ =4 θ=2 θ=4 λ =2 λ =4 θ=2 θ=4 

20  

1.57505 1.37206 1.20889 1.43710 1.33939 1.40380 1.23324 1.47304 1.37037 

MSE 0.14378 0.08641 0.12648 0.09325 0.09254 0.08622 0.11642 0.09967 0.09014 

50  

1.53213 1.44955 1.37025 1.47818 1.43534 1.46368 1.38285 1.49305 1.44933 

MSE 0.05324 0.04254 0.04867 0.04468 0.04340 0.04293 0.04676 0.04609 0.04336 

100  

1.51528 1.47407 1.43189 1.48871 1.46677 1.48135 1.43875 1.49617 1.47401 

MSE 0.02368 0.02124 0.02294 0.02175 0.02147 0.02133 0.02241 0.02207 0.02145 

Table 2. Expected values of the parameter α and MSE with α =1.5, and c = 3 

n Criteria MLE 

Quasi-quadratic NLINEX 

Exponential prior Inverse Levy prior Exponential prior Inverse Levy prior 

λ =2 λ =4 θ=2 θ=4 λ =2 λ =4 θ=2 θ=4 

20  

1.57505 1.28870 1.14383 1.34368 1.25802 1.34108 1.18446 1.40261 1.30915 

MSE 0.14378 0.09914 0.16035 0.09255 0.11048 0.08955 0.13821 0.09101 0.09769 

50  

1.53213 1.33446 1.33446 1.39570 1.39570 1.35634 1.35634 1.41995 1.41995 

MSE 0.05324 0.05604 0.05604 0.04592 0.04592 0.05123 0.05123 0.04400 0.04400 

100  

1.51528 1.45288 1.41189 1.46699 1.44569 1.46572 1.42401 1.48015 1.45846 

MSE 0.02368 0.02163 0.02506 0.02147 0.02217 0.02128 0.02368 0.02152 0.02164 

Table 3. Expected values of the parameter α and MSE with α =3, and c = 1 

n Criteria MLE 

Quasi-quadratic NLINEX 

Exponential prior Inverse Levy prior Exponential prior Inverse Levy prior 

λ =2 λ =4 θ=2 θ=4 λ =2 λ =4 θ=2 θ=4 

20  

3.15010 2.35028 1.91244 2.59394 2.29433 2.44398 1.97343 2.71246 2.38579 

MSE 0.57511 0.57119 1.24762 0.39938 0.64002 0.48387 1.12739 0.36441 0.54375 

50  

3.06425 2.70408 2.44129 2.83029 2.67756 2.75356 2.48142 2.88521 2.72656 

MSE 0.21298 0.20826 0.39202 0.17697 0.22229 0.19061 0.35421 0.17337 0.20211 

100  

3.03056 2.84359 2.69080 2.91226 2.82951 2.87077 2.71510 2.94093 2.85656 

MSE 0.09473 0.09561 0.15258 0.08681 0.09951 0.09062 0.14024 0.08578 0.09377 
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Table 4. Expected values of the parameter α and MSE with α =3, and c = 3 

n Criteria MLE 

Quasi-quadratic NLINEX 

Exponential prior Inverse Levy prior Exponential prior Inverse Levy prior 

λ =2 λ =4 θ=2 θ=4 λ =2 λ =4 θ=2 θ=4 

20  

3.15010 2.12369 1.75890 2.31547 2.07313 2.27055 1.85691 2.49797 2.21649 

MSE 0.57511 0.86827 1.58713 0.61894 0.95473 0.66431 1.36502 0.45832 0.73988 

50  

3.06425 2.57041 2.33175 2.68285 2.54521 2.65357 2.39964 2.77478 2.62755 

MSE 0.21298 0.28323 0.51314 0.22036 0.30359 0.23239 0.43524 0.18822 0.24890 

100  

3.03056 2.76649 2.62165 2.83105 2.75279 2.81364 2.66390 2.88073 2.79971 

MSE 0.09473 0.11830 0.19452 0.09922 0.12425 0.10301 0.16776 0.09006 0.10772 

 

DISCUSSION 

   It is observed from simulation results that that the classical MLE was superior over the Bayes estimators. And for 

Baysian estimation, there is apparently general underestimation particularly in the case of large hyper parameter values. 

However the use of inverted Levy prior can be preferred especially for small values of hyper parameters. Further it is 

observed that the asymmetric NLINEX loss function was better in performance than the quasi-quadratic loss function. 

Finally for all parameter values, an obvious reduction in MSE is observed with the increase in sample size. 
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