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ABSTRACT 

In this paper, first order uniform solutions with respect to small parameter   are established analytically for general 

perturbed harmonic oscillator of the form
2

0

n mU U U U    , 1  ,  and n mare nonnegative integers. Comparison 

between these analytical solutions and the numerical solutions of the differential equations is also given for different n, m, 

and , and showed excellent agreement. A result that confirming the validity of our analytical solutions. 

Indexing terms/Keywords 

Harmonic oscillator; perturbation theory; regularization; universal Solution. 

Academic Discipline And Sub-Disciplines 

Perturbation Theory; Celestial Mechanics; Dynamical Astronomy. 

SUBJECT  CLASSIFICATION 

Celestial Mechanics 

TYPE (METHOD/APPROACH) 

Uniform Solution using the method of multiple scales. 
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INTRODUCTION  

Applications of the theory of non-linear oscillations may not only be found in classical mechanics but also in various 
branches of science, of these are for example, electronics, communication, biology and quantum mechanics [12, 13, and 
14]. Moreover, new problems have raised new questions and on these the subject is still evolved. On the other hand, 
harmonic oscillators play important roles in both, theoretical astrophysics and space dynamics. 

     As for example, the disruption of the clusters due to galactic tidal force [8] is governed by a typical equation of a 
harmonic oscillator form. Many other astrophysical problems which are formulated in terms of harmonic oscillators may 
be found in references [1, 10]. 

     In fact, the most important applications of harmonic oscillators are the regularized theories of space dynamics .The 
basic idea of these theories relied on transforming the equations of motion to a harmonic oscillator [11] form which is 
characterized by stable properties with respect to the numerical as well as the analytical integrations. On the contrary to, 
the usage of either the analytical or numerical techniques on the conventional equations of space dynamics yield 
inaccurate predictions of position and velocity .This is because that the conventional equations are nearly singular for 
the cases of close approach, which are of common occurrence in the mission and the re-entry problems of space travel.  

Of these transformations for the perturbed two body problem of space dynamics are KS, Burdet and Euler parameters 
and was found to be efficient and accurate methods for obtaining numerical solutions to any type of perturbing force [2], 
[4], [5], [6], [7] and [9]. 

    The above mentioned importance of harmonic oscillators is what motivated our present work to establish first order 
uniform analytical solutions of the general perturbed harmonic oscillator of the form  

2

0 ,   1,                                                     (1.1)n mU U U U       

for all possible nonnegative values of the integers n and m to suit many applications. 

Note that a dot over a symbol denotes the derivative with respect to the time t.  

FIRST ORDER UNIFORM SOLUTION 

In this section, an analytical first order uniform solution of Equation (1.1) will be established for any possible nonnegative 
integer values of n and m . To do so we shall use the method of multiple scales [3] as follows. 

Introduce the scales 

0 1,  ,                                                                         (2.1)T t T t   

then using the chain rule, Equation (1.1) to the first order could be written as 

2 2
2

02

0 1 00

2 .                                       (2.2)

m

nU U U
U U

T T TT
  

   
    

    
            

Let the uniform expansion forU of the form  

0 0 1 1 0 1( , ) ( , ),                                                        (2.3)U U T T U T T   

be substituted in Equation (2.2) we get by equating coefficients of like powers of  

2
20

0 02

0

0,                                                                          (2.4)
U

U
T




 


 

22
2 0 01

0 1 02

0 1 00

2 .                                         (2.5)

m

nU UU
U U

T T TT


  
     

    
 

The solution of Equation (2.4) is expressed as 

0 cos ,                                                                          (2.6)U a   

where 

1( ),                                                                            (2.7.1)a a T  

0 0 1( ).                                                                         (2.7.2)T T     



ISSN 2347-1921                                                           

1557 | P a g e                                                             M a y  6 ,  2 0 1 4  

Using Equation (2.6) into Equation (2.5) we get 

 

2
21

0 1 0 02

1 10

0

2 cos 2 sin +

1 sin cos .                                                                   (2.8)
m mm n m n

U a
U a

T TT

a


    

  

  
  

 

 

 

The products sin cosm n   for the possible values of the nonnegative integers n and m  are of the forms  

1
( , ) ( , )

0

1

1
sin cos cos 2 ; even; even,             (2.9.1)

2

s
m n m nm n m n    



    


  

1
( , )

1

sin cos sin 2 ; odd; odd,                                (2.9.2)
s

m nm n m n   


   


  

2
( , )

1

sin cos cos(2 1) ; even; odd,                        (2.9.3)
s

m nm n s m n   


    


 

2
( , )

1

sin cos sin(2 1) ; odd; even,                         (2.9.4)
s

m nm n s m n   


    


 

where 

1 ( ) / 2,                                                                       (2.10.1)s m n   

2 ( 1) / 2                                                                     (2.10.2)s m n    

and the case of an even integer includes also its zero value.  

Consequently, the solution of Equation (2.8) is uniform that is, free from mixed secular terms, according to the conditions 
listed in Table I. 

Table I. Uniformity conditions for the solution of Equation (2.8) 

m and n Conditions on a and β 

1- meven;    neven 0 0;       a a     

2- modd;    nodd 0 0;       a a     

3- meven;    nodd 

0 ,a a  

1 ( , )1

0 1

1

1

2

m m nm nd
a

dT


 

    

4- modd;    neven 

0 ,   

1 ( , )

0 1

1

1

2

m m nm nda
a

dT
 

  

 

The third and the fourth conditions yield 

1 1 ( , )

0 0 1 1 0

1
,

2

m n m m n
a T   

  
    
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0

1 ( 1)

1 1 ( , )

0 0 1 1

,
1

1 ( 1)
2

m n

m n m m n

a
a

m n a T 

 

  


 
   

 

 

where 0a  and 0 are constants. 

Thus the uniform solution of Equation (1.1) is  

1
( , ) ( , )

0 0 0 0 0 0

1

1
cos( ) cos 2 ( ) , even; even,     (2.11.1)

2

s
m n m n

U a t A A t m n    


 
       

 
 


  

1
( , )

0 0 0 0 0

1

cos( ) sin 2 ( ), odd; odd,               (2.11.2)
s

m n
U a t B t m n    



      


  

0 0 1 0cos( ), even; odd                                               (2.11.3)U a t t m n        

 
1 ( 1)

0 0 0 2cos( ) 1 ( 1) , odd; even             (2.11.4)
m n

U a t m n t m n  
  

        

where 

2
( , ) ( , )0

12
   0,1,2,...,  

(1 4 )

mn m
m n m na

A s





  


  


 

2
( , ) ( , )0

12
   1,2,...,  

(1 4 )

mn m
m n m na

B s





   


  


 

1 1 ( , )

1 0 0 1

1

2

m n m m n
a  

  
   

1 1 ( , )

2 0 0 1

1

2

m n m m n
a  

  
 . 

It remains for us, to find the explicit forms of the A’s, B’s, 1 and 2 coefficients as follows. 

Since 

   1 1( )
sin cos ,                                        (2.12)

2

m
m n

m n

n m

J
   




    

where 

exp( ),     1.  J J     

Using the binomial theorem we get 

( , ) 2

0

( )
sin cos ,                                            (2.13)

2

m n m
m nm n m n c

cn m
c

J
Q 


 





   

where 

 
2

1

( , )   
1 ,                                                (2.14)

m n

c

m n
Q

c

  
    

  





   
 

1 2max(0, );    min( , ),c n c m     

where, for n1 and n2 nonnegative integers 
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 1 2 1 2 1 2

1
max( , )  ,

2
n n n n n n     

 1 2 1 2 1 2

1
min( , )  .

2
n n n n n n     

From Equation (2.14) we deduce that 

( , )

0

0,                                                                           (2.15)
m n

m n

c

c

Q




  

1

( , )
0,  if  and  are positive odd integers,                                (2.16.1)

m n

sQ m n  

2 1

( , ) 0;   1,2,...,                                                               (2.16.2)
i

m nQ i m


   

2

( , ) ( 1) ;   0,1,2,...,[ / 2],                                         (2.16.3)
j

m n j
m

Q j m
j

 
   

 
 

and 

2 2 2

( , ) ( , )( 1) ;   [ / 2] 1,[ / 2] 2,..., ,                           (2.16.4)
k m k

m m m m mQ Q k m m m


      

where [  ] denotes the largest integer ≤  ;  ≥0, and s1is given from Equation (2.10.1). 

From Equations (2.12), (2.13) and (2.14) we have 

 

 

 

2

10

  ( )
sin cos 1

2

                     cos( 2 ) sin( 2 ) .                         (2.17)

m n m
m n

n m
c

m nJ

c

m n c J m n c

 

 




 

  
    

  

     






     

Now, the s' and  s',s',s'  coefficients of Equations (2.9) could be written in unified form as: 













































oddm  ;  ddon :                  2sing

evenm  ;  ddon :           )12sin(g

ddom  ;even  n :          )12cos(g

evenm  ;even  n :  2cosgg
2

1

cos sin

u

1

)m,n(

u

1

)m,n(

u

1

)m,n(

u

1

)m,n()m,n(

0

mn





















 

where  

2

mn
u


      ;    







 




2

)1(1 mn

 

2
3

1

( , ) 1( 1) 2 ( 1) ;

2

n q
n m n m j

j q

m

n
g

j m n
j







  



 
  
     
   

  
 




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 n,uMinq2     










 

2

mn
,0Maxq1

    ;     










ddon   3

evenn   0
 

By making (J)
q 

equal to zero when q odd, that is by writing  

 [ 2]1
( ) ( 1) 1 ( 1) ,

2

q q qJ      

we deduce by means of Equations (2.16) and (2.17) for the required coefficients the expressions 

( , ) ( , )2
1( 1) ;  even(or zero); even(or zero); =0,1,2,...,s ,           (2.18)

m
m n m n

A H m n       

1
( , ) ( , )2

1( 1) ;  odd; odd; =1,2,...,s ,                                     (2.19)
m

m n m n
B H m n



       

( , )2
1 ( 1) ;  even(or zero); odd,                                                (2.20)

m

m nR m n      

1

( , )2
2 ( 1) ;  odd; even(or zero),                                                (2.21)

m

m nR m n


     

where 

 
2

1

2
( , ) 0 0

2

        

2 1 ,                         (2.22)
2 1 4

2

n m m j
jm n

j j

n
ma

H n m
j j


 



 
                

 

  
 

 
4

3

1

1( , ) 0
0

        
1

1 ,                           (2.23)1
2 2

2

n m j
jmm n

j j

n
ma

R n m
j j



 





 
                

 

  

1 2max 0, ;    min , ,                                     (2.24)
2 2

m n m n
j j m

    
      

   
   

3 4

1 1
max 0, ;    min , .                                    (2.25)

2 2

m n m n
j j m

      
    

   
 

Equations (2.11) and Equations (2.18) to (2.25) are what we required to establish for the first order uniform solution of the 
general perturbed harmonic oscillator of Equation (1.1) for all possible nonnegative integer values of m and n. 

NUMERICAL APPLICATIONS 

In this section, numerical examples have been done to check the solutions of the present analytical uniform solution for 

general perturbed harmonic oscillator. Table II shows comparisons between numerical and analytical solutions U and 

the first derivatives U  for different values of the small parameter . The case of even values of m and n  is 

considered in Table II, while the case of odd values of m and n  is considered in Table III. Initial conditions are: 

0 0 03,  0,  and 1.a     

 

 

 

 

 

 

 

 



ISSN 2347-1921                                                           

1561 | P a g e                                                             M a y  6 ,  2 0 1 4  

Table II. Comparison of Numerical and Analytical Solutions with m=14 and n=16 

Time   U  U   

4 10
-2 

-0.06422859 0.07962767 

7 10
-3 

0.00397473 0.00459682 

10 10
-4 

-0.00010846 -0.00104540 

12 10
-5 

4.33762E-06 -0.00011050 

15 10
-6 

-2.27777E-06 1.18447E-05 

18 10
-7 

2.43057E-07 -2.2976E-06 

20 10
-8 

-2.78831E-07 -1.22597E-06 

25 10
-10

 -9.06716E-10 2.64509E-06 

 

Table III. Comparison of Numerical and Analytical Solutions with m=11 and n=13 

Time   U  U   

4 10
-2 

0.01189570 -0.05575550 

7 10
-3 

-0.00121418 0.0023505 

10 10
-4 

0.00012993 -6.1964E-05 

12 10
-5 

1.2771E-05 2.7458E-06 

15 10
-6 

-1.0084E-06 -5.6401E-07 

18 10
-7 

-3.5999E-07 -6.6772E-07 

20 10
-8 

-5.2957E-07 -1.3440E-06 

25 10
-10

 8.3092E-08 2.2661E-06 

 

Tables IV and V include results for the other two cases m-even & n-odd and m-odd & n-even respectively. The accuracy 

reached to the order of 
1010

by decreasing the value of the small parameter   to
1010 .

 Figures 1, 2 and 3 confirms this 

accuracy for arbitrary values of time. 

Table IV. Comparison of Numerical and Analytical Solutions with m=8 and n=11 

Time   U  U   

4 10
-2 

-0.01096716 0.04726696 

7 10
-3 

0.00327659 -0.00541146 

10 10
-4 

-0.00057251 0.00017741 

12 10
-5 

-7.0291E-05 -3.6924E-05 

15 10
-6 

8.2221E-06 1.5880E-05 

18 10
-7 

-1.0440E-06 -3.2993E-06 

20 10
-8 

-4.9368E-07 -1.7586E-06 

25 10
-10

 7.4752E-08 2.4530E-06 
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Table V. Comparison of Numerical and Analytical Solutions with m=7 and n=8 

Time   U  U   

4 10
-2 

0.00101806 -0.00558697 

7 10
-3 

-0.00028733 0.00144005 

10 10
-4 

4.2329E-05 -4.6295E-05 

12 10
-5 

3.8123E-06 2.8918E-06 

15 10
-6 

1.8722E-07 -1.5032E-06 

18 10
-7 

-5.1164E-07 -4.3860E-07 

20 10
-8 

-5.2929E-07 -1.3404E-06 

25 10
-10

 5.6180E-08 2.5825E-06 

 

0 5 10 15 20
Time (t)

-0.1

-0.05

0

0.05

0.1

Er
ro

r (
nu

-A
n)

0 5 10 15 20

-0.1

-0.05

0

0.05

0.1

 

Fig. 1: Difference between numerical and analytical solutions of the general perturbed harmonic oscillator. The 

error is of order
310

, for small parameter 
310 .   

0 5 10 15 20
Time (t)

-0.002

0

0.002

Er
ro

r (
Nu

-A
n)

0 5 10 15 20

-0.002

0

0.002

 

Fig. 2: Difference between numerical and analytical solutions of the general perturbed harmonic oscillator. The 

error is of order
410

, for small parameter 
410 .   
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0 5 10 15 20
Time(t)

-2E-005

-1E-005

0

1E-005

2E-005

Er
ro

r (
N

u-
A

n)
0 5 10 15 20

-2E-005

-1E-005

0

1E-005

2E-005

 

Fig. 3: Difference between numerical and analytical solutions of the general perturbed harmonic oscillator. The 

error is of order
710

, for small parameter 
510 .   

CONCLUSION 

In this paper, first order uniform solutions with respect to small parameter   are established analytically for the general 

perturbed harmonic oscillator of the form
2

0

n mU U U U    , 1  ,  and n mare nonnegative integers. The analytic 

expressions for the solutions are general and suit many applications.  Comparison between these analytical solutions and 

the numerical solutions of the differential equations is also given for different n, m, and , and showed excellent 

agreement. A result that confirming the validity of our analytical solutions. 
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