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Abstract 

In this paper, we are concerned with oscillation of a class of third-order nonlinear delay difference equation of the form 

∆ 𝑎(𝑛)∆ 𝑏 𝑛 ∆𝑦(𝑛)  + 𝑞 𝑛 𝑦𝛾 𝑛 − 𝑘 = 0,     𝑛 ≥ 𝑛0  . 

We establish some new oscillation criteria by transforming this equation to the first-order delayed and advanced difference 
equations. Employing suitable comparison theorems we present new results on oscillation of the studied equation. Some 
examples are provided to illustrate the results. 
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1 Introduction 

 In recent years, determination of oscillatory behavior for solutions of first and second order difference equations 
has occupied a great part of researchers' interest. Compared to the first and second order difference equations, the study 
of third order difference equations has received considerably less attention in the literature, even though such equations 
arise in the study of economics, mathematical biology and other areas of mathematics. For contributions, we refer the 
reader to the papers [1-6] and the references cited therein. 

Therefore in this paper, we are concerned with the oscillation of the third-order nonlinear delay difference equation of the 
form 

                          ∆ 𝑎(𝑛)∆ 𝑏 𝑛 ∆𝑦(𝑛)  + 𝑞 𝑛 𝑦𝛾 𝑛 − 𝑘 = 0,     𝑛 ≥ 𝑛0                                     (1.1) 

subject to the following conditions: 

(i) 𝛾  is the quotient of odd positive integers; 

(ii)  𝑎(𝑛)  ,  𝑏(𝑛)  and  𝑞(𝑛)   are sequences of positive real numbers; 

(iii) 𝑘 is a positive integer. 

By a solution of equation (1.1) we mean a real sequence  𝑦(𝑛)   and satisfying equation (1.1) for all 𝑛 ≥ 𝑛0 . We 

consider only those solution  𝑦(𝑛)   of equation (1.1) which satisfy 𝑠𝑢𝑝   𝑦 𝑛  ∶ 𝑛 ≥ 𝑁 > 0 for all 𝑁 ≥ 𝑛0.  A 

solution of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative and non 
oscillatory otherwise. 

In [15], the authors considered the equation (1.1) and studied the oscillatory behavior of all solutions when 

 
1

𝑎(𝑛)

∞

𝑛=𝑛0

= ∞               𝑎𝑛𝑑            
1

𝑏(𝑛)

∞

𝑛=𝑛0

= ∞ . 

 

Motivated by this observation, in this paper we discussed the oscillatory behavior of equation (1.1) for the following two 
cases: 

                                        
1

𝑎(𝑛)

∞

𝑛=𝑛0

< ∞               𝑎𝑛𝑑            
1

𝑏(𝑛)

∞

𝑛=𝑛0

= ∞                                     (1.2) 

and 

                                        
1

𝑎(𝑛)

∞

𝑛=𝑛0

< ∞               𝑎𝑛𝑑            
1

𝑏(𝑛)

∞

𝑛=𝑛0

< ∞                                     (1.3) 

In Section 2, we establish some sufficient conditions which ensure that all solutions of equation (1.1) are either oscillatory 
or converges to zero. Examples are provided in Section 3 to illustrate the main results. 

2 Oscillation Results 

In this section, we will establish some oscillation criteria for the equation (1.1). To simplify our notation, let us denote 

𝑧 𝑛 ∶= −𝑤 𝑛 ∶= −𝑎(𝑛) ∆𝑏 𝑛 ∆𝑦(𝑛)  and 𝐵 𝑛 ∶=   
1

𝑏(𝑠)
∞
𝑠=𝑛  . 

We begin with the following Lemmas. 

Lemma 2.1.  

Let  𝑞 𝑛 > 0 for all  𝑛 ≥ 𝑛0  and  𝛼 > 0  is a ratio of odd positive integers and k is a positive integer. 

(i) If  𝛼 < 1  and 

 𝑞 𝑛 

∞

𝑛=𝑛0

= ∞ , 

then all solutions of the equation  
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                                       ∆𝑥 𝑛 + 𝑞 𝑛 𝑥𝛼 𝑛 − 𝑘 = 0                                                     (2.1) 

are oscillatory. 

 

(ii) If  𝛼 = 1  and 

lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑠 

𝑛−1

𝑠=𝑛−𝑘

>  
𝑘

𝑘 + 1
 
𝑘+1

 , 

                      then all solutions of equation (2.1) are  oscillatory. 

 

(iii)  If  𝛼 > 1  and there exists a  𝜆 >
1

𝑘
 In 𝛼  such that 

lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑛 exp −𝑒𝜆𝑛   > 0 , 

then all solutions of equation  (2.1) are  oscillatory. 

Proof. 

The proof can be found in [8] and [16].                                           

Lemma 2.2. 

Let  𝑞 𝑛 > 0  for all  𝑛 ≥ 𝑛0 and  𝛽 > 1  is a ratio of odd positive integers and k is a positive integer. If 

 𝑞 𝑛 

∞

𝑛=𝑛0

= ∞ , 

then every solution of the equation 

                                      ∆𝑥 𝑛 − 𝑞 𝑛 𝑥𝛽 𝑛 + 𝑘 = 0                                                      (2.2) 

is oscillatory. 

Proof. 

Assume that  𝑥 𝑛   is a nonoscillatory solution of equation (2.2). Without loss of generality, we may assume that 

𝑥 𝑛 > 0  for all  𝑛 ≥ 𝑛1 ≥ 𝑛0 .  From the given equation, we have 

∆𝑥 𝑛 = 𝑞 𝑛 𝑥𝛽 𝑛 + 𝑘 > 0   

and therefore   𝑥 𝑛    is increasing and  𝑥𝛽 𝑛 + 1 ≤ 𝑥𝛽  𝑛 + 𝑘   for all   𝑛 ≥ 𝑛1  .  Then 

 
𝑑𝑠

𝑠𝛽

𝑥(𝑛+1)

𝑥(𝑛)

 ≥  
∆𝑥(𝑛)

𝑥𝛽 (𝑛 + 1)
= 𝑞 𝑛 

𝑥𝛽 (𝑛 + 𝑘)

𝑥𝛽 (𝑛 + 1)
 ≥ 𝑞 𝑛 ,           𝑛 ≥ 𝑛1 .  

Summing last inequality from  𝑛1  to  𝑁 − 1, we have 

 
𝑑𝑠

𝑠𝛽

𝑥 𝑁 

𝑥 𝑛1 

 ≥   𝑞 𝑛 

𝑁−1

𝑛=𝑛1

 

or 

 𝑞 𝑛 

𝑁−1

𝑛=𝑛1

<  
1

 𝛽 − 1 𝑥𝛽−1 𝑛1 
< ∞ . 

Letting  𝑁 → ∞ in the last inequality, we obtain a contradiction and the proof is now complete.                                

Lemma 2.3. 
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Let  𝑞 𝑛 > 0  for all  𝑛 ≥ 𝑛0 and  𝑚  is a positive integer. If 

lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑛 

𝑛+𝑚

𝑠=𝑛

>  
𝑚

𝑚 + 1
 
𝑚+1

  

then every solution of  

                                      ∆𝑥 𝑛 − 𝑞 𝑛 𝑥 𝑛 + 𝑚 = 0                                                        (2.3) 

is oscillatory. 

Proof. 

The proof can be found in [7].                                        

Theorem 2.1. 

 Assume that condition (1.2) holds. Let there exist numbers  𝛼, 𝛽, 𝛾  with  𝛼 ≤ 𝛾 ≤ 𝛽  such that  𝛼, 𝛽, 𝛾  are 

the ratios of odd positive integers. If there exist two positive integers 𝑙 and 𝑚  with  2𝑙 < 𝑘 and if for all sufficiently large  

𝑛1 ≥ 𝑛0  and for  𝑛2 > 𝑛1 ,  the following difference equations 

                               ∆𝑤 𝑛 + 𝑐1
𝛾−𝛼

𝑞 𝑛   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛2

 

𝛼

𝑤𝛼 𝑛 − 𝑘 = 0                               2.4  

                    ∆𝑣 𝑛 +  
1

𝑏(𝑛)
  

1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

 𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 𝑣𝛾   𝑛 + 2𝑙 − 𝑘 = 0                              (2.5) 

and 

              ∆𝑧 𝑛 − 𝑐1
𝛾−𝛽

𝑞 𝑛   
1

𝑎 𝑠 

∞

𝑠=𝑛+𝑚

 

𝛽

  
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

𝑧𝛽 𝑛 + 𝑚 = 0                              2.6  

are oscillatory for all constants 𝑐1 > 0 , 𝑐2 > 0 , then every solution of equation (1.1) is oscillatory. 

Proof. 

 Let   𝑦 𝑛   be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that  
 𝑦 𝑛    is positive. Then there exist three possible cases: 

 Case(1) :  𝑦 𝑛 > 0,   ∆ 𝑦 𝑛 > 0,   ∆  𝑏 𝑛 ∆𝑦 𝑛  > 0, 

             ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   <  0; 

 Case(2) :  𝑦 𝑛 > 0,   ∆ 𝑦 𝑛 < 0,   ∆  𝑏 𝑛 ∆𝑦 𝑛  > 0, 

             ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   <  0; 

and 

 Case(3) :  𝑦 𝑛 > 0,   ∆ 𝑦 𝑛 > 0,   ∆  𝑏 𝑛 ∆𝑦 𝑛  < 0, 

                    ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   <  0 

for  𝑛 ≥ 𝑛1 ,  where  𝑛1 ≥ 𝑛0  is large enough. 

Assume that case(1) holds. Using  ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   <  0 ,  we have 
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𝑏 𝑛 ∆𝑦 𝑛  ≥   
𝑎 𝑠 ∆ 𝑏 𝑠 ∆𝑦 𝑠  

𝑎 𝑠 

𝑛−1

𝑠=𝑛1

 

                                  ≥  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   
1

𝑎 𝑠 

𝑛−1

𝑠=𝑛1

 . 

That is, 

                   ∆𝑦 𝑛  ≥  
𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛  

𝑏(𝑛)
 

1

𝑎 𝑠 

𝑛−1

𝑠=𝑛1

 . 

Summing the last inequality from  𝑛2  𝑛2 > 𝑛1  to  𝑛 − 1,  we get by the definition of 𝑤(𝑛) that  

                             𝑦 𝑛  ≥  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−1

𝑠=𝑛2

  

                                                                     =  𝑤 𝑛  
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−1

𝑠=𝑛2

 .                                               (2.7) 

From equation (1.1) and the fact that  ∆𝑦 𝑛 > 0 , we see that there exists a constant  𝑐1 > 0  such that 

∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   + 𝑐1
𝛾−𝛼

𝑞 𝑛 𝑦𝛼 𝑛 − 𝑘 ≤ 0 . 

Using (2.7) in the above inequality, we see that  𝑤(𝑛) is a positive solution of the inequality 

∆𝑤 𝑛 + 𝑐1
𝛾−𝛼

𝑞 𝑛   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛2

 

𝛼

𝑤𝛼 𝑛 − 𝑘 ≤ 0 . 

Therefore, by Lemma 1[16], the associated delay difference equation (2.4) also has a positive solution, which is a 
contradiction. 

Next assume that case(2) holds. Summing equation (1.1) from  𝑛 to 𝑛 + 𝑙 − 1  implies that 

𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   ≥   𝑞 𝑠1 

𝑛+𝑙−1

𝑠1=𝑛

𝑦𝛾 𝑠1 − 𝑘  

                                            ≥  𝑦𝛾 𝑛 + 𝑙 − 𝑘  𝑞 𝑠1 

𝑛+𝑙−1

𝑠1=𝑛

 . 

That is, 

∆ 𝑏 𝑛 ∆𝑦 𝑛   ≥  
 𝑦𝛾 𝑛 + 𝑙 − 𝑘 

𝑎(𝑛)
 𝑞 𝑠1 

𝑛+𝑙−1

𝑠1=𝑛

 .  

Summing the last inequality from  𝑛 to 𝑛 + 𝑙 − 1, we have 

−𝑏 𝑛 ∆𝑦 𝑛  ≥   
 𝑦𝛾 𝑠2 + 𝑙 − 𝑘 

𝑎(𝑠2)

𝑛+𝑙−1

𝑠2=𝑛

  𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2
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                                     ≥  𝑦𝛾 𝑛 + 2𝑙 − 𝑘  
1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

  𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 . 

That is, 

                    −∆𝑦 𝑛  ≥  
𝑦𝛾 𝑛 + 2𝑙 − 𝑘 

𝑏(𝑛)
 

1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

  𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 . 

Summing the last inequality from n to ∞, we get 

                    𝑦 𝑛  ≥    
𝑦𝛾 𝑛 + 2𝑙 − 𝑘 

𝑏(𝑠3)

∞

𝑠3=𝑛

 
1

𝑎 𝑠2 

𝑠3+𝑙−1

𝑠2=𝑠3

  𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 . 

 Let us denote the right hand side of the last inequality by  𝑣(𝑛). Then  𝑣(𝑛) > 0, and one can easily verify 

that  𝑣 𝑛  is a solution of the difference inequality  

∆𝑣 𝑛 +  
1

𝑏 𝑛 
 

1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

  𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

   𝑣𝛾 𝑛 + 2𝑙 − 𝑘 ≤ 0. 

 Therefore, by Lemma 1[16], the associated delay difference equation (2.5) also has a positive solution, which is a 
contradiction. 

Assume that case(3) holds. As  ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   < 0, we see that 𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   is decreasing. 

Thus, we get 
 

𝑎 𝑠 ∆ 𝑏 𝑠 ∆𝑦 𝑠   ≤  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛       for     𝑠 ≥ 𝑛 ≥ 𝑛1 . 

Dividing the above inequality by  𝑎 𝑠   and summing the resulting inequality from  𝑛 to  𝑁 − 1, we obtain 

𝑏 𝑁 ∆𝑦 𝑁  ≤  𝑏 𝑛 ∆𝑦 𝑛 + 𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   
1

𝑎 𝑠 

𝑁−1

𝑠=𝑛

 . 

Letting  𝑁 → ∞ , we have 

                             𝑏 𝑛 ∆𝑦 𝑛  ≥  −𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛    
1

𝑎(𝑠)

∞

𝑠=𝑛

 .                                                 (2.8) 

Using conditions  𝑦(𝑛) > 0  and  ∆ 𝑏 𝑛 ∆𝑦 𝑛  < 0, we have 

                                              𝑦 𝑛 ≥  𝑏 𝑛 ∆𝑦 𝑛   
1

𝑏 𝑠 

𝑛−1

𝑠=𝑛1

 .                                                                2.9  

Thus,  

                                                          ∆ 
𝑦 𝑛 

 
1

𝑏 𝑠 
𝑛−1
𝑠=𝑛1

 ≤ 0 .                                                                   2.10  

Combining (2.8) and (2.9), we get 
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                             𝑦 𝑛 ≥  −𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛    
1

𝑎 𝑠 

∞

𝑠=𝑛

 
1

𝑏 𝑠 

𝑛−1

𝑠=𝑛1

 .                                          (2.11) 

On the other hand, we have by (2.10) and   𝑛 + 𝑚 ≥ (𝑛 − 𝑘) that 

𝑦𝛾 𝑛 − 𝑘  ≥   
 

1
𝑏 𝑠 

𝑛−𝑘−1
𝑠=𝑛1

 
1

𝑏 𝑠 
𝑛+𝑚−1
𝑠=𝑛1

 

𝛾

 𝑦𝛾 𝑛 + 𝑚   

                                                                   =   
 

1
𝑏 𝑠 

𝑛−𝑘−1
𝑠=𝑛1

 
1

𝑏 𝑠 
𝑛+𝑚−1
𝑠=𝑛1

 

𝛾

 𝑦𝛽 𝑛 + 𝑚 𝑦𝛾−𝛽 𝑛 + 𝑚  .          2.12  

By virtue of (2.10), we have that there exists a constant 𝑐2 such that  𝑦 𝑛 ≤ 𝑐2  
1

𝑏 𝑠 
𝑛−1
𝑠=𝑛1

 .  

Hence by (2.12), we get 

  𝑦𝛾 𝑛 − 𝑘  ≥ 𝑐2
𝛾−𝛽

  
 

1
𝑏 𝑠 

𝑛−𝑘−1
𝑠=𝑛1

 
1

𝑏 𝑠 
𝑛+𝑚−1
𝑠=𝑛1

 

𝛾

 𝑦𝛽 𝑛 + 𝑚    
1

𝑏 𝑠 

𝑛+𝑚−1

𝑠=𝑛1

 

𝛾−𝛽

 

                                              =  𝑐2
𝛾−𝛽

    
1

𝑏 𝑠 

𝑛+𝑚−1

𝑠=𝑛1

 

−𝛽

  
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

𝑦𝛽 𝑛 + 𝑚 .                  2.13  

Using (2.13) in equation (1.1), we have 

∆𝑤 𝑛 + 𝑐2
𝛾−𝛽

 𝑞 𝑛   
1

𝑎 𝑠 

∞

𝑠=𝑛+𝑚

 

𝛽

  
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

 −𝑤 𝑛 + 𝑚  
𝛽

 ≤ 0. 

Writing the last inequality in the form  

∆𝑧 𝑛 − 𝑐2
𝛾−𝛽

 𝑞 𝑛   
1

𝑎 𝑠 

∞

𝑠=𝑛+𝑚

 

𝛽

  
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

𝑧𝛽 𝑛 + 𝑚  ≥ 0. 

From the above inequality and Lemma 1[16], we deduce that the associated advanced difference equation (2.6) also has 

a positive solution, which is a contradiction. This completes the proof.                                                                    

Corollary 2.1. 

Let (1.2) holds and let  𝛼 = 𝛽 = 𝛾 = 1. Assume that there exist two positive integers 𝑙 and  𝑚  with  2𝑙 < 𝑘  and if 

for all sufficiently large  𝑛1 ≥ 𝑛0  and for  𝑛2 > 𝑛1,  

                  lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑠 

𝑛−1

𝑠=𝑛−𝑘

 
 

1
𝑎 𝑢 

𝜇−1
𝑢=𝑛1

𝑏 𝜇 

𝑠−𝑘—1

𝜇=𝑛2

 >  
𝑘

𝑘 + 1
 
𝑘+1

 ,                       2.14  

                     lim
𝑛→∞

𝑖𝑛𝑓  
1

𝑏 𝑠 

𝑛−1

𝑠=𝑛+2𝑙−𝑘

 
1

𝑎 𝑠2 

𝑠+𝑙—1

𝑠2=𝑠

 𝑞 𝑠1 

𝑠2+𝑙—1

𝑠1=𝑠2

>  
𝑘 − 2𝑙

𝑘 − 2𝑙 + 1
 
𝑘−2𝑙+1

              2.15  

and  
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                        lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑠 

𝑛+𝑚—1

𝑠=𝑛+1

 
1

𝑎 𝑢 

∞

𝑢=𝑠+𝑚

 
1

𝑏 𝑢 

𝑠−𝑘—1

𝑢=𝑛1

 >  
𝑚 − 1

𝑚
 
𝑚

,                               2.16  

then every solution of equation (1.1) is oscillatory. 

Proof. 

The proof follows by using Lemma 2.1(ii) and Lemma 2.3 in Theorem 2.1 and therefore the details are omitted.      

Corollary 2.2. 

Let (1.2) holds and let  𝛼 > 1 , 𝛽 > 1  and  𝛾 > 1. Assume that there exist two positive integers  𝑙  and  𝑚  with  

2𝑙 < 𝑘  and if for all sufficiently large  𝑛1 ≥ 𝑛0  and for 𝑛2 > 𝑛1, we have if  𝑘 ≥ 1 and there exists a  𝜆1 >
1

𝑘
 ln 𝛼  such that 

               lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑛   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−𝑘—1

𝑠=𝑛2

 

𝛼

exp −𝑒𝜆1𝑛   > 0,                       2.17  

also there exists a  𝜆2 >
1

𝑘−2𝑙
 ln 𝛾  such that 

                     lim
𝑛→∞

𝑖𝑛𝑓   
1

𝑏 𝑛 
 

1

𝑎 𝑠2 

𝑛+𝑙—1

𝑠2=𝑛

 𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

  exp −𝑒𝜆2𝑛   > 0                              2.18  

and  

                                           𝑞 𝑛  

∞

𝑛=𝑛0

  
1

𝑎 𝑠 

∞

𝑠=𝑛+𝑚

 

𝛽

  
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

= ∞ ,                                  2.19  

then every solution of equation (1.1) is oscillatory. 

Proof. 

             The proof follows by using the Lemma 2.1(iii) and Lemma 2.2 in Theorem 2.1 and therefore the details are 

omitted.                                                                       

Corollary 2.3. 

Let (1.2) holds and let  𝛼 < 1 ,   𝛾 < 1  and  𝛽 = 1. Assume that there exist two positive integers  𝑙  and  𝑚  with  

2𝑙 < 𝑘  and if for all sufficiently large  𝑛1 ≥ 𝑛0  and for  𝑛2 > 𝑛1 ,             

we have  

                                          𝑞 𝑛  

∞

𝑛=𝑛0

   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−𝑘—1

𝑠=𝑛2

 

𝛼

=  ∞,                                                 2.20  

                                         
1

𝑏 𝑛 
 

∞

𝑛=𝑛0

 
1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

 𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 =  ∞                                                  2.21  

and  

                     lim
𝑛→∞

𝑖𝑛𝑓  𝑞 𝑠 

𝑛+𝑚−1

𝑠=𝑛+1

 
1

𝑎 𝑢 
 

∞

𝑢=𝑠+𝑚

 
1

𝑏 𝑢 

𝑠−𝑘−1

𝑢=𝑛1

 >  
𝑚 − 1

𝑚
 
𝑚

,                                   2.22  
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then every solution of equation (1.1) is oscillatory. 

Proof. 

The proof follows by using the Lemma 2.1(i) and Lemma 2.3 in Theorem 2.1 and therefore the details are omitted. 
                                                                                           

Corollary 2.4. 

 Let (1.2) holds and let  𝛼 < 1 ,   𝛾 < 1  and  𝛽 > 1. Assume that there exist two positive integers  𝑙  and  

𝑚  with  2𝑙 < 𝑘  and if for all sufficiently large  𝑛1 ≥ 𝑛0  and for 𝑛2 > 𝑛1, 

                                          𝑞 𝑛  

∞

𝑛=𝑛0

   
 

1
𝑎 𝑢 

𝑠−1
𝑢=𝑛1

𝑏 𝑠 

𝑛−𝑘—1

𝑠=𝑛2

 

𝛼

=  ∞,                                                 2.23  

                                         
1

𝑏 𝑛 
 

∞

𝑛=𝑛0

 
1

𝑎 𝑠2 

𝑛+𝑙−1

𝑠2=𝑛

 𝑞 𝑠1 

𝑠2+𝑙−1

𝑠1=𝑠2

 =  ∞                                                  2.24  

and  

                         𝑞 𝑛 

∞

𝑛=𝑛0

  
1

𝑎 𝑠 
 

∞

𝑠=𝑛+𝑚

 

𝛽

   
1

𝑏 𝑠 

𝑛−𝑘−1

𝑠=𝑛1

 

𝛾

=  ∞,                                                   2.25  

then every solution of equation (1.1) is oscillatory. 

Proof. 

 The proof follows by using the Lemma 2.1(i) and Lemma 2.2 in Theorem 2.1 and therefore the details are 

omitted.                                                                       

Theorem 2.2. 

Let all conditions of Theorem 2.1 hold with (1.2) replaced by (1.3). If  

                                   
1

𝑏 𝑣 
 

∞

𝑣=𝑛0

 
1

𝑎 𝑢 

𝑣−1

𝑢=𝑛0

 𝑞 𝑠 

𝑢−1

𝑠=𝑛0

𝐵𝛾 𝑠 − 𝑘  =  ∞ ,                                          2.26  

then every solution of equation (1.1) is oscillatory. 

Proof. 

 Let   𝑦 𝑛   be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that  

 𝑦 𝑛    is positive. Then there exist four possible cases (1), (2), (3) (as those of Theorem 2.1) and   

 Case(4) :  𝑦 𝑛 > 0,   ∆ 𝑦 𝑛 < 0,   ∆  𝑏 𝑛 ∆𝑦 𝑛  < 0, 

            ∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   <  0 

for  𝑛 ≥ 𝑛1 ,  where  𝑛1 ≥ 𝑛0  is large enough. From the proof of Theorem 2.1, we can eliminate cases (1), (2) and 

(3). Consider now the case (4). Since  ∆ 𝑏 𝑛 ∆𝑦 𝑛  < 0, we get, 

∆𝑦 𝑠  ≤  
𝑏(𝑛)∆𝑦 𝑛 

𝑏(𝑠)
          for    𝑠 ≥ 𝑛.  

Summing this inequality from  𝑛 to 𝑁 − 1 and letting  𝑁 → ∞ implies that  
 

                              𝑦 𝑛 ≥  −𝐵 𝑛 𝐿 𝑛 ∆𝑦 𝑛  ≥ 𝐿𝐵 𝑛                                                                    2.27  



                                                                                   ISSN 2347-1921 

 

 

1538 | P a g e                                                          A p r i l  3 0 ,  2 0 1 4    
 

 

for some constant  𝐿 > 0. From equation (1.1), we have, 

∆  𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛   +  𝐿𝛾𝑞 𝑛 𝐵𝛾 𝑠 − 𝑘 ≤ 0. 

Summing the above inequality from  𝑛1 to 𝑛 − 1, we get 

𝑎 𝑛 ∆ 𝑏 𝑛 ∆𝑦 𝑛  + 𝐿𝛾  𝑞 𝑠 

𝑛−1

𝑠=𝑛1

𝐵𝛾 𝑠 − 𝑘 ≤ 0 . 

Summing again, we obtain 

𝑦 𝑛1 ≥ 𝐿𝛾  
1

𝑏 𝑣 
 

𝑛−1

𝑣=𝑛1

 
1

𝑎 𝑢 

𝑣−1

𝑢=𝑛1

 𝑞 𝑠 

𝑢−1

𝑠=𝑛1

𝐵𝛾 𝑠 − 𝑘  

which contradicts (2.26). This completes the proof.                                

Remark 2.1.  

Based on Theorem 2.2, similar to Corollaries 2.1 – 2.4, one can obtain some oscillation criteria for equation (1.1). The 
details are left to the reader. 

3 Examples 

Example 3.1. 

Consider the third order difference equation  

                         ∆  𝑛2∆ 𝑛∆𝑦 𝑛   +  𝑛3𝑦 𝑛 − 3 = 0 ,                  𝑛 ≥ 1.                                        3.1  

Here,  𝑎 𝑛 = 𝑛2,   𝑏 𝑛 = 𝑛 ,   𝑞 𝑛 = 𝑛3 ,   𝑘 = 3  and 𝛾 = 1.  Choose  𝛼 = 𝛽 = 1   and  𝑙 = 1  and  

𝑚 = 2,  then all conditions of Corollary 2.1 are satisfied and hence every solution of the equation (3.1) is oscillatory.  

Example 3.2. 

Consider the third order difference equation  

                       ∆  𝑛2∆ 𝑛∆𝑦 𝑛   +  𝑛4𝑦3 𝑛 − 3 = 0 ,                  𝑛 ≥ 1.                                        3.2  

Here,  𝑎 𝑛 = 𝑛2,   𝑏 𝑛 = 𝑛 ,   𝑞 𝑛 = 𝑛4 ,    𝑘 = 3 and 𝛾 = 3. Choose  𝛼 =
5

3
 , 𝛽 = 5 and  𝑙 = 1,  then 

it is easy to see  all conditions of Corollary 2.2 are satisfied and hence every solution of the equation (3.2) is oscillatory. 

Example 3.3. 

Consider the third order difference equation  

                         ∆  𝑛3∆ 𝑛∆𝑦 𝑛   +  𝑛6𝑦
1
3 𝑛 − 4 = 0 ,                  𝑛 ≥ 1.                                      3.3  

Here, 𝑎 𝑛 = 𝑛3,   𝑏 𝑛 = 𝑛 ,   𝑞 𝑛 = 𝑛6 ,    𝑘 = 4  and 𝛾 =
1

3
.  Choose 𝛼 =

1

5
, 𝛽 = 1,  𝑙 = 1  and  

𝑚 = 2,  then it is easy to see all conditions of Corollary 2.3 are satisfied. Therefore all solutions of the equation (3.3) are 

oscillatory. 

Example 3.4. 

Consider the third order difference equation  

                         ∆  𝑛3∆ 𝑛∆𝑦 𝑛   +  𝑛5𝑦
3
5 𝑛 − 5 = 0 ,                  𝑛 ≥ 1.                                      3.4  
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Here,  𝑎 𝑛 = 𝑛3,   𝑏 𝑛 = 𝑛 ,   𝑞 𝑛 = 𝑛5 ,    𝑘 = 5    𝑎𝑛𝑑     𝛾 =
3

5
.  Choose 𝛼 =

1

3
, 𝛽 =

5

3
,  𝑙 = 2  and  

𝑚 = 2,  then it is easy to see all conditions of Corollary 2.4 are satisfied. Hence, every solution of the equation (3.4) is 

oscillatory. 
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