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ABSTRACT: 

In this paper , we consider the explicit representation and convergence of Hermite-Lagrange interpolation on two disjoint 

sets of nodes, which are obtained by projecting vertically the zeros of  1-x2 Pn
 𝛼,𝛽  𝑥  and Pn

 𝛼,𝛽 ′ 𝑥  respectively on the 

unit circle , where Pn
 𝛼 ,𝛽  𝑥  stands for Jacobi polynomial.  
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1. INTRODUCTION: 

In a paper, T. N. T. Goodman and A. Sharma [8] considered convergence and divergence behaviour of Hermite 

interpolation in the circle of radius 𝜌
3

2. In addition, T. N. T .Goodman, K.G. Ivanov and A. Sharma [9] considered the 

behaviour of the  Hermite  interpolant  in  the roots  of  unity.  In 1998,   S.  Bahadur and K.  K.  Mathur   [2]   proved the 
convergence of   Quasi - Hermite interpolation   on the   nodes obtained  by  projecting  vertically  the  zeros  of            
 1 − 𝑥2 𝑃𝑛 𝑥 on the unit circle, where 𝑃𝑛 𝑥  stands for n

th
 Legendre polynomial. Later on, the authors [6] considered the 

convergence of Hermite interpolation.  

Earlier, in 1975 L.G. Pál [13] proved that, when function values are prescribed on one set of n points and derivative values 
on another set of n-1 points, then there exists no unique polynomial of degree ≤ 2n-2, but by prescribing function value at 

one more point not belonging to the former set of n points, there exists a unique polynomial of degree ≤ 2𝑛 − 1. Later on, 

many authors ([3] - [16]) have dealt with the above method of interpolation on the various sets of nodes. 

In 2006, M. Lenard [11] considered the weighted (0, 2) Pál-type interpolation problems on the zeros of Legendre 
polynomial 𝑃𝑛 𝑥  and gave the explicit formulae. In another paper, first author considered ([3] [4]) (0,1;0) and (0; 0,1) 

interpolation problem for the vertically projected zeros of the Legendre polynomial on a unit circle. Also, P. Mathur [12] 
considered (0,1; 0) interpolation on infinite interval. Many other mathematicians also worked in the same direction. This 
has motivated us to consider Hermite -Lagrange interpolation on the unit circle. In this paper, we consider two pair wise 

disjoint sets  𝑧𝑘 𝑘=0
2𝑛+1 and  𝑡𝑘 𝑘=1

2𝑛−2 which are the vertically projected zeros of  1-x2 Pn
 𝛼,𝛽  𝑥  and Pn

 𝛼,𝛽 
′ 𝑥  respectively on 

the unit circle. 

Let 𝒁𝒏 =  𝑧𝑘 ∶ 𝑘 = 0 1 2𝑛 + 1  satisfying: 
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𝑻𝒏 =  𝑡𝑘 ∶ 𝑘 = 1 1 2𝑛 − 2  such that
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In section 2, we give some preliminaries and in section 3, we describe the problem and obtained the regularity of the 
same. In section 4, we give the explicit formulae of the interpolatory polynomials. In section 5 and 6, estimation of 

interpolatory polynomials and convergence are given respectively. 

2. PRELIMINARIES: 

In this section, we shall give some well-known results, which we shall use. 

The differential equation satisfied by 
  xPn

 ,
 is 
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We shall require the fundamental polynomials of Lagrange interpolation based on the nodes as zeroes of R(z) and W(z) 
are given by: 

(2.4)         
 

  
  1210, 


 nk

zzzR

zR
zL

kk

k

 

where,      zWzzR 12   
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We will also use the following results 
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We will also use the following well-known inequalities (see [8]) 
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3. THE PROBLEM 

Let  𝑧𝑘 𝑘=0
2𝑛+1 and  𝑡𝑘 𝑘=1

2𝑛−2 be the two disjoint set of nodes obtained by projecting vertically the zeros of the  1-x2 Pn
 𝛼,𝛽  𝑥  

and Pn
 𝛼,𝛽 ′ 𝑥  on the unit circle respectively, we determine the interpolatory polynomials 𝑄𝑛 𝑧  of degree ≤ 6𝑛 + 1 

satisfying the conditions: 

(3.1)         

𝑄𝑛 𝑧𝑘 = 𝛼𝑘 , 𝑘 = 0 1 2𝑛 + 1

𝑄′
𝑛
 𝑧𝑘 = 𝛽𝑘 , 𝑘 = 0 1 2𝑛 + 1

𝑄𝑛 𝑡𝑘 = 𝛼𝑘
∗ , 𝑘 = 1 1 2𝑛 − 2

  

where 𝛼𝑘  ,  𝛽𝑘  𝑎𝑛𝑑 𝛼𝑘
∗  are arbitrary complex numbers. In addition, we are interested in establishing the convergence 

theorem for the same. 

Regularity: 

Theorem 1: Hermite - Lagrange interpolation is regular on  𝑍𝑛  and  𝑇𝑛  . 

Proof: It is sufficient, if we show the unique solution of (3.1) is 𝑄𝑛 𝑧 ≡ 0 , when all data 𝛼𝑘 = 𝛽𝑘 = 𝛼𝑘
∗ = 0. Clearly, in this 

case, we have 𝑄𝑛 𝑧 = 𝑅 𝑧 𝐻 𝑧 𝑞 𝑧 , where q(z) is a polynomial of degree   2n +1. Obviously, 𝑄𝑛 𝑧𝑘 = 0 and  𝑄𝑛 𝑡𝑘 =
0. Then from 𝑄𝑛

′  𝑧𝑘 = 0, we get  𝑞 𝑧𝑘 = 0 . Therefore, we have 𝑞 𝑧 =  𝑎𝑧 + 𝑏 𝑊 𝑧 , where  𝑎 and b are arbitrary 

constants. As, 𝑞 ±1 = 0, we get 

 −𝑎 + 𝑏 𝑊 −1 = 0 

 𝑎 + 𝑏 𝑊 1 = 0 as 𝑊 1 = 𝑊 −1 = 𝐾𝑛 . We get  𝑎 = 𝑏 = 0 

It indicates 𝑄𝑛 𝑧 ≡ 𝑞 𝑧 ≡ 0. Hence, the theorem follows. 

4. EXPLICIT REPRESENTATION OF INTERPOLATORY POLYNOMIALS 

We shall write 𝑄𝑛 𝑧  satisfying (3.1) as: 

(4.1)   𝑄𝑛 𝑧 =  𝛼𝑘𝐴𝑘 𝑧 +   𝛽𝑘𝐵𝑘 𝑧 2𝑛+1
𝑘=0

2𝑛+1
𝑘=0 +  𝛼𝑘

∗𝐶𝑘 𝑧 2𝑛−2
𝑘=1  

 

where ,𝐴𝑘 𝑧  , 𝐵𝑘 𝑧  and 𝐶𝑘 𝑧  are unique fundamental polynomial each of degree atmost 6n+1 determined by the 

following conditions: 
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For k= 0 (1) 2n+1 

(4.2)             

𝐴𝑘 𝑧𝑗  = 𝛿𝑗𝑘  , 𝑗 = 0 1 2𝑛 + 1

𝐴𝑘
′  𝑧𝑗  = 0 , 𝑗 = 0 1 2𝑛 + 1

𝐴𝑘 𝑡𝑗  = 0 , 𝑗 = 1 1 2𝑛 − 2

  

For k= 0(1)2n+1 

(4.3)             

𝐵𝑘 𝑧𝑗  = 0 , 𝑗 = 0 1 2𝑛 + 1

𝐵𝑘
′  𝑧𝑗  = 𝛿𝑗𝑘  , 𝑗 = 0 1 2𝑛 + 1

𝐵𝑘 𝑡𝑗  = 0 , 𝑗 = 1 1 2𝑛 − 2

  

For k= 1(1)2n-2 

(4.4)             

𝐶𝑘 𝑧𝑗  = 0 , 𝑗 = 0 1 2𝑛 + 1

𝐶𝑘
′  𝑧𝑗  = 0 , 𝑗 = 0 1 2𝑛 + 1

 𝐶 𝑡𝑗  = 𝛿𝑗𝑘  , 𝑗 = 1 1 2𝑛 − 2

  

Theorem 2: For k=1(1)2n-2, we have, 

(4.5)    𝐶𝑘 𝑧 =
𝑅2 𝑧 𝑙𝑘 𝑧 

𝑅2 𝑡𝑘 
 

Theorem 3: For k=0(1)2n+1, we have, 

(4.6)    𝐵𝑘 𝑧 =
 𝑧2−1 𝑅 𝑧 𝐻 𝑧 𝐿𝑘 𝑧 

 𝑧𝑘
2−1 𝑅′  𝑧𝑘 𝐻 𝑧𝑘 

 

Theorem 4: For k=0(1)2n+1, we have, 

(4.7)    𝐴𝑘 𝑧 =
𝐻 𝑧 𝐿𝑘

2  𝑧 

𝐻 𝑧𝑘 
−  

𝐻 ′  𝑧𝑘 

𝐻 𝑧𝑘 
+ 2𝐿′𝑘 𝑧𝑘  𝐵𝑘 𝑧  

One can prove theorem 2, 3 and 4 owing to (4.4), (4.3) and (4.2) respectively.  

5.  ESTIMATION OF FUNDAMENTAL POLYNOMIALS: 

Lemma 1: [6] Let  zLk be given by (2.4). Then 
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where c is a constant independent of n and z. 

Lemma 2: Let  zlk be given by (2.5). Then 
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where c is a constant independent of n and z. 

Proof: From maximal principal, we know 

𝜆𝑛 = max
 𝑧 =1

𝜆𝑛 𝑧  

𝜆𝑛 =  




22

1

n

k

k zl  

Let 𝑧 = 𝑥 + 𝑖𝑦 and  𝑧 = 1, then we know, for  0 ≤ arg 𝑧 < 𝜋 and 𝑘 = 1,2, ……… , 𝑛 − 1. 

 zlk =   
  kk tztH

zH


  

Using (2.5) and  𝑧 = 1 and after some computation, we get 
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 zlk =   
 1−𝑥2 

1
2𝑃𝑛

 𝛼 ,𝛽 ′  𝑥  1−𝑥𝑢𝑘+ 1−𝑥2 
1
2 1−𝑢𝑘

2 
1
2 

1
2

 2 1−𝑢𝑘
2 𝑃𝑛

 𝛼 ,𝛽 ′  𝑢𝑘  𝑥−𝑢𝑘 
   

           ≤
 1 − 𝑥2 

1
2  𝑃𝑛

 𝛼,𝛽 ′
 𝑥   1 − 𝑥𝑢𝑘 

1
2

 1 − 𝑢𝑘
2  𝑃𝑛

 𝛼,𝛽 ′
 𝑢𝑘   𝑥 − 𝑢𝑘 

= 𝐺𝑘 𝑥  

Also,      zl kn 𝐺𝑘 𝑥  

Similarly, for 𝜋 ≤ arg 𝑧 < 2𝜋 and k=1, 2, … ,n-1 

  zlk 𝐺𝑘 𝑥 ,       zl kn 𝐺𝑘 𝑥  

Therefore,  for a fixed  𝑧 = 𝑥 + 𝑖𝑦 and  𝑧 = 1 and −1 < 𝑥 < 1 

𝜆𝑛 𝑧 ≤ 2  𝐺𝑘 𝑥 

𝑛

𝑘=1

+  𝑙0 𝑧  +  𝑙2𝑛+1 𝑧   

            = 2  Gk x 
 uk−x ≥

1

2
 1−uk

2 
1
2

+ 2  Gk x + 2
 uk−x <

1

2
 1−uk

2 
1
2

 

Using (2.12) and (2.13), we get the required result. 

Lemma 3: For 𝐶𝑘 𝑧  be given by (4.5) and  𝑧 ≤ 1, we have 

(5.3)      𝐶𝑘 𝑧  ≤ 𝑐 log 𝑛     ,   𝛼2𝑛−2
𝑘=1 , 𝛽 ≤ −

1

2
 

where ,c is a constant independent of n and z. 

Proof:    𝐶𝑘 𝑧  =2𝑛−2
𝑘=1  

𝑅2 𝑧 𝑙𝑘 𝑧 

𝑅2 𝑡𝑘 
 =

 𝑧2−1 
2
𝑊2 𝑧 𝑙𝑘  𝑧 

 𝑡𝑘
2−1 

2
𝑊2 𝑡𝑘  

 

Using (2.8), (2.10), (2.12) and Lemma 2, we get the required result. 

Lemma 4: For 𝐵𝑘 𝑧  be given by (4.6) and  𝑧 ≤ 1, we have 

(5.4)          𝐵𝑘 𝑧  ≤
𝑐 log 𝑛

𝑛

2𝑛+1
𝑘=0 ;  𝛼, 𝛽 ≤ −

1

2
 

where c is a constant independent of n and z. 

Proof: Proof of this Lemma is similar to Lemma 3. 

Lemma 5: For 𝐴𝑘 𝑧  be given by (4.7) and  𝑧 ≤ 1, we have 

(5.5)      𝐴𝑘 𝑧  ≤ 𝑐 log 𝑛     , 𝑤ℎ𝑒𝑟𝑒   𝛼2𝑛+1
𝑘=0 , 𝛽 ≤ −

1

2
 

where, c is a constant independent of n and z. 

Proof: For  𝑧 ≤ 1, we get 

(5.6)       
𝐻 𝑧 𝐿𝑘

2  𝑧 

𝐻 𝑧𝑘 
≤  

𝑐

𝑘
−3𝛼+

3
2

2𝑛+1
𝑘=0

2𝑛+1
𝑘=0  

and 

(5.7)          
𝐻 ′  𝑧𝑘 

𝐻 𝑧𝑘 
+ 2𝐿′𝑘 𝑧𝑘  

2𝑛+1
𝑘=0 ≤ 𝑐𝑛 

Using (5.6) and (5.7) in (4.7), we get the required result. 

6. CONVERGENCE: 

Let f (z) be continuous in  𝑧 ≤ 1 and analytic in  𝑧 < 1 and 𝜔 𝑓, 𝛿  be the modulus of continuity of 𝑓 𝑒𝑖𝑥 . 
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Theorem 5: Let f (z) be continuous in 1z   and analytic in 1z  . Let the arbitrary number𝑠 𝛽𝑘 ‘s be such that: 

(6.1)        𝛽𝑘  = 𝑜(𝑛𝜔(𝑓, 𝑛−1) )   , 𝑘 = 0 1 2𝑛 + 1 

Then {𝑄𝑛 } be defined by: 

 

 6.2          𝑄𝑛 𝑧 =  𝑓 𝑧𝑘 

2𝑛+1

𝑘=0

𝐴𝑘 𝑧 +  𝛽𝑘

2𝑛+1

𝑘=0

𝐵𝑘 𝑧 +  𝑓 𝑡𝑘 𝐶𝑘 𝑧 

2𝑛−2

𝑘=1

 

 
satisfies the relation 

 6.3            𝑄𝑛 𝑧 − 𝑓 𝑧  = 𝑜 𝜔 𝑓,𝑛−1 log𝑛  

 

where, 𝜔 𝑓, 𝑛−1  is the modulus of continuity of f(z). 

Remark: 

To prove theorem 5, we shall need the following: 

Let f (z) be continuous in 1z   and analytic in 1z . Then there exists a polynomial  zFn  of degree 6n+1 satisfying 

Jackson’s inequality  

           20ez    ,     ,         6.4 i1  nfczFzf n  

And also an inequality due to O. Kiš [3]  

         Imfor    ,     ,F         5.6 1m

n nfcnz m
 

Proof: Since 𝑄𝑛 𝑧 be given by (6.2) is a uniquely determined polynomial of degree ≤ 6𝑛 + 1, the polynomial 

𝐹𝑛 𝑧   satisfying (6.4) and (6.5) can be expressed as: 

𝐹𝑛 𝑧 =  𝐹𝑛 𝑧𝑘 

2𝑛+1

𝑘=0

𝐴𝑘 𝑧 +  𝐹𝑛 ′ 𝑧𝑘 

2𝑛+1

𝑘=0

𝐵𝑘 𝑧 +  𝐹𝑛 𝑡𝑘 𝐶𝑘 𝑧 

2𝑛−2

𝑘=1

 

Then, 

 𝑄𝑛 𝑧 − 𝑓 𝑧  ≤  𝑄𝑛 𝑧 − 𝐹𝑛 𝑧  +  𝐹𝑛 𝑧 − 𝑓 𝑧   

≤   𝑓 𝑧𝑘 − 𝐹𝑛 𝑧𝑘  

2𝑛+1

𝑘=0

 𝐴𝑘 𝑧  +    𝛽𝑘  +  𝐹𝑛 ′ 𝑧𝑘   

2𝑛+1

𝑘=0

 𝐵𝑘 𝑧  +   𝑓 𝑡𝑘 − 𝐹𝑛  𝑡𝑘  

2𝑛−2

𝑘=1

 𝐶𝑘 𝑧  

+  𝐹𝑛 𝑧 − 𝑓 𝑧   
Using   𝑧 = 𝑒𝑖𝜃  0 ≤ 𝜃 < 2𝜋  , (6.1), (6.4), (6.5) and Lemma 2, 3 and 5, we get (6.3). 
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