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1. Introduction 

The Banach contraction principle is the most natural and significant result of fixed point theory. It has become one of the 
most fundamental and powerful tools of nonlinear analysis because of its wide range of applications to nonlinear equations 
arising  in physical and biological processes ensuring the existence and uniqueness of solutions. It is widely considered as 
the source of metric fixed point theory. Also, its significance lies in its vast applicability in a number of branches of 
mathematics. Generalization of the above principle has been done by various mathematicians see  [1,3,7,8,20-26]. 
Existence of a fixed point for contraction type mappings in partially ordered metric space and applications have been 
considered by many authors.There already exists an extensive literature on this topic, but keeping in view the relevance of 
this paper, we merely refer to  [3-6,10-13,15,18,19,25-26]. 

 Bhaskar and Lakshmikantham [25] introduced the notions of mixed monotone property and coupled fixed point for the 
contractive mapping F : X ×X→X, where X is a partially ordered metric space and proved some coupled fixed point 

theorems for a mixed monotone operator. As an application of the coupled fixed point theorems, they determined the 
existence and uniqueness of the solution of a periodic boundary value problems. It is very natural to extend the definition 
of 2-dimensional fixed point (coupled fixed point), 3-dimensional fixed point (tripled fixed point), 4-dimensional fixed point 
(quadrupled fixed point) and so on to multidimensional fixed point (n-tuple fixed point) ,(see also [4,5,9,16, 17,19]). The 
last remarkable result of this trend was given by M.Imdad et al. [13] by introducing the notion of multidimensional fixed 
points.(see also[1,4,12,15,18,24]). 

The purpose of this paper is to establish some n-tupled coincidence and fixed point results for compatible maps in 
complete partially ordered  metric spaces. Our results generalize and improve the results of  [4,7,8,12,13,15,19,25,26].  

2. Prilimaries: 

As usual, this section is devoted to preliminaries which include some basic definitions and results related to coupled fixed 
point and n-tupled fixed point in partially ordered  metric spaces. 

Definition 2.1 [26]  Let ( X, ⪯ )  be a partially ordered set equipped with a metric  d such that  

(X, d) is a metric space. Further, equip the product space 𝑋 × 𝑋 with the following partial ordering: 

For  𝑥, 𝑦 , (𝑢, 𝑣) ∈ 𝑋 × 𝑋, define  𝑢, 𝑣 ⪯  𝑥, 𝑦  𝑥 ⪰ 𝑢, 𝑦 ⪯ 𝑣. 

Definition 2.2 [26] Let (X, ≤)  be a partially ordered set and F: X →X  then F enjoys the mixed monotone property if F(x, y) 

is monotonically non-decreasing in x and monotonically non-increasing in y, that is, for any x, y ∈X, 

𝑥1 , 𝑥2 ∈ 𝑋, 𝑥1 ≤ 𝑥2  𝐹(𝑥1 , 𝑦)⪯ 𝐹(𝑥2 , 𝑦) and 𝑦1, 𝑦2𝜖𝑋, 𝑦1 ⪯ 𝑦2  𝐹(𝑥, 𝑦1)⪰ 𝐹 𝑥, 𝑦2 . 

Definition 2.3 [26]  Let (X, ⪯)  be a partially ordered set and 𝐹: 𝑋 × 𝑋 → 𝑋,  then (x, y) ∈ 𝑋 × 𝑋 is  called a coupled fixed 

point of the mapping F if 𝐹 𝑥, 𝑦 = 𝑥  and  𝐹 𝑦, 𝑥 = 𝑦.   

Definition 2.4 [26] Let (X, ⪯) be a partially ordered set and 𝐹: 𝑋 × 𝑋 →  𝑋 and 𝑔 ∶  𝑋 → 𝑋   then 𝐹 enjoys the mixed g-

monotone property if 𝐹(𝑥, 𝑦) is monotonically g-non-decreasing in 𝑥 and monotonically g-non-increasing in 𝑦, that is ,for 

any 𝑥, 𝑦 ∈ 𝑋, 

𝑥1 , 𝑥2 ∈ 𝑋, 𝑔(𝑥1) ⪯ 𝑔 𝑥2  𝐹 𝑥1 , 𝑦 ⪯ 𝐹 𝑥2 , 𝑦 , for any 𝑦 ∈ 𝑋, 

𝑦1, 𝑦2 ∈ 𝑋, 𝑔(𝑦1) ⪯ 𝑔(𝑦2)  𝐹(𝑥, 𝑦1)⪰ 𝐹(𝑥, 𝑦2), for any 𝑥 ∈ 𝑋. 

Definition 2.5 [26]  Let (𝑋, ⪯)  be a partially ordered set and 𝐹 ∶  𝑋 × 𝑋 →  𝑋  and  𝑔 ∶  𝑋 → 𝑋 , then (𝑥, 𝑦)  ∈ 𝑋 × 𝑋 is called 

a coupled coincidence point of the maps 𝐹 and 𝑔  if 𝐹 𝑥, 𝑦 = 𝑔𝑥  and  𝐹 𝑦, 𝑥 = 𝑔𝑦.   

Definition 2.6 [26]  Let (𝑋, ⪯)  be a partially ordered set, then (𝑥, 𝑦)  ∈  𝑋 × 𝑋 is called a coupled fixed  point of the maps 

 𝐹 ∶  𝑋 × 𝑋 →  𝑋  and  𝑔 ∶  𝑋 → 𝑋  if 𝑔𝑥 = 𝐹 𝑥, 𝑦 = 𝑥  and  𝑔𝑦 = 𝐹 𝑦, 𝑥 = 𝑦.   

M. Imdad et.al [13] propounded  the idea of n-tupled coincidence points and n-tupled fixed points by taking r as even 
natural number as follows:  

Definition 2.7[13] Let ( X, ⪯ )  be a partially ordered set and 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 then F is said to have  the mixed monotone 

property if F  is non-decreasing in its odd position arguments and non-increasing in its even positions arguments , that is, 
if, 

(i) For all 𝑥1
1 , 𝑥2

1 ∈ 𝑋, 𝑥1
1 ⪯ 𝑥2

1  𝐹 𝑥1
1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 ⪯ 𝐹 𝑥2

1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 , 

(ii) For all 𝑥1
2 , 𝑥2

2 ∈ 𝑋, 𝑥1
2 ⪯ 𝑥2

2  𝐹 𝑥1 , 𝑥1
2 , 𝑥3 , … 𝑥𝑟 ⪰ 𝐹 𝑥1 , 𝑥2

2, 𝑥3, … , 𝑥𝑟 , 

(iii) For all 𝑥1
3 , 𝑥2

3 ∈ 𝑋, 𝑥1
3 ⪯ 𝑥2

3  𝐹 𝑥1 , 𝑥2 , 𝑥1
3 , 𝑥4, … , 𝑥𝑟 ⪯ 𝐹 𝑥1 , 𝑥2, 𝑥2

3 , 𝑥4, … , 𝑥𝑟 , 

… 

For all 𝑥1
𝑟 , 𝑥2

𝑟 ∈ 𝑋, 𝑥1
𝑟 ⪯ 𝑥2

𝑟  𝐹 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥1
𝑟 ⪰ 𝐹 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥2

𝑟 . 
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Definition 2.8[13] Let ( X, ⪯ )  be a partially ordered set and 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 and g: X→X be two maps. Then F is said to 

have  the mixed g-monotone property if F  is g-non-decreasing in its odd position arguments and g-non-increasing in its 
even positions arguments , that is, if , 

(i) For all 𝑥1
1 , 𝑥2

1 ∈ 𝑋, 𝑔𝑥1
1 ⪯ 𝑔𝑥2

1  𝐹 𝑥1
1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 ≤ 𝐹 𝑥2

1 , 𝑥2 , 𝑥3 , … , 𝑥𝑟 , 

(ii) For all 𝑥1
2 , 𝑥2

2 ∈ 𝑋, 𝑔𝑥1
2 ⪯ 𝑔𝑥2

2  𝐹 , 𝑥1 , 𝑥1
2, 𝑥3 , … , 𝑥𝑟 ⪰ 𝐹 𝑥1 , 𝑥2

2 , 𝑥3, … , 𝑥𝑟 , 

(iii) For all 𝑥1
3 , 𝑥2

3 ∈ 𝑋, 𝑔𝑥1
3 ⪯ 𝑔𝑥2

3  𝐹 𝑥1 , 𝑥2, 𝑥1
3 , … , 𝑥𝑟 ≤ 𝐹 𝑥1 , 𝑥2 , 𝑥2

3, … , 𝑥𝑟 , 

… 

For all 𝑥1
𝑟 , 𝑥2

𝑟 ∈ 𝑋, 𝑔𝑥1
𝑟 ⪯ 𝑔𝑥2

𝑟  𝐹 𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥1
𝑟 ⪰ 𝐹 𝑥1 , 𝑥2 , … , 𝑥2

𝑟 . 

Definition 2.9[13]  Let X  be a nonempty set. An element  𝑥1 , 𝑥2, 𝑥3, …… . . , 𝑥𝑟 ∈  𝑋𝑖𝑟
𝑖=1  is called an r-tupled fixed point  

of the mapping 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 if  

𝑥1 = 𝐹 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 , 

                                                                      

𝑥2 = 𝐹 𝑥2, 𝑥3, … , 𝑥𝑟 , 𝑥1 , 

                

𝑥3 = 𝐹 𝑥3, … , 𝑥𝑟 , 𝑥1 , 𝑥2 , 

                                                                                …. 

                                                                     

                                                                             𝑥𝑟 = 𝐹 𝑥𝑟 , 𝑥1 , 𝑥2 , … , 𝑥𝑟−1 . 

Definition 2.10[13] Let X  be a nonempty set. An element  𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 ∈  𝑋𝑖𝑟
𝑖=1  is called an r-tupled coincidence  

point  of the maps  𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋  and  𝑔 ∶  𝑋 → 𝑋 if  

𝑔𝑥1 = 𝐹 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 , 

                                                                      

𝑔𝑥2 = 𝐹 𝑥2 , 𝑥3 , … , 𝑥𝑟 , 𝑥1 , 

                

𝑔𝑥3 = 𝐹 𝑥3 , … , 𝑥𝑟 , 𝑥1 , 𝑥2 , 

                                                                          … 

   𝑔𝑥𝑟 = 𝐹 𝑥𝑟 , 𝑥2 , 𝑥3, … , 𝑥𝑟−1 . 

Definition 2.11[13] Let X  be a nonempty set. An element  𝑥1 , 𝑥2 , 𝑥3, …… . . , 𝑥𝑟 ∈  𝑋𝑖𝑟
𝑖=1  is called an r-tupled fixed  point  

of the maps  𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋  and  𝑔 ∶  𝑋 → 𝑋 if  

𝑥1 = 𝑔𝑥1 = 𝐹 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 , 

                                                                      

𝑥2 = 𝑔𝑥2 = 𝐹 𝑥2, 𝑥3 , … , 𝑥𝑟 , 𝑥1  

                                                                        … 

  𝑥𝑟 = 𝑔𝑥𝑟 = 𝐹 𝑥𝑟 , 𝑥1, 𝑥2 , … , 𝑥𝑟−1 . 

Imdad et al. [13], assuming r as even natural number  proved the following  theorem: 

Theorem  3.1 Let ( X, ⪯ )  be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.  

Assume that there is a function    : 0, 0,     with  t t    and  lim𝑟→𝑡+ 𝜑 𝑟 < 𝑡 for each  t > 0. Further let 

𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 and g: X→X be two maps such that  F has the mixed g-monotone property satisfying the following 

conditions: 

(i) 𝐹( 𝑋𝑖𝑟
𝑖=1 ) ⊆ 𝑔(𝑋), 

(ii) g is continuous and monotonically increasing , 

(iii) the  pair (g, F) is commuting, 

(iv) 𝑑 𝐹 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑟  ≤  𝜑  
1

𝑟
 𝑑 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛  𝑟
𝑛=1   

for all  𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 , 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑟 ∈ 𝑋, with 𝑔𝑥1 ⪯ 𝑔𝑦1, 𝑔𝑥2 ⪰ 𝑔𝑦2,  

𝑔𝑥3 ⪯ 𝑔𝑦3 , … , 𝑔𝑥𝑟 ⪰ 𝑔𝑦𝑟 . Also, suppose that either 

(a) F is continuous or 
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(b) X has the following properties: 

(i)       If a  non-decreasing sequence  𝑥𝑛 → 𝑥 then 𝑥𝑛 ⪯ 𝑥 for all 𝑛 ≥ 0.  

(ii) If a non-inecreasing sequence  𝑦𝑛 → 𝑦 then 𝑦 ⪯ 𝑦𝑛  for all 𝑛 ≥ 0. 

If there exist 𝑥0
1 , 𝑥0

2 , 𝑥0
3 , … , 𝑥0

𝑟 ∈ 𝑋 such that  

    (iv)                      𝑔𝑥0
1 ⪯ 𝐹 𝑥0

1, 𝑥0
2 , 𝑥0

3, … , 𝑥0
𝑟 , 

                               𝑔𝑥0
2 ⪰ 𝐹 𝑥0

2 , 𝑥0
3, … , 𝑥0

𝑟 , 𝑥0
1 , 

                               𝑔𝑥0
3 ⪯ 𝐹 𝑥0

3 , … , 𝑥0
𝑟 , 𝑥0

1 , 𝑥0
2 , 

                               …                

                               𝑔𝑥0
𝑟 ⪰ 𝐹 𝑥0

𝑟 , 𝑥0
1 , 𝑥0

2 , 𝑥0
3, … , 𝑥0

𝑟−1 . 

Then F and g  have a r-tupled  coincidence point, i. e there exist 𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑟 ∈ 𝑋 such that 

     (v)                  𝑔𝑥1 =  𝐹 𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑟 , 

                            𝑔𝑥2 = 𝐹 𝑥2, 𝑥3, … , 𝑥𝑟 , 𝑥1 , 

                            gx3 = F x3 , … , xr , x1 , x2 , 

                            …                

                          𝑔𝑥𝑟 = 𝐹 𝑥𝑟 , 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟−1 . 

Main Results:  

Remark 3.1 Regarding the definitions (2.9) and (2.10), we  notice that,  in the case n = 3,  

                          𝑔𝑥1 = 𝐹 𝑥1 , 𝑥2 , 𝑥3 ,  

                          𝑔𝑥2 = 𝐹 𝑥2, 𝑥3 , 𝑥1 , 

                          𝑔𝑥3 = 𝐹 𝑥3, 𝑥1 , 𝑥2 , 

do not extend the notion of tripled coincidence point by Brinde and Borcut [2]. Therefore their results are not extensions of 
well known results in tripled case and hence we can say that the odd case is not well posed. 

Remark 3.2  Also, we see  that the system of equations defined in (2.7) is not suitable to work with the classical mixed 

monotone property when r is odd . For example, if  r = 5 and  F is monotone non-decreasing  in its odd arguments and 
monotone non-increasing in its even arguments, then the equations 

𝑥1 = 𝐹 𝑥1 , 𝑥2 , 𝑥3, 𝑥4, 𝑥5    (𝑥1 and  𝑥5 are placed in non-decreasing arguments of F) and  

𝑥2 = 𝐹 𝑥2 , 𝑥3 , 𝑥4, 𝑥5 , 𝑥1   (𝑥1 and  𝑥5are placed in arguments of different monotone type of F) 

Do not let us to show the existence of fixed points using the classical mixed monotone property. 

To make the paper free from these flaws, we recall here the concept of multidimensional fixed point/ coincidence point 
introduced by Roldan et. al [1], which is an extension of  Berzig and Samet’s notion given in [18]. 

Henceforth, X will denote a non-empty set and  𝑋𝑟  will denote the product space  𝑋 × 𝑋 × … .× 𝑋 and r as a general natural 

number. Also,  fix  a partion   𝐴, 𝐵  of 𝐴𝑛 =  1,2,… , 𝑛 , that is 𝐴𝑛 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 = ∅  where  𝐴 and 𝐵 are non-empty 

sets. We will denote: 

ῼ
𝐴,𝐵

=  𝜎: 𝐴𝑛 → 𝐴𝑛 : 𝜎 𝐴 ⊆ 𝐴 𝑎𝑛𝑑 𝜎 𝐵 ⊆ 𝐵   and 

ῼ𝐴,𝐵
/

=  𝜎: 𝐴𝑛 → 𝐴𝑛 : 𝜎 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝜎 𝐵 ⊆ 𝐴  . 

If   𝑋, ⪯  is a partially ordered space, ,x y X and 𝑖 ∈ 𝐴𝑛 ,  we will use the following  notation: 

𝑥 ⪯𝑖 𝑦   
𝑥 ⪯ 𝑦, 𝑖𝑓  𝑖 ∈ 𝐴,
𝑥 ⪰ 𝑦, 𝑖𝑓  𝑖 ∈ 𝐵.

  

Consider  on the product space  𝑋𝑟 , the following partial order:  

   𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑟 , 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑟 ∈ 𝑋𝑟 ,   𝑥 ⊆ 𝑦  𝑥𝑖 ⪯𝑖 𝑦𝑖  , for all  𝑖. 

We say that  two points 𝑥 and 𝑦 are comparable if 𝑥 ⊆ 𝑦 or 𝑦 ⊆ 𝑥. 

Definition3.1  Let   𝑋, ⪯  be a partially ordered space with the maps  𝐹: 𝑋𝑟 → 𝑋  and 𝑔: 𝑋 → 𝑋.  We say that F has the 

mixed g-monotone property   𝑤. 𝑟. 𝑡   𝐴, 𝐵    if F is monotone g- nondecreasing in arguments of A and monotone g-non 

increasing in arguments of B, i.e, for all  𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑦, 𝑧 ∈ 𝑋 for all 𝑖, 

𝑔𝑦 ⪯ 𝑔𝑧   𝐹 𝑥1 , 𝑥2, … , 𝑥𝑖−1 , 𝑦, 𝑥𝑖+1, … , 𝑥𝑟  ⪯𝑖 𝐹 𝑦
1 , 𝑦2 , … , 𝑦𝑖−1, 𝑧, 𝑦𝑖+1 , … , 𝑦𝑟  . 
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Henceforth, let 𝜎1, 𝜎2, … , 𝜎𝑛 : 𝐴𝑛 → 𝐴𝑛  be 𝑛 mappings from  𝐴𝑛  into itself and let 𝛾 be the  𝑛-tupple  𝜎1 , 𝜎2, … , 𝜎𝑛 . The main 

aim of this paper is to study the following class of multidimensional fixed points. 

Definition 3.2  A point  𝑥1 , 𝑥2, … , 𝑥𝑟  ∈ 𝑋𝑟  is called a 𝛾-fixed point of the mapping F if  

𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … 𝑥𝜎𝑖(𝑟) = 𝑥𝑖   for all 𝑖. 

Example 1 Let (R, d) be a partial ordered metric space under natural setting and let 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 be mapping defined by 

 𝐹 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 = sin⁡ 𝑥1 ∙ 𝑥2 ∙ 𝑥3 ∙ … .∙ 𝑥𝑟 , for any  𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 ∈ 𝑋,  then (0,0,0,…,0) is an r-tupled fixed point of F. 

Definition 3.3  A point  𝑥1 , 𝑥2, … , 𝑥𝑟  ∈ 𝑋𝑟  is called a 𝛾-coincidence  point of the mappings 𝐹: 𝑋𝑟 → 𝑋  and  𝑔: 𝑋 → 𝑋 if 

𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … 𝑥𝜎𝑖(𝑟) = 𝑔𝑥𝑖   for all  𝑖. 

Example 2 Let (R, d) be a partial ordered metric space under natural setting and let 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 and  𝑔 ∶  𝑋 → 𝑋 be 

maps defined by 

 𝐹 𝑥1 , 𝑥2 , 𝑥3, … , 𝑥𝑟 = sin𝑥1 ∙ 𝑐𝑜𝑠𝑥2 ∙ sin𝑥3 ∙ cos𝑥4 ∙ … ∙ sin𝑥𝑟−1 ∙ cos𝑥𝑟 ,  

𝑔 𝑥 = sin𝑥, 

for any  𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 ∈ 𝑋, then    𝑥1 , 𝑥2, 𝑥3, … , 𝑥𝑟 , 𝑥𝑖 = 𝑚𝜋,𝑚 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑟  is an r-tupled coincidence  point of F and 

g. 

Definition 3.4  A point  𝑥1 , 𝑥2, … , 𝑥𝑟  ∈ 𝑋𝑟  is called a 𝛾-fixed point of the mappings 𝐹: 𝑋𝑟 → 𝑋  and  𝑔: 𝑋 → 𝑋 if  

𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … 𝑥𝜎𝑖(𝑟) = 𝑔𝑥𝑖 = 𝑥𝑖  for all  𝑖. 

Definition 3.5  An  ordered metric space   𝑋, 𝑑  is said to have the sequential g-monotone property if it saitisfies: 

(i) If   𝑥𝑚   is a non-decreasing sequence and   𝑥𝑚  
𝑑
→ 𝑥, then 𝑔𝑥𝑚  ⪯ 𝑔𝑥 for all 𝑚. 

(ii) If   𝑥𝑚   is a non-increasing sequence and   𝑥𝑚  
𝑑
→ 𝑥, then 𝑔𝑥𝑚  ⪰ 𝑔𝑥 for all 𝑚. 

If g is the identity mapping, then  X  is said to have sequential  monotone property. 

Now, we define the concept of compatible maps for r-tupled maps. 

Definition 3.6 [24]  Let ( X, ⪯ )  be a partially ordered set, then the maps  𝐹: 𝑋𝑟  → 𝑋  and  𝑔 ∶  𝑋 → 𝑋 are called 

compatible if  

                    lim𝑛→∞ 𝑔  𝐹  𝑥𝑛
𝜎𝑖(1)

, 𝑥𝑛
𝜎𝑖(2)

, … , 𝑥𝑛
𝜎𝑖(𝑟)

 , 𝐹  𝑔𝑥𝑛
𝜎𝑖(1)

, 𝑔𝑥𝑛
𝜎𝑖(2)

, … , 𝑔𝑥𝑛
𝜎𝑖(𝑟)

  = 0, for all 𝑖, 

whenever, 𝑥𝑛
1 ,  𝑥𝑛

2 ,  𝑥𝑛
3 , … ,  𝑥𝑛

𝑟   are sequences in X such that 

lim
𝑛→∞

𝐹  𝑥𝑛
𝜎𝑖(1)

, 𝑥𝑛
𝜎𝑖(2)

, 𝑥𝑛
𝜎𝑖(3)

, … , 𝑥𝑛
𝜎𝑖(𝑟)

 = lim
𝑛→∞

𝑔 𝑥𝑛
𝑖  = 𝑥𝑖 , for all 𝑖, for some 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 ∈ 𝑋. 

Remark 3  If one represent  a mapping 𝜎 ∶  𝐴𝑛 → 𝐴𝑛  throughout its order image, that is,  𝜎 =  𝜎 1 , 𝜎 2 , … , 𝜎 𝑟  , then  

(i) G-Bhaskar and Lakshmikantham’s election in  𝑛 = 2  is 𝜎1 = 𝜏 = (1,2)  and 𝜎2 = (2,1) 

(ii) Berinde and Borcut’s election in  𝑛 = 3  is 𝜎1 = 𝜏 = (1,2,3) , 𝜎2 = (2,1,2) and 𝜎3 = (3,2,1) 

(iii) Karapinar’s election in  𝑛 = 4  is 𝜎1 = 𝜏 = (1,2,3,4) , 𝜎2 = (2,3,4,1), 𝜎3 = (34,1,2) and 𝜎4 = (4,1,2,3) 

These cases consider A as the odd numbers in  1,2, … , 𝑛  and B as its even numbers. However, for Berzig and Samet 

[18], use  𝐴 =  1,2, … ,𝑚 , 𝐵 =  𝑚 + 1,… , 𝑛  and arbitrary mappings. 

For our main result, we state the following lemma: 

Lemma 1 [4]  If  𝑥𝑚  𝑚∈𝑁   is a sequence in a metric space  𝑋, 𝑑  that is not Cauchy, then there exists 𝜀0 > 0  and two 

subsequences  𝑥𝑚 𝑘  𝑘∈𝑁and  𝑥𝑛 𝑘  𝑘∈𝑁such that, for all 𝑘 ∈ 𝑁, 

𝑘 < 𝑚 𝑘 < 𝑛 𝑘 < 𝑚 𝑘 + 1 , 𝑑 𝑥𝑚(𝑘), 𝑥𝑛(𝑘) ≥ 𝜀0 and 𝑑 𝑥𝑚(𝑘), 𝑥𝑛 𝑘 −1 < 𝜀0. 

Now, we prove our main result as follows: 

Theorem  3.1 Let ( X, ⪯ )  be a complete ordered  metric space. Let 𝛾 =  𝜎1, 𝜎2, … , 𝜎𝑛   be n-tuple of mappings from 

 1,2,… , 𝑛  into itself  verifying  𝜎𝑖 ∈ ῼ
𝐴,𝐵

 if  𝑖 ∈ 𝐴 and   𝜎𝑖 ∈ ῼ𝐴,𝐵
/

 if  𝑖 ∈ 𝐵. Assume that there is a function 

   : 0, 0,     with  t t    and  lim𝑟→𝑡+ 𝜑 𝑟 < 𝑡 for each  t > 0. Further let 𝐹: 𝑋𝑟 → 𝑋 and g: X → X be two 

maps such that  F has the mixed g-monotone property satisfying the following conditions: 

(3.1) 𝐹 𝑋𝑟 ⊆ 𝑔 𝑋 , 

(3.2)  g is  continuous, 

(3.3)  the  pair (g, F) is compatible, 
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(3.4)   𝑑 𝐹 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑟  ≤ 𝜑 𝑚𝑎𝑥  𝑑 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛     , 

for all  𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 , 𝑦1 , 𝑦2 , 𝑦3 , … , 𝑦𝑟 ∈ 𝑋, 𝑛 = 1,2, … , 𝑟  and  𝑔𝑥𝑖 ≤𝑖 𝑔𝑦
𝑖 , for all 𝑖.  

Also, suppose that either 

(c) F is  continuous or 

(d) X  has  the sequential g-monotone property.  

If there exist 𝑥0
1 , 𝑥0

2 , 𝑥0
3 , … , 𝑥0

𝑟 ∈ 𝑋 such that  

𝑔𝑥0
𝑖  ≤𝑖  𝐹  𝑥0

𝜎𝑖 1 , 𝑥0
𝜎𝑖 2 , … , 𝑥0

𝜎𝑖 𝑟    for all 𝑖, then F and g have atleast one 𝛾 - coincidence point. 

Proof. Starting with  𝑥0
1 , 𝑥0

2, 𝑥0
3, … , 𝑥0

𝑟 ∈ 𝑋 , we define the sequences  𝑥𝑛
1 ,  𝑥𝑛

2 ,  𝑥𝑛
3 , … ,  𝑥𝑛

𝑟   in X  as  follows: 

(3.5)              𝑔𝑥𝑛+1
𝑖 = 𝐹  𝑥𝑛

𝜎𝑖 1 , 𝑥𝑛
𝜎𝑖 2 , 𝑥𝑛

1 , … , 𝑥𝑛
𝜎𝑖 𝑟  , for all 𝑛 and all  𝑖. 

Now, by induction we can prove that 

(3.6)     𝑔𝑥𝑛
𝑖 ≤𝑖 𝑔𝑥𝑛+1

𝑖  for all  𝑛,  

As  𝑔𝑥0
𝑖  ≤𝑖  𝐹  𝑥0

𝜎𝑖 1 , 𝑥0
𝜎𝑖 2 , … , 𝑥0

𝜎𝑖 𝑟  = 𝑔𝑥1
𝑖 , for all 𝑖, (where 𝑖 take all the values in A or B at the same time). Suppose that  

(3.6)holds for n and we are going to prove it for n+1. The induction hypothesis is  

(3.7)      𝑔𝑥𝑛
𝑖 ≤𝑖 𝑔𝑥𝑛+1

𝑖     
𝑔𝑥𝑛

𝑖 ≤ 𝑔𝑥𝑛+1
𝑖 , 𝑖 ∈ 𝐴

𝑔𝑥𝑛
𝑖 ≥ 𝑔𝑥𝑛+1

𝑖 , 𝑖 ∈ 𝐵
  

Now, we want to prove that  𝑔𝑥𝑛+1
𝑖 ≤𝑖 𝑔𝑥𝑛+2

𝑖  for all 𝑖, i.e  𝑔𝑥𝑛+1
𝑖 ≤ 𝑔𝑥𝑛+2

𝑖 , 𝑖 ∈ 𝐴 and 𝑔𝑥𝑛+1
𝑖 ≥ 𝑔𝑥𝑛+2

𝑖 , 𝑖 ∈ 𝐵. Therefore, we 

have to distinguish   between  whether 𝑖 ∈ 𝐴  𝑜𝑟 𝑖 ∈ 𝐵. Suppose that 𝑖 ∈ 𝐴 and F is g-monotone non-decreasing   in  A-

arguments with the first inequality of  (3.7) and deduce that, for all  𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝑋: 

𝑔𝑥𝑛
𝑗
≤ 𝑔𝑥𝑛+1

𝑗
 𝐹 𝑎1, 𝑎2, … , 𝑎𝑠−1 , 𝑥𝑛

𝑗
, 𝑎𝑠+1 , … , 𝑎𝑚 ≤ 𝐹 𝑎1, 𝑎2 , … , 𝑎𝑠−1, 𝑥𝑛+1

𝑗
, 𝑎𝑠+1, … , 𝑎𝑚 , if 𝑗, 𝑠 ∈ 𝐴, and F is g-monotone non-

increasing  in B-arguments with the second inequality of (3.7)  

𝑔𝑥𝑛
𝑗
≥ 𝑔𝑥𝑛+1

𝑗
 𝐹 𝑎1, 𝑎2, … , 𝑎𝑠−1 , 𝑥𝑛

𝑗
, 𝑎𝑠+1 , … , 𝑎𝑚 ≤ 𝐹 𝑎1, 𝑎2 , … , 𝑎𝑠−1, 𝑥𝑛+1

𝑗
, 𝑎𝑠+1, … , 𝑎𝑚 , if 𝑗, 𝑠 ∈ 𝐵.  

This means that, if 𝑗, 𝑠 ∈  1,2, … , 𝑛  verify 𝑗, 𝑠 ∈ 𝐴 or 𝑗, 𝑠 ∈ 𝐵. Then  

𝐹 𝑎1, 𝑎2, … , 𝑎𝑠−1 , 𝑥𝑛
𝑗
, 𝑎𝑠+1 , … , 𝑎𝑚 ≤ 𝐹 𝑎1, 𝑎2 , … , 𝑎𝑠−1, 𝑥𝑛+1

𝑗
, 𝑎𝑠+1, … , 𝑎𝑚 , for all 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝑋. As 𝜎𝑖 ∈ ῼ𝐴,𝐵  : 

𝑔𝑥𝑛+1
𝜎𝑖 = 𝐹  𝑥𝑛

𝜎𝑖 1 , 𝑥𝑛
𝜎𝑖 2 , … , 𝑥𝑛

𝜎𝑖 𝑟  ≤  1, 𝜎𝑖 1 ∈ 𝐴 𝑜𝑟 1, 𝜎𝑖 1 ∈ 𝐵   

                                                        ≤ 𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛

𝜎𝑖 2 , … , 𝑥𝑛
𝜎𝑖 𝑟  ≤  2, 𝜎𝑖 2 ∈ 𝐴 𝑜𝑟 2, 𝜎𝑖 2 ∈ 𝐵   

                                                        ≤ 𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛+1

𝜎𝑖 2 , … , 𝑥𝑛
𝜎𝑖 𝑟  ≤  2, 𝜎𝑖 2 ∈ 𝐴 𝑜𝑟 2, 𝜎𝑖 2 ∈ 𝐵   

                                                        ≤ ⋯ ≤  𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛+1

𝜎𝑖 2 , … , 𝑥𝑛+1
𝜎𝑖 𝑟  = 𝑔𝑥𝑛+2

𝜎𝑖 . 

Hence  𝑔𝑥𝑛+1
𝜎𝑖 ≤  𝑔𝑥𝑛+2

𝜎𝑖  when 𝑗 𝑜𝑟 𝜎𝑖 𝑗 ∈ 𝐴 and (3.7) is true if 𝑖 ∈ 𝐴. Now suppose that 𝑗 ∈ 𝐵 (so 𝜎𝑖 𝑗 ∈ 𝐵. In this case, we 

apply that  F is g-monotone non-increasing in B-argument with the second inequality of (3.7) and deduce that, for all  
𝑎1 , 𝑎2 , … , 𝑎𝑛 ∈ 𝑋, that, if 𝑗, 𝑠 ∈  1,2, … , 𝑛  verify 𝑗 ∈ 𝐴 or 𝑠 ∈ 𝐵 or 𝑗 ∈ 𝐵 or 𝑠 ∈ 𝐴. Then 

𝐹 𝑎1, 𝑎2, … , 𝑎𝑠−1 , 𝑥𝑛
𝑗
, 𝑎𝑠+1 , … , 𝑎𝑚 ≥ 𝐹 𝑎1, 𝑎2 , … , 𝑎𝑠−1, 𝑥𝑛+1

𝑗
, 𝑎𝑠+1, … , 𝑎𝑚 .  

Since 𝜎𝑖 ∈ ῼ𝐴,𝐵
/

. Therefore,  

𝑔𝑥𝑛+1
𝜎𝑖 = 𝐹  𝑥𝑛

𝜎𝑖 1 , 𝑥𝑛
𝜎𝑖 2 , … , 𝑥𝑛

𝜎𝑖 𝑟  ≥  1 ∈ 𝐴, 𝜎𝑖 1 ∈ 𝐵 𝑜𝑟 1 ∈ 𝐵, 𝜎𝑖 1 ∈ 𝐴   

                                                 ≥ 𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛

𝜎𝑖 2 , … , 𝑥𝑛
𝜎𝑖 𝑟  ≥  2 ∈ 𝐴, 𝜎𝑖 2 ∈ 𝐵 𝑜𝑟 2 ∈ 𝐵, 𝜎𝑖 2 ∈ 𝐴   

                                                 ≥ 𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛+1

𝜎𝑖 2 , … , 𝑥𝑛
𝜎𝑖 𝑟  ≥  3 ∈ 𝐴, 𝜎𝑖 3 ∈ 𝐵 𝑜𝑟 3 ∈ 𝐵, 𝜎𝑖 3 ∈ 𝐴   

                                                 ≥ ⋯ ≥  𝐹  𝑥𝑛+1
𝜎𝑖 1 , 𝑥𝑛+1

𝜎𝑖 2 , 𝑥𝑛+1
1 , … , 𝑥𝑛+1

𝜎𝑖 𝑟  = 𝑔𝑥𝑛+2
𝜎𝑖 . 

Hence  𝑔𝑥𝑛+1
𝜎𝑖 ≥  𝑔𝑥𝑛+2

𝜎𝑖  when 𝑗 ∈ 𝐵 and  hence (3.7) is true. 

Define   

(3.8)    𝛾𝑛 = 𝑚𝑎𝑥1≤𝑗≤𝑟   d  g xn
j
 , g xn+1

j
   =  𝑚𝑎𝑥1≤𝑖,𝑗≤𝑟   d  g  xn

𝜎𝑖 𝑗   , g  xn+1
𝜎𝑖 𝑗     . 
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Firstly, suppose that there exist 𝑛0 ∈ 𝑁 such that 𝛾𝑛0
= 0. Then  

𝑔𝑥𝑛0

𝑖 =  𝑔𝑥𝑛0+1
𝑖 = 𝐹  𝑥𝑛0

𝜎𝑖 1 , 𝑥𝑛0

𝜎𝑖 2 , … , 𝑥𝑛0

𝜎𝑖 𝑟    for all 𝑖, so  𝑥𝑛0

1 , 𝑥𝑛0

2 , … , 𝑥𝑛0

𝑟   is a 𝛾-coincidence point of F and g and we are 

nothing to prove. Therefore, we may reduce to the case in which 𝛾𝑛 > 0 for all 𝑛 that is  

 

∀ 𝑛, ∃ 𝑗 such that 𝑔𝑥𝑛
𝑗
≠  𝑔𝑥𝑛+1

𝑗
. Using (3.4) and (3.5) 

(3.9)         d  g xn
j
 , g xn+1

j
   

                    = d F  xn−1
𝜎𝑖 1 , xn−1

𝜎𝑖 2 , … , xn−1
𝜎𝑖 𝑟  , F  xn

𝜎𝑖 1 , xn
𝜎𝑖 2 , … , xn

𝜎𝑖 𝑟                                            

                     ≤  φ   max  d  g  xn−1
𝜎𝑖 𝑗   , g  xn

𝜎𝑖 𝑗                         

                     = φ   max  d  g xn−1
𝑗

 , g xn
𝑗
    ,  for all 𝑛 and for all 𝑗. 

Taking maximum on 𝑗, we deduce that 

 (3.10)       𝛾𝑛 = 𝑚𝑎𝑥  d  g xn
j
 , g xn+1

j
    

                     ≤  𝜑  max  𝑑  𝑔 𝑥𝑛−1
𝑗
 , 𝑔 𝑥𝑛

𝑗
    = 𝜑  𝛾𝑛−1 . 

Since  𝜑 𝑡 < 𝑡 for all t > 0, therefore,  𝛾𝑛  ≤ 𝛾𝑛−1 for all 𝑛  so that  𝛾𝑛   is a non-increasing sequence. Since it is bounded 

below, there is some 𝛾 ≥ 0 such  that  

(3.11)   lim𝑛→∞ 𝛾𝑛 =  +𝛾. 

We shall show that  𝛾 = 0. Suppose, if possible 𝛾 > 0. Taking limit  as 𝑛 → ∞ of both sides of  (3.10)  and keeping in mind  

our supposition that lim𝑟→𝑡+ 𝜑 𝑟 < 𝑡 for all  t > 0, we have  

(3.12)     𝛾 =  lim𝑛→∞ 𝛾𝑚 ≤  𝜑  𝛾𝑚−1 = 𝜑  𝛾 < 𝛾, 

this contradiction gives 𝛾 = 0 and hence 

(3.13)     lim
𝑛→∞

 𝑚𝑎𝑥  𝑑  𝑔 𝑥𝑛
𝑗
 , 𝑔 𝑥𝑛+1

𝑗
    = 0,  for all 𝑗. 

Next we show that all the sequences  𝑔 𝑥𝑚
1    ,  𝑔 𝑥𝑚

2    ,  𝑔 𝑥𝑚
3   , ……… , 𝑎𝑛𝑑  𝑔 𝑥𝑚

𝑟    are Cauchy sequences. If possible,  

suppose that  𝑔𝑥𝑚
𝑖1 ,  𝑔𝑥𝑚

𝑖2 ,… ,  𝑔𝑥𝑚
𝑖𝑠  , (𝑠 ≥ 1)  are  not Cauchy sequenes  and  𝑔𝑥𝑚

𝑖𝑠+1 ,  𝑔𝑥𝑚
𝑖𝑠+2 , … ,  𝑔𝑥𝑚

𝑖𝑟   are Cauchy 

being  𝑖1 , 𝑖2, … , 𝑖𝑟 =  1,2,… , 𝑟 . By lemma [1], for all 𝑡 ∈  1,2, … , 𝑠 , there exists 𝜀𝑡 > 0 and subsequences  𝑔𝑥𝑚 𝑡(𝑘)
𝑖𝑡   and 

 𝑔𝑥𝑛𝑡(𝑘)
𝑖𝑡  ,𝑘 ∈ 𝑁 such that  

𝑘 < 𝑚𝑡(𝑘) < 𝑛𝑡(𝑘), 

(3.14)       𝑑  𝑔𝑥𝑚 𝑡(𝑘)
𝑖𝑡 , 𝑔𝑥𝑛𝑡(𝑘)

𝑖𝑡  ≥ 𝜀𝑡  and 𝑑  𝑔𝑥𝑚 𝑡(𝑘)
𝑖𝑡 , 𝑔𝑥𝑛𝑡 𝑘 −1

𝑖𝑡  < 𝜀𝑡  ∀ 𝑘 ∈ 𝑁 

Now, let 𝜀0 = 𝑚𝑎𝑥 𝜀1, 𝜀2, … , 𝜀𝑠 > 0 and 𝜀0
/ = 𝑚𝑖𝑛 𝜀1 , 𝜀2, … , 𝜀𝑠 > 0. Since  𝑔𝑥𝑚

𝑖𝑠+1 ,  𝑔𝑥𝑚
𝑖𝑠+2 , … ,  𝑔𝑥𝑚

𝑖𝑟    are  Cauchy,  there 

exist 𝑛0 ∈ 𝑁 such that if 𝑛,𝑚 ≥ 𝑛0. Then  

𝑑 𝑔𝑥𝑚
𝑗

, 𝑔𝑥𝑛
𝑗
 <

𝜀0
/

2
  for all 𝑗 ∈  𝑖𝑠+1, … , 𝑖𝑛 .  

Let 𝑘0 ∈ 𝑁 such that 𝑛0 < 𝑚𝑖𝑛 𝑚1 𝑘0 ,𝑚2 𝑘0 , … ,𝑚𝑠 𝑘0    and 𝑚 1 = 𝑚𝑖𝑛 𝑚1 𝑘0 ,𝑚2 𝑘0 , … ,𝑚𝑠 𝑘0  . As 𝑚 1 = 𝑚𝑡 𝑘0  

for some 𝑡 ∈  1,2, … , 𝑠 , there exist 𝑛𝑡 𝑘0  such that        𝑑  𝑔𝑥𝑚 𝑡(𝑘0)
𝑖𝑡 , 𝑔𝑥𝑛𝑡(𝑘0)

𝑖𝑡  ≥ 𝜀𝑡 ≥ 𝜀0. Thus, we can consider  the 

numbers 𝑚 1 + 1,𝑚 1 + 2,…, until finding the positive integer 𝑛 1 > 𝑚 1  verifying 

(3.15)     max𝑑  𝑔𝑥𝑚(1)
𝑖𝑡 , 𝑔𝑥𝑛(1)

𝑖𝑡  ≥ 𝜀0 ≥
𝜀0

2
, 

                𝑑  𝑔𝑥
𝑚(1)

𝑖𝑗 , 𝑔𝑥
𝑛 1 −1

𝑖𝑗  <
𝜀0

2
 ∀ 𝑗 ∈  1,2,… , 𝑠 . 

Now, let 𝑘1 ∈ 𝑁 such that 𝑛(1) < 𝑚𝑖𝑛 𝑚1 𝑘1 ,𝑚2 𝑘1 ,… ,𝑚𝑠 𝑘1    and 𝑚 2 = 𝑚𝑖𝑛 𝑚1 𝑘1 ,𝑚2 𝑘1 , … ,𝑚𝑠 𝑘1  .  Since 

𝑚 2 ∈  𝑚1 𝑘1 ,𝑚2 𝑘1 , … ,𝑚𝑠 𝑘1  , we can consider  the numbers 𝑚 2 + 1,𝑚 2 + 2,…, until finding the positive integer 

𝑛 2 > 𝑚 2  verifying 

(3.16)    max𝑑  𝑔𝑥𝑚(2)
𝑖𝑡 , 𝑔𝑥𝑛(2)

𝑖𝑡  ≥ 𝜀0 ≥
𝜀0

2
, 

              𝑑  𝑔𝑥
𝑚(2)

𝑖𝑗 , 𝑔𝑥
𝑛 2 −1

𝑖𝑗  <
𝜀0

2
 ∀ 𝑗 ∈  1,2,… , 𝑠 . 
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Repeating this process, we can find sequences such that, for all 𝑘 ≥ 1, 

𝑛0 < 𝑚(𝑘) < 𝑛(𝑘) < 𝑚(𝑘 + 1), 

(3.17)     max𝑑  𝑔𝑥𝑚(𝑘)
𝑖𝑡 , 𝑔𝑥𝑛(𝑘)

𝑖𝑡  ≥ 𝜀0 ≥
𝜀0

2
, 

                 𝑑  𝑔𝑥
𝑚(𝑘)

𝑖𝑗 , 𝑔𝑥
𝑛 𝑘 −1

𝑖𝑗  <
𝜀0

2
 ∀ 𝑗 ∈  1,2, … , 𝑠 . 

Since 𝑛0 < 𝑚(𝑘) < 𝑛(𝑘), we know that  𝑑  𝑔𝑥𝑚(𝑘)
𝑗

, 𝑔𝑥𝑛 𝑘 
𝑗

 , 𝑑  𝑔𝑥𝑚(𝑘)
𝑗

, 𝑔𝑥𝑛 𝑘 −1
𝑗

 , 𝑑  𝑔𝑥𝑚 𝑘 −1
𝑗

, 𝑔𝑥𝑛 𝑘 −1
𝑗

 <
𝜀0

/

2
  for all 

𝑗 ∈  𝑖𝑠+1 , … , 𝑖𝑛 . Therefore,  for all 𝑘, 

(3.18)    𝑚𝑎𝑥1≤𝑗≤𝑟𝑑  𝑔𝑥𝑚(𝑘)
𝑗

, 𝑔𝑥𝑛 𝑘 
𝑗

 =  𝑚𝑎𝑥1≤𝑗≤𝑟𝑑  𝑔𝑥𝑚(𝑘)
𝑖𝑡 , 𝑔𝑥𝑛 𝑘 

𝑖𝑡  ≥ 𝜀0, 

               𝑚𝑎𝑥1≤𝑗≤𝑟𝑑  𝑔𝑥𝑚(𝑘)
𝑗

, 𝑔𝑥𝑛 𝑘 −1
𝑗

 < 𝜀0
/. 

Note  that for 𝑘 > 𝑘1,  

(3.19)      𝑑  𝑔𝑥𝑚 𝑘 −1
𝑗

, 𝑔𝑥𝑛 𝑘 −1
𝑗

 ≤  𝑑  𝑔𝑥𝑚 𝑘 −1
𝑗

, 𝑔𝑥𝑚 𝑘 
𝑗

 + 𝑑  𝑔𝑥𝑚(𝑘)
𝑗

, 𝑔𝑥𝑛 𝑘 −1
𝑗

 <
𝜀0

2
 

Then for all 𝑗 and all 𝑘 > 𝑘1, 

(3.20)                            𝑑  𝑔𝑥𝑚 𝑘 
𝑗

, 𝑔𝑥𝑛 𝑘 
𝑗

 = 𝑑  𝐹  𝑥𝑚 𝑘 −1
𝜎𝑖 1 , … , 𝑥𝑚 𝑘 −1

𝜎𝑖 𝑟  , 𝐹  𝑥𝑚 𝑘 −1
𝜎𝑖 1 , … , 𝑥𝑚 𝑘 −1

𝜎𝑖 𝑟    

                                                                 ≤ 𝜑  𝑚𝑎𝑥  𝑑  𝑔𝑥𝑚 𝑘 −1
𝜎𝑖 1 , 𝑔𝑥𝑛 𝑘 −1

𝜎𝑖 1     

                                                                 = 𝜑 𝑚𝑎𝑥 𝑑 𝑔𝑥𝑚 𝑘 −1
𝑖 , 𝑔𝑥𝑛 𝑘 −1

𝑖    < 𝜑  
𝜀0

2
 <

𝜀0

2
, 

this contradict (3.17) since max 𝑑  𝑔𝑥𝑚(𝑘)
𝑖𝑡 , 𝑔𝑥𝑛(𝑘)

𝑖𝑡  ≥
𝜀0

2
. This contradiction shows that   𝑔 𝑥𝑚

𝑖   ,  for all 𝑖, is Cauchy. Since 

the metric space (X, d) is complete, so there exist 𝑥1 , 𝑥2, … . . , 𝑥𝑟 ∈ 𝑋 such that  

(3.21)  lim𝑚→∞ 𝑔 𝑥𝑚
𝑖  =  𝑥𝑖 ,  for all 𝑖.  

As g is continuous, so from (3.21),  we have  

(3.22) lim
𝑚→∞

⁡𝑔(𝑔(𝑥𝑚
𝑖 ) ) = 𝑔 𝑥𝑖 ,  for all 𝑖.  By the compatibility of g and F,  we have 

(3.23)    lim𝑚→∞ 𝑑  𝑔  𝐹  𝑥𝑚
𝜎𝑖 1 , 𝑥𝑚

𝜎𝑖 2 , … , 𝑥𝑚
𝜎𝑖 𝑟   , 𝐹  𝑔  𝑥𝑚

𝜎𝑖 1  , 𝑔  𝑥𝑚
𝜎𝑖 2  , … , 𝑔  𝑥𝑚

𝜎𝑖 𝑟       = 0, for all 𝑖.   

Now, we show that F and g have an r-tupled coincidence point. To accomplish this, suppose (a) holds, i. e F is continuous. 

In this case  𝑔  𝑥𝑚
𝜎𝑖 𝑗    → 𝑥𝜎𝑖 𝑗  = 𝑥𝑖  then using (3.23) and (3.5),  we see that 

  𝑑  𝑔 𝑥𝑖 , 𝐹 𝑥𝜎𝑖 1 , 𝑥𝜎𝑖 2 , … , 𝑥𝜎𝑖 𝑟    

                           =  lim𝑛→∞ 𝑑  𝑔  𝑔  𝑥𝑚+1
𝜎𝑖 𝑗    , 𝐹  𝑔  𝑥𝑚

𝜎𝑖 1  , 𝑔  𝑥𝑚
𝜎𝑖 2  , … , 𝑔  𝑥𝑚

𝜎𝑖 𝑟     

                          = lim𝑛→∞ 𝑑  𝑔  𝐹  𝑥𝑚
𝜎𝑖 1 , 𝑥𝑚

𝜎𝑖2, … , 𝑥𝑚
𝜎𝑖 𝑟   , 𝐹  𝑔  𝑥𝑚

𝜎𝑖 1  , 𝑔  𝑥𝑚
𝜎𝑖 2  , … , 𝑔  𝑥𝑚

𝜎𝑖 𝑟    = 0,                                                

which gives 𝑔 𝑥𝑖 =  𝐹 𝑥𝜎𝑖 1 , 𝑥𝜎𝑖 2 , … , 𝑥𝜎𝑖 𝑟  , for all 𝑖, that is  𝑥1 , 𝑥2 , … , 𝑥𝑟   is a 𝛾 - coincidence  point of F and g. 

If (b) holds,  that is  𝑋, 𝑑   has  sequential  g-monotone property  and by (3.6), we have 𝑔𝑥𝑛
𝑖 ≤𝑖 𝑔𝑥𝑛+1

𝑖  for all  𝑛 𝑎𝑛𝑑 𝑖. This 

means  that the sequence  𝑔𝑥𝑛
𝑖   is monotone. As 𝑥𝑖 = lim

𝑛→∞
𝑔𝑥𝑛

𝑖 , we deduce that 𝑔𝑥𝑛 
𝑖  ≤𝑖  𝑔𝑥𝑖 , for  all 𝑛 𝑎𝑛𝑑 𝑖. This condition 

implies that , for all 𝑛 𝑎𝑛𝑑 𝑗, 

 (3.24)    either   𝑔  𝑔  𝑥𝑛
𝜎𝑖 𝑗    ≤𝑖 𝑔 𝑥

𝜎𝑖 𝑗   , for all 𝑖 

               or          𝑔 𝑥𝜎𝑖 𝑗   ≤𝑖 𝑔  𝑔  𝑥𝑛
𝜎𝑖 𝑗    , for all 𝑖 

(the first case occurs when 𝑗 ∈ 𝐴 and second one when 𝑗 ∈ 𝐵. Fix 𝑗 ∈  1,2, … , 𝑟  and since  𝑔𝑔𝑥𝑛
𝑖  → 𝑔𝑥𝑖 . 

Also F is g-compatible and g is continuous, by (3.23) and (3.5), we have 

lim
𝑛→∞

𝑔𝑔𝑥𝑛
𝑖 = 𝑔𝑥𝑖 = 𝑙𝑖𝑚𝑛→∞𝑔  𝐹 𝑥

𝜎𝑗  1 , 𝑥𝜎𝑗  2 , … , 𝑥𝜎𝑗  𝑟   = 𝑙𝑖𝑚𝑛→∞  𝐹 𝑔𝑥
𝜎𝑗  1 , 𝑔𝑥𝜎𝑗  2 , … , 𝑔𝑥𝜎𝑗  𝑟    
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(3.25)        𝑑   𝑔 𝑥 𝑗  , 𝐹 𝑥𝜎𝑗  1 , 𝑥𝜎𝑗  2 , … , 𝑥𝜎𝑗  𝑟    

                   ≤ 𝑑  𝑔𝑥 𝑗 , 𝑔𝑔𝑥𝑛+1

𝜎𝑗  𝑖  + 𝑑  𝑔𝑔𝑥𝑛+1

𝜎𝑗  𝑖 , 𝐹 𝑥𝜎𝑗  1 , 𝑥𝜎𝑗  2 , … , 𝑥𝜎𝑗  𝑟    

                   =  𝑑  𝑔𝑥 𝑗 , 𝑔𝑔𝑥𝑛+1

𝜎𝑗  𝑖  + 𝑑  
𝑔  𝐹  𝑥𝑛

𝜎𝑗  1 , 𝑥𝑛
𝜎𝑗  2 , … , 𝑥𝑛

𝜎𝑗  𝑟   ,

𝐹 𝑥𝜎𝑗  1 , 𝑥𝜎𝑗  2 , … , 𝑥𝜎𝑗  𝑟  
  

                  = 𝑑  𝑔𝑥 𝑗 , 𝑔𝑔𝑥𝑛+1

𝜎𝑗  𝑖  + 𝑑  
 𝐹  𝑔𝑥𝑛

𝜎𝑗  1 , 𝑔𝑥𝑛
𝜎𝑗  2 , … , 𝑔𝑥𝑛

𝜎𝑗  𝑟   ,

𝐹 𝑥𝜎𝑗  1 , 𝑥𝜎𝑗  2 , … , 𝑥𝜎𝑗  𝑟  
  

                  ≤ 𝑑  𝑔𝑥 𝑗 , 𝑔𝑔𝑥𝑛+1

𝜎𝑗  𝑖  + 𝜑  𝑚𝑎𝑥  𝑑  𝑔𝑔𝑥𝑛
𝜎𝑗  𝑖 , 𝑔𝑥𝑛

𝜎𝑗  𝑖    , for all 𝑗 

                → 0 𝑎𝑠 𝑛 → ∞. 

Therefore, 𝑔 𝑥 𝑗  =  𝐹 𝑥𝜎𝑗  𝑖 , 𝑥𝜎𝑗  𝑖 , … , 𝑥𝜎𝑗  𝑖  .  

Now, we furnish our theorem by an example. 

Example 3.  Let 𝑋 = [0,∞) be complete metric space under  metric  𝑑 𝑥, 𝑦 = 𝑚𝑖𝑛 𝑥, 𝑦  and natural ordering ⪯ of real 

numbers. Define the maps 𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 and g: X→X as follows 

𝑔 𝑥 =  
0,        0 ≤ 𝑥 < 1
𝑥 − 1,     𝑥 ≥ 1       

    and   𝐹 𝑥1 , 𝑥2, 𝑥3 , … , 𝑥𝑟 =  
1,       𝑥𝑖+1 ⪯ 𝑥𝑖 , 𝑖 𝑖𝑠 𝑜𝑑𝑑
0                       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,

  

Also set 𝜑 𝑡 = 𝑡. 

 Then g is continuous and F enjoys  the mixed g-monotone property. Also F  is  g-compatible in X and the contractive 
condition is also satisfied and  0,0, … ,0  is the unique fixed point of the maps  F and g. 

The following corollary is a generalization  of corollary 1[10] and theorem 2.1[9] 

Corollary 3.1 Thesis of Theorem 3.1 also holds if one replaces the contractivity condition (3.4) by  the following ( for which 

𝑔𝑥𝑖 ≤𝑖 𝑔𝑦
𝑖 ) 

(i) (𝑑 𝐹 𝑥1 , 𝑥2 , … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , … , 𝑦𝑟  ≤ 𝑘 𝑚𝑎𝑥 𝑑 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛    , 𝑛 = 1,2, … , 𝑟  

(ii) (𝑑 𝐹 𝑥1 , 𝑥2 , … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , … , 𝑦𝑟  ≤   𝛼𝑖𝑑 𝑔 𝑥
𝑛 , 𝑔 𝑦𝑛  𝑟

𝑖=1 , 𝑛 = 1,2,… , 𝑟  

where  𝛼1, 𝛼2 , … , 𝛼𝑟 ∈ [0,1) such that 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑟 < 1. 

𝑎𝑛𝑑 𝑘 ∈  0,1 .Then F and g  have a r-tupled coincidence point. 

Proof: If we put 𝜑 𝑡 = 𝑘. 𝑡 with 𝑘 ∈ [0,1) in theorem 3.2, we get the corollary. 

Corollary 3.2 Thesis of Theorem 3.1 also holds if one replaces the contractivity condition (3.4) by  the following ( for which 

𝑔𝑥𝑖 ≤𝑖 𝑔𝑦
𝑖 ) 

(i)  (𝑑 𝐹 𝑥1 , 𝑥2, … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , … , 𝑦𝑟  ≤   𝛼𝑖𝑑 𝑔 𝑥
𝑛 , 𝑔 𝑦𝑛  𝑟

𝑖=1 , 𝑛 = 1,2,… , 𝑟  

where  𝛼1, 𝛼2 , … , 𝛼𝑟 ∈ [0,1) such that 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑟 < 1. 

Proof:  If 𝑘 = 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑟 < 1, then  

          (𝑑 𝐹 𝑥1 , 𝑥2 , … , 𝑥𝑟 , 𝐹 𝑦1 , 𝑦2 , … , 𝑦𝑟  ≤   𝛼𝑖𝑑 𝑔 𝑥
𝑛 , 𝑔 𝑦𝑛  𝑟

𝑖=1  

                                                                   ≤  𝛼𝑖𝑚𝑎𝑥 𝑑 𝑔 𝑥
𝑛 , 𝑔 𝑦𝑛   𝑟

𝑖=1  

                                                                   = 𝑘 𝑚𝑎𝑥 𝑑 𝑔 𝑥𝑛 , 𝑔 𝑦𝑛     

                                      

Uniqueness of r-tupled  fixed point 

For the uniqueness of a fixed point, we need the following notion. Consider on the product space  𝑋𝑟  the following partial 

order: for  

For all  𝑥1 , 𝑥2 , … , 𝑥𝑟 ,  𝑦1 , 𝑦2 , … , 𝑦𝑟 ∈ 𝑋𝑟 , 

 𝑥1 , 𝑥2, … , 𝑥𝑟 ⪯  𝑦1 , 𝑦2 , … , 𝑦𝑟  𝑥𝑖  ≤𝑖 𝑦
𝑖 , ∀ 𝑖. 

We say that  𝑥1 , 𝑥2, … , 𝑥𝑟  𝑎𝑛𝑑  𝑦1 , 𝑦2 , … , 𝑦𝑟  are comparable if 

  𝑥1 , 𝑥2, … , 𝑥𝑟  ≤   𝑦1 , 𝑦2 , … , 𝑦𝑟  or  𝑥1 , 𝑥2 , … , 𝑥𝑟  ≥   𝑦1 , 𝑦2 , … , 𝑦𝑟  

Theorem 3.2 In addition to the hypothesis of theorem 3.1, suppose that for every  
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 𝑥1 , 𝑥2, … , 𝑥𝑟 ,  𝑦1 , 𝑦2 , … , 𝑦𝑟 ∈ 𝑋𝑟  

There exist  𝑧1 , 𝑧2 , … , 𝑧𝑟 ∈ 𝑋𝑟  such that 𝐹 𝑧𝜎𝑖(1), 𝑧𝜎𝑖(2), … , 𝑧𝜎𝑖(𝑟)   is comparable to  𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(1), … , 𝑥𝜎𝑖(1)   and 

 𝑦𝜎𝑖(1), 𝑦𝜎𝑖(2), … , 𝑦𝜎𝑖(𝑟)  , for all 𝑖.  Then F and g have a unique 𝛾 -coincidence point,  which is a fixed point of 𝑔: 𝑋 → 𝑋 and 

𝐹: 𝑋𝑟 → 𝑋. That is there exists a unique  𝑢1 , 𝑢2, … , 𝑢𝑟 ∈ 𝑋𝑟  such that  

 (3.31)    𝑢𝑖 = 𝑔 𝑢𝑖 = 𝐹 𝑢𝜎𝑖(1), 𝑢𝜎𝑖(2), … , 𝑢𝜎𝑖(𝑟)  for all 𝑖 ∈  1,2,… , 𝑟 . 

Proof.  By theorem 3.1, the set of 𝛾 -coincidence points is non-empty. Now, suppose that  𝑥1 , 𝑥2 , … , 𝑥𝑟  and  𝑦1 , 𝑦2 , … , 𝑦𝑟  
are two 𝛾 -coincidence points of F and g, that is 

𝑔 𝑥𝑖 = 𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)   for all 𝑖  and 

𝑔 𝑦𝑖 = 𝐹 𝑦𝜎𝑖(1), 𝑦𝜎𝑖(2), … , 𝑦𝜎𝑖(𝑟)  for all 𝑖. 

We will show that  

(3.32)    𝑔 𝑥𝑖 = 𝑔 𝑦𝑖 ,  for all 𝑖. 

By assumption, there exists  𝑧1 , 𝑧2 , … , 𝑧𝑟 ∈ 𝑋𝑟  such that 

𝐹 𝑧𝜎𝑖(1), 𝑧𝜎𝑖(2), … , 𝑧𝜎𝑖(𝑟)   is comparable to  𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(1), … , 𝑥𝜎𝑖(1)   and 𝐹 𝑦𝜎𝑖(1), 𝑦𝜎𝑖(2), … , 𝑦𝜎𝑖(𝑟)  , for all 𝑖. 

Let 𝑧0
𝑖 = 𝑧𝑖  for all 𝑖 ∈  1,2,… , 𝑟 . Since  𝐹 𝑋𝑟 ⊆ 𝑔 𝑋 , we can choose 𝑧1

𝑖 ∈ 𝑋 such that 

𝑔 𝑧1
𝑖  = 𝐹  𝑧0

𝜎𝑖(1)
, 𝑧0
𝜎𝑖(2)

, … , 𝑧0
𝜎𝑖(𝑟)

    for all 𝑖.  By a similar reason, we can inductively define sequences  𝑔 𝑧𝑛
𝑖   , 𝑛 ∈ 𝑁 for all 

𝑖 ∈  1,2,… , 𝑟  such that  

𝑔 𝑧𝑛+1
𝑖  = 𝐹  𝑧𝑛

𝜎𝑖(1)
, 𝑧𝑛
𝜎𝑖(2)

, … , 𝑧𝑛
𝜎𝑖(𝑟)

   for all 𝑖. 

In addition, let 𝑥0
𝑖 = 𝑥𝑖  and 𝑦0

𝑖 = 𝑦𝑖  for all 𝑖 and in the same way, define the sequences  𝑔 𝑥𝑛
𝑖     and   𝑔 𝑦𝑛

𝑖   , 𝑛 ∈ 𝑁 for all 

𝑖. Since  

𝑔 𝑥𝑖 = 𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)   and  𝑔 𝑧𝑖 = 𝐹 𝑧𝜎𝑖(1), 𝑧𝜎𝑖(2), … , 𝑧𝜎𝑖(𝑟)  for all 𝑖,  are   comparable, then  

𝑔 𝑥1
𝑖  ≤𝑖 𝑔 𝑧1

𝑖   or  𝑔 𝑥1
𝑖  ≥𝑖 𝑔 𝑧1

𝑖  for all 𝑖 . 

Define  𝛽𝑛 = 𝑚𝑎𝑥1≤𝑖≤𝑟  𝑑 𝑔𝑥𝑖 , 𝑔𝑧𝑛
𝑖   for all 𝑛.  Following the reasoning in theorem 3.1, we can deduce that   𝑑 𝑔𝑥𝑖 , 𝑔𝑧𝑛

𝑖   → 0 

for all 𝑖, that is, 

(3.34)      𝑙𝑖𝑚𝑛→∞𝑔𝑧𝑛
𝑖 = 𝑔𝑥𝑖 . 

Similarly, one can prove that 

(3.35)      𝑙𝑖𝑚𝑛→∞𝑑  𝑔 𝑦
𝑖 , 𝑔 𝑧𝑛+1

𝑖   = 0 for all 𝑖. 

Using (3.34),  (3.35) and triangle inequality we get 

𝑑  𝑔 𝑥𝑖 , 𝑔 𝑦𝑖  ≤ 𝑑  𝑔 𝑥𝑖 , 𝑔 𝑧𝑛+1
𝑖   + 𝑑  𝑔 𝑧𝑛+1

𝑖  , 𝑔 𝑦𝑖  → 0, for all  𝑖. 

As  𝑛 → ∞.  Hence,  𝑔 𝑥𝑖 = 𝑔 𝑦𝑖 . 

Since 𝑔 𝑥𝑖 = 𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)  for all 𝑖, hence, we have 

(3.36)     lim⁡𝑔  𝑔 𝑥𝑖  = lim⁡𝑔  𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)  = lim⁡𝐹 𝑔𝑥𝜎𝑖(1), 𝑔𝑥𝜎𝑖(2), … , 𝑔𝑥𝜎𝑖(𝑟)  

Denote  𝑔𝑥𝑖 = 𝑢𝑖  for all 𝑖.  From  (3.36), we have  

(3.37)    𝑔 𝑢𝑖 = 𝑔 𝑔𝑥𝑖 = 𝐹 𝑢𝜎𝑖(1), 𝑢𝜎𝑖(2), … , 𝑢𝜎𝑖(𝑟)  for all 𝑖. 

Hence   𝑢1, … , 𝑢𝑟−1, 𝑢𝑟  is a 𝛾-coincidence point of F and g. 

It follows  𝑦𝑖 = 𝑢𝑖 and so 𝑔(𝑦𝑖) = 𝑔(𝑢𝑖)   for all 𝑖. 

This means that 𝑔(𝑢𝑖) = 𝑢𝑖   for all 𝑖. 

Now, from (3.37), we have  

𝑢𝑖 = 𝑔(𝑢𝑖) = 𝐹 𝑢𝜎𝑖(1), 𝑢𝜎𝑖(2), … , 𝑢𝜎𝑖(𝑟)   for all 𝑖.  

Hence,  𝑢1, 𝑢2 , … , 𝑢𝑟  is  a 𝛾 -fixed point of F and a fixed point of g. 

To prove the uniqueness of the fixed point, assume that  𝑣1 , 𝑣2 , … , 𝑣𝑟  is another 𝛾 -fixed point. Then, we have  

𝑢𝑖 = 𝑔(𝑢𝑖) = 𝑣𝑖 = 𝑔(𝑣𝑖) for  all 𝑖. 

Thus,   𝑢1 , 𝑢2, … , 𝑢𝑟 =  𝑣1 , 𝑣2 , … , 𝑣𝑟 . This completes the proof. 
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 In the following theorem, we replace the continuity of g, the compatibility of F and g and the completeness of X by 
assuming that g(X) is a complete subspace of X. 

 Theorem 3.3 Let ( X, ⪯)  be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.  

Assume that there is a function    : 0, 0,     with  t t    and  lim𝑟→𝑡+ 𝜑 𝑟 < 𝑡 for each  t > 0. Further let 

𝐹: 𝑋𝑖𝑟
𝑖=1 → 𝑋 and g: X → X be two maps such that F has the mixed g-monotone property and satisfying (3.1), (3.4) and 

the following conditions: 

 (3.38)  g(X)  is a complete subspace of X, 

 Also, suppose that either X has the following properties: 

(i)      If a  non-decreasing sequence  𝑥𝑛 → 𝑥 then 𝑥𝑛 ⪯ 𝑥 for all 𝑛 ≥ 0.  

(ii) If a non-inecreasing sequence  𝑦𝑛  → 𝑦 then 𝑦 ⪯ 𝑦𝑛  for all 𝑛 ≥ 0. 

If there exist 𝑥0
1 , 𝑥0

2 , 𝑥0
3 , …… , 𝑥0

𝑟 ∈ 𝑋 such that (3.5) holds. Then F and g  have a r-tupled  coincidence point. 

Proof: We construct the sequences  𝑥𝑛
1 ,  𝑥𝑛

2 ,  𝑥𝑛
3 , … ,  𝑥𝑛

𝑟  as in Theorem 3.2. As in the proof of Theorem 3.2, the 

sequences  𝑔 𝑥𝑚
1    ,  𝑔 𝑥𝑚

2    ,  𝑔 𝑥𝑚
3   ,……… , 𝑎𝑛𝑑  𝑔 𝑥𝑚

𝑟    are Cauchy sequences. Since g(X) is complete, there exist 

𝑥1 , 𝑥2, … . . , 𝑥𝑟 ∈ 𝑋 such that  

(3.39)  lim𝑚→∞ 𝑔 𝑥𝑚
1  =  𝑔𝑥1 , lim𝑚→∞ 𝑔 𝑥𝑚

2  =  𝑔𝑥2, …………… . , lim𝑚→∞ 𝑔 𝑥𝑚
𝑟  =  𝑔𝑥𝑟 . 

Since 𝑔 𝑥𝑚
𝑖   is non-decreasing or non-increasing as i is odd or even and 𝑔 𝑥𝑚

𝑖  → 𝑥𝑖  as 𝑚 → ∞, we have 𝑔 𝑥𝑚
𝑖  ≤ 𝑥𝑖 , 

when i is odd while 𝑔 𝑥𝑚
𝑖  ≥ 𝑥𝑖 , when i is even. Since g is monotonically increasing, therefore 

(3.40)      𝑔  𝑔 𝑥𝑚
𝑖   ≤ 𝑔 𝑥𝑖  when i is odd, 

                 𝑔  𝑔 𝑥𝑚
𝑖   ≥ 𝑔 𝑥𝑖  when i is even. 

(3.41)        𝑑   𝑔 𝑥𝑖 , 𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)   

                  ≤ 𝑑  𝑔 𝑥𝑖 , 𝑔 𝑥𝑚+1
𝑖   + 𝑑  𝑔 𝑥𝑚+1

𝑖  , 𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟)   

                  ≤ 𝑑  𝑔 𝑥𝑖 , 𝑔 𝑥𝑚+1
𝑖   + 𝑑  

 𝐹  𝑥𝑚
𝜎𝑖 1 , 𝑥𝑚

𝜎𝑖 2 , … , 𝑥𝑚
𝜎𝑖 𝑟   ,

𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟) 
  

                 𝑑  𝑔 𝑥𝑖 , 𝑔 𝑥𝑚+1
𝑖   + 𝜑   𝑚𝑎𝑥  𝑑  𝑔  𝑥𝑚

𝜎𝑖(𝑟)
 , 𝑔 𝑥𝜎𝑖(𝑟)     

                  → 0 𝑎𝑠 𝑛 → ∞. 

Therefore, 𝑔 𝑥𝑖 =  𝐹 𝑥𝜎𝑖(1), 𝑥𝜎𝑖(2), … , 𝑥𝜎𝑖(𝑟) . Similarly we can prove. Thus the theorem follows.  

Conclusion : Our work sets analogues, unifies, generalizes, extends and improves several well  known results 

existing in literature, in particular the recent  results of  [1-4,7-10,12,13,15,19,21,25,26] etc. in the frame work of ordered 
metric spaces as the notion of compatible maps is more general than commuting and weakly commuting maps. Our 
theorems 3.1 and 3.2  have been proved by assuming much weaker condition than in analogous results and our corollary 
3.1 is a generalization  of corollary 1[10] and theorem 2.1 [9]. Also, our theorem 3.3 does not need completeness  of space 
and continuity of maps involved therein. The results concerning commuting and weakly commuting maps being 
extendable in the spirit of our theorems, can be extended verbatim by simply using wider class of compatibly in place of 
commuting and weakly commuting maps.  
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