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ABSTRACT 

 Lipchitz class of function had been introduced by McFadden[5}.Recently dealing with degree of approximation of Fourier 

series of a function of Lipchitz class Nigam[12] and Misra et al.[13] have established certain theorems. Extending their 

results in this paper a theorem on degree of approximation of a function   rtLipf ,   by   product summability  

  , , ,n nE s N p q   has been established. 
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1. INTRODUCTION: 

2. Let  na  be a given infinite series with sequence of partial sums  ns . Let np  and  nq be sequences of 

positive real numbers such that    
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, 

0111   rqp . 

Then   nt  is called the sequence of ( , , )n nN p q   mean of the sequence ns . If 

(1.3)                                                ,stn  as n  ,  

then the series  na  is said to be ( , , )n nN p q  summable  to s  . 

The necessary and sufficient conditions for regularity of ( , , )n nN p q method are [3]: 

(1.4)               (i) 0

n

n

r

qp 
  for each integer 0 as n and 

(1.5)   (ii) n

n

n rHqp 



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  where H is a positive number independent of n . 

The sequence –to-sequence transformation [5],   
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defines the sequence  nT   of the  ,E q   mean of the sequence   ns  . If 

(1.7)                      sTn   , as n ,    

then the series  na  is said to be  qE,  summable to s .Clearly   qE,   method is regular[5].  

Further, the  ,E q  transform of the  , ,n nN p q  transform of  ns   is defined by  
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(1.8)                       

  0 0

1 1

1

n k
n k

kn
k k

n
q p q s

k rq
  







 

  
   

    
   

If  

(1.9)                     sn    , as n , 

then   na  is said to be   , , ,n nE q N p q -summable to s .   

           Let )(tf   be a periodic function with period 2 , L-integrable over (-,), The Fourier series associated with f  

at any point x is defined by  
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Let  xfsn ;  be the n-th partial sum of (1.10). The L -norm of a function  RRf :  is defined by  

(1.11)                        Rxxff 

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and  the L -norm is defined by  
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The degree of approximation of a function RRf :  by a trigonometric polynomial )(xPn  of degree n under norm  


.  is defined by [14]  
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and the degree of approximation  )( fEn  of a function  Lf   is given by [12] 
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This method of approximation is called Trigonometric Fourier approximation. 

         A function  f Lip  if [7]  
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and   rLipf , , for 20  x , if [7]  
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For a positive increasing function  t  and an integer 1p  , we define[13],   ,f Lip t r  if 
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           We use the following notation throughout this paper: 
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Further, the method   , , ,n nE q N p q  is assumed to be regular and this case is supposed throughout the paper. 

3. KNOWN THEOREMS: 

Bernestein[2], Alexits[1], Sahney and Goel[10], Chandra[4] and several others have determined the degree of 

approximation of the Fourier series of the function f Lip  by  ,1C ,  ,C  ,  , nN p  and  , nN p means. 

Subsequently, working on the same direction Sahney and Rao[12], and Khan[6] have established results on the degree of 

approximation of the function belonging to the class Lip  and  ,Lip r by  , nN p  and  , ,n nN p q means 

respectively. However, dealing with product summability  Nigam et al [10] proved the following theorem on the degree of 

approximation by the product    1,, CqE -mean of Fourier series. 

Theorem 2.1: 

If  a function  2f is  - periodic  and of  class Lip , then its degree of approximation by    1,, CqE  summability  
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represents the   qE,   transform of  1,C  transform of  xfsn ; . 

Subsequently Misra et al [8] have established the following theorem on degree of approximation by the product 

mean    npNqE ,,  of the Fourier series: 
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Theorem 2.2: 

If  f  is a  2  Periodic function of class  ,Lip r , then degree of approximation by the product   npNqE ,,  

summability  means on its Fourier series (defined above) is given by 
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 ,   where  n  as defined in (1.8) . 

Recently Misra et al [9] have established the following theorem on degree of approximation by the product mean  

  , , ,n nE s N p q  of the Fourier series: 

Theorem 2.3: 

If  f  is a  2  Periodic function of the class  ,Lip l , then degree of approximation by the product 

  , , ,n nE s N p q  summability  means on its Fourier series (1.10) is given by 

 
1

1
,0 1, 1.

1
n

l

f O l

n


 




 
     
   

, where n  is as defined in (1.8). 

3. MAIN THEOREM:  

In this paper, we have studied a theorem on degree of approximation by the product mean    , , ,n nE s N p q   of the 

Fourier series of a function of class   ,Lip t r  .  We prove:  

Theorem -3.1: 

For a positive increasing function  t  and an integer 1l  , if  f  is a  2  Periodic function of the class 

  ,Lip t l , then degree of approximation by the product   , , ,n nE s N p q  summability  means on its Fourier 

series (1.10) is given by 
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, where n  is as defined in (1.8). 

4.REQUIRED LEMMAS: 

We require the following Lemma for the proof the theorem. 

Lemma -4.1: 
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Proof of Lemma-4.1:  
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This proves the lemma.  
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This proves the lemma. 

5. Proof of Theorem 3.1: 

Using Riemann –Lebesgue theorem, for the n-th partial sum  xfsn ;  of the Fourier series (1.10) of )(xf  and 

following Titchmarch [15], we have 
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Using (1.2),  the  , ,n nN p q  transform  of  xfsn ;  is given by  
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(5.2)                              
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  ,using Holder’s inequality, as above. 
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Since  t is a positive increasing function, so is 

1

1

y

y


  
  

  
 
 
 

. Using second mean value theorem we get 
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Then  from (5.2) and (5.3) , we have  

                                               
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Hence 
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 This completes the proof of the theorem.                                                                                  
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