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ABSTRACT 

A boundary integral method previously introduced by two of the authors [1] is properly extended to investigate the plane 
problem of linear, uncoupled thermo-magnetoelasticity for two parallel, infinite, circular cylindrical electric conductors 
carrying steady, axial currents and placed a distance apart in an external medium kept at a constant temperature. Such a 
setting allows disregarding the thermal interaction between the two cylinders, leaving only the magnetic interaction. 

The basic equations and boundary conditions are briefly mentioned as in [1] and the solution of the problem is obtained for 
all quantities of physical interest. Numerical results are given for the so-called magnetic displacements occurring in the 
representation of the mechanical displacements and a detailed discussion of these results is provided. 
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1. INTRODUCTION  

In a previous paper [1], two of the authors (MSA and AFG) introduced a boundary integral method to deal with the plane 
problem of linear, uncoupled thermo-magnetoelasticity for isotropic, homogeneous media in simply connected regions. 
The method relies on the use of harmonic functions in real variables, which allows taking advantage of the representations 
of harmonic functions in different systems of coordinates. As an illustration of the method, El-Dhaba [2] treated the 
problem of an infinite electric conductor of elliptic cross-section carrying a steady, axial current. 

The present paper investigates the problem of two parallel, infinite, circular cylindrical electric conductors of the same 
material, carrying steady, axial currents and placed a distance apart in free space kept at a constant temperature. The 
conductors deform under the combined action of Joule heat and the magnetic field distribution. For most materials, the 
deformations due to the magnetic field are usually much smaller than those produced by heat. For this reason,we have  
used a thermal setting which prohibits thermal interaction between the two cylinders, leaving only the magnetic interaction. 
Within the present formulation, the magnetic field is derived from a magnetic potential in the quasi-static approximation 
and the heat problem is solved independently of the magneto-mechanical problem. The only coupling that is considered is 
the dependence of the magnetic permeability on strain, more precisely magnetistriction. Under some assumptions, this 
coupling still allows for the magnetic problem to be solved independently of the mechanical problem. For further details, 
the reader may refer to [1]. More general formulations of the equations of Magneto-thermoelasticity may be found 
elsewhere [3, 4]. 

The problem is solved using the above-mentioned method and formulae are presented for all the quantities of physical 
interest. For the numerical part, however, we have preferred to focus only on the so-called "magnetic displacements" 
occurring in the representation of the mechanical displacement. 

2. DESCRIPTION OF THE PHYSICAL PROBLEM 

We obtain the deformation occurring in two parallel DC-busbars placed a distance apart from each other, in an ambient 
free space kept at the constant, reference temperature. Thus, the only interaction between the cylinders is through the 
magnetic field. 

The problem is solved within the linear uncoupled theory of Magneto-thermoelasticity, using a variation of a boundary 
integral method previously introduced by two of the authors (AFG and MSA) for simply connected domains. The 
dependence of the magnetic permeability of the body on magnetostriction is taken in consideration through two material 
parameters. Under certain restrictions, such a dependence does not prevent the uncoupling of the magnetostatic problem 
from the mechanical one. First, the magnetostatic problem is solved to find the vector potential everywhere in space, from 
which one deduces the magnetic field distribution. Then, the solution for the uncoupled heat problem is obtained under 
uniform bulk heating and radiation condition at the boundaries. Four important functions of position, the so-called 
"magnetic displacements" and "thermal displacements" are then calculated through path-independent line integrals. 
Finally, the elastic problem is solved in stresses using Airy's stress function. 

Let the two elastic busbars carry uniform, axial currents of densities 1J and 2J . These currents may flow in the same 

sense or else be in opposite senses. The cylinders are placed in an external medium with given constant ambient 

temperature eT , measured from a reference temperature rT . 

When there is no electric current in one of the cylinders, one simply sets the corresponding current density to zero. 

Let the cylinders have radii a  (for the right cylinder) and b  (for the left cylinder) and let the distance between their centers 

be d . The domain inside the right cylinder is denoted 1D , the one inside the left cylinder is denoted 2D  and the external 

region to the cylinders is denoted 3D . The boundaries of 1D  and 2D  are denoted 1C  and 2C  respectively. 

We use a system of bipolar coordinates  ,   associated with a system of orthogonal Cartesian coordinates  , ,x y z  

as usual. The two cylinders are described in the system of bipolar coordinates by the equations 1   and 2  .    
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3. THE BIPOLAR COORDINATES 

Let the cylinders have radii a (for the right cylinder) and b (for the left cylinder) and let the distance between their centers 
be d. The domain inside the right cylinder is denoted D₁, the one inside the left cylinder is denoted D₂ and the external 

region to the cylinders is denoted D₃ (see figure). The boundaries of 1D and 2D are denoted C₁ and C₂ respectively 

 

Fig. 1. Two eccentric circular cylinders 

We use a system of bipolar coordinates  ,  associated with a system of orthogonal Cartesian coordinates  ,x y  as 

shown on the figure. The arrows point at arcs of circles constant  In the limiting case 0,   or   , these arcs 

degenerate into segments on the x-axis. 

 
sinh sin

, , , , 1
cosh cos cosh cos

c c
x y

 
   

   
        

 
 

The two cylinders are described in the system of bipolar coordinates by the equations 1   and 2  , and the 

following relations hold: 

 1 2csch , csch , 2a c b c    

by using the well-known relation between the inverse hyper-geometric functions and logarithmic function, one deduces 
that 

     2 2 2 2

1 2ln ln , ln ln , 3a c a c b c b c             

The distance d between the two centers of the circles 

   
22

1 2 1 2coth coth coth coth ,d c c        

use equation (2), then 

 2 2 2 2 , 4d a c b c     

It is easily shown that 

       
2 22 21

. 5
2

c d a b d a b
d

      

Equations (1) may be written as [5] 
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Also, 
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Use equation (6), to get 

          sgn2 2 2

1

sgn 2coth 1 sgn 4 coth 1 cos , 8
n n

n

r c c e n
 

     






      

  Let each of the boundaries 1C  and 2C  have the parametric representation 

     , , 9x x s y y s   

with  x s and  y s twice continuously differentiable functions of their argument. 

 Here,  , ,x y z denote orthogonal Cartesian coordinates in space with origin O  and unit vectors , ,i j k  respectively and 

s -the arc length as measured on each boundary separately in the positive sense associated with 1D and 2D , from fixed 

points 1Q and 2Q  on 1C  and 2C respectively to a general boundary point Q . 

 Let   and n
 
be the unit vector tangent and the unit vector normal to 1C or 2C at Q  in the sense of increase of s . One 

has 

 , , , , 10x y n y x
      

     
   

 

and the "dot" over a symbol denotes differentiation w.r.to s . 

 All unknown functions are assumed to depend only on the two coordinates  ,x y . We shall quote without proof the 

general equations of static, linear uncoupled Magneto-thermoelasticity as in [1] to be used throughout the text. 

Equation of heat conduction 

 In the steady state, the temperature T in each cylinder, as measured from the reference temperature rT , satisfies 

Poisson's equation 

 
2

2 , 11
J

T
K

    

where J  is the electric current density,  is the electric conductivity and K  is the coefficient of heat conduction. The 

general solution of equation (11) is taken as 

 , 12h pT T T   

hT  being the harmonic part of T  and the particular solution is 

   
2

2 2 . 13
4

p

J
T x y

K
    

On the boundary of each cylinder, the following thermal radiation condition takes place: 

 
    . 14e

T s Bi
T s T

n K
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4. EQUATIONS OF MAGNETOSTATICS 

The SI system of units is used throughout. Within the quasi-static approximation, and neglecting all effects due to the 

electric field, the magnetic induction vector B inside each cylinder derives from a magnetic vector potential A  according 

to the relation 

 , 15B A  

and, in view of the geometry of the problem, this vector potential will be directed parallel to the cylinders' axes: 

   , . 16A A x y k  

The magnetic constitutive relations read 

 * , , 1,2,3, 17i ij jB H i j    

iH being the components of the magnetic field vector and
ij the components of the magnetic permeability tensor of the 

body, assumed to depend linearly on strain according to the rule 

 0 1 1 2 , , 1,2,3, 18ij ij ij ijI i j           

where 0 , 1 and 2 are constants with obvious physical meaning, 1I  is the first invariant of the strain tensor with 

components 
ij and 

ij denote the Kronecker delta symbols. Constant 
* refers to the magnetic permeability of vacuum 

with value
* 7 110 .H m   . An electric analogue of (18) for the dielectric tensor components may be found in [6] and 

[7]. 

 Since we are assuming a quadratic dependence of strain on the magnetic field (magnetostriction), upon substitution of 
(18) into (17) one may neglect, as an approximation, the third and higher order terms in the magnetic field compared to the 
first order term and write [8, 9] 

 *

0 , 19B H   

The function A satisfies the well-known Poisson's equation 

 2 *

0 , 20A J     

 In the free space (referred to by ∗) surrounding the cylinders, the equations of Magnetostatics hold with 0 1   and 

1 2 0J    . In particular, equation (20) is replaced by Taking into account the irrotationality condition for the 

electric field outside the body and the continuity of its tangential component across the surface of the cylindrical body, one 
may write 

 2 * 0, 21A   

 Inside each cylinder, the solution of (20) is looked for in the form 

   * 2 2

0

1
, 22

4
hA A J x y     

while 

 * *, 23rA A A   

Here, hA is the harmonic part of function A , 
*

rA is the harmonic part of 
*A which has a regular behavior at infinity and 

A is a known function which satisfies Laplace's equation but does not vanish at infinity. Functions hA and 
*

rA represent 

the modification of the magnetic vector potential due to the presence of the body. 

In addition, the following radiation condition must take place: 

 * , 0rA O r     as  
1
22 2 ,r x y    
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by virtue of which the arbitrary additive constant intervening in the definition of the magnetic vector potential has 
been determined. 

It is worth noting that the function A  
has to be precised in each individual case under consideration. As an example, if 

the magnetic field is due to a uniform electric current of volume density J  and intensity I flowing in a region D  

( DI J  , where D is the area of D ), then 

 
*

ln , 24
2

I r
A

l


    

where l is a characteristic dimension of the region D . 

In the absence of surface electric currents, the equations of Magnetostatics are complemented by the magnetic boundary 
conditions expressing the continuity of: (i) the vector potential; (ii) the tangential component of the magnetic field. Thus 

 

   

* * 2

0

* * 2

0

0

1
, 25

4

1 1
, 26

4

h r

h r

A A A Jr

A A A Jr
n n

 

 






  

   
   

   

 

These conditions, together with the vanishing of
*

rA at infinity, are sufficient for the complete determination of the 

harmonic functions hA in both cylinders, together with
*

rA . 

5. EQUATIONS OF ELASTICITY 

5.1 Equations of equilibrium 

In the absence of body forces of non-electromagnetic origin, the equations of mechanical equilibrium in the plane for each 
of the two cylinders read 

 0, , 1,2,3, 27j ij i j    

where
ij are the components of the "total" stress tensor and

j denotes covariant differentiation. 

 Equations (27) are satisfied if the only identically non-vanishing stress components xx , 
yy and 

xy are defined 

through the stress function U by the relations 

 
2 2 2

2 2
, , , 28xx yy xy

U U U

y x x y
  

  
   
   

 

 

5.2 The constitutive relations 

The generalized Hooke's law may be derived consistently for an appropriate form of the free energy of the medium, using 
the general principles of Continuum Mechanics. It reads (see [8, 9], [6] and also [7] for the electric analogue): 

  

   

*

1 0 1

* 2

0 2

1

1 1 2 1 1 2 2

1
, 29

2

ij ij ij ij i j

ij

E E E
I T H H

H

  
      

   

   

 
     

     

 

 

where
2

i iH H H is the squared magnitude of the magnetic field, E ,  and  are Young's modulus, Poisson's ratio 

and the coefficient of linear thermal expansion respectively for the considered elastic medium. In components, equation 
(29) yields 
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1
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H a

  
    

   

  

   
       

       

 

 

  
 

   

* 2

0 2

* 2

0 1 2

1

1 1 2 1 1 2 2

1
, 30

2

yy x

y

E u v E v E
T H

x y y

H b

  
   

   

   

   
      

       

  

 

 
 *

0 1

1
. 30

2 1 2
xy x y

E u v
H H b

y x
   



    
      

     
 

It is worth noting that the contribution of the electric field to the stress tensor components is usually negligibly small as 
compared to the magnetic terms (as may be verified from dimension analysis) and has therefore been omitted from the 
generalized Hooke's law. 

5.3 THE KINEMATICAL RELATIONS 

These are the relations between the strain tensor components
ij and the displacement vector components iu . 

   
1

, , 1,2, 31
2

ij i j j iu u i j a      

or in Cartesian components 

 
1

, , , 31
2

xx yy xy

u v u v
b

x y y x
  

    
    
    

 

where u and v stand for 1u and 2u respectively. 

 

5.4 THE COMPATIBILITY CONDITION 

The condition of solvability of equations (31b) is 

 
2 2 2

2 2
2 , 32

xy yy xx
e e e

x y x y

  
 

   
 

These equations are complemented with the proper boundary conditions, to be discussed in detail later on. 

 

6. EQUATION FOR THE STRESS FUNCTION 

The following equation for the stress function may be obtained from the general field equations by standard procedure [9] 

 

 

 
 

*2
4 2 2 * 2

1 2 0 1

1 2 1 1 1
. 33

1 2 1 2 1 2

EJ
U H J

K

 
    

   

    
         

     
 

This is the same as the biharmonic equation given in [9], taking in consideration the differences in the used systems of 
units, but is different from that produced by Yuan [10] because different stress functions and different stresses are 
involved in the latter. 

The general solution of (33) is 

 , 34c

pU x y U     
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where and are two harmonic functions belonging to the class of functions    2 1

i iC D C D , iD denotes 

the closure of D , 1,2i  , and superscript ` c ' denotes the harmonic conjugate. Function 
pU  is any particular solution 

of the equation 

 

   
   

*

2 2 * 2 2 2

1 2 0 1

1 2 1 1 1
, 35

1 2 1 2 4 1 2
p p

E
U T H J x y

 
    

  

    
          

     
 

and may be expressed in the form of Newton's potential after the functions
pT and

2H on the R.H.S. have been 

determined. 

    It follows from (33), (34) and (35) that 

 2 2 24 4 . 36
c

p pU U U
x y

 
    

 
 

 

7. A REPRESENTATION FOR THE MECHANICAL DISPLACEMENT VECTOR 
COMPONENTS 

The set of equations of Elasticity and Magnetostatics, after lengthy manipulations, yield the following important 
representation of the mechanical displacement components [9]: 

     

     

4 1 , 37
1 1

4 1 , 37
1 1

T H

c

T H

E U E
u u u a

x

E U E
v v v b

y


 


 


     

  


      

  

 

where 

   

   
 0

0

1 ,

, 38

1 ,

M

c

T h h

M

M

c

T h h

M

u T dx T dy

a

v T dx T dy

 

 


   



  







 

and 

 

 

 0

0

,

, 38

,

M

H H H

M

M

H H H

M

u M dx N dy

b

v R dx S dy


  



 







 

the line integrations being taken along a path inside any of the regions iD , joining a fixed point iM (which may be 

arbitrarily chosen in iD ) to a general field point M  in iD , ( 1,2i  ). In fact, all four integrals are shown to be path-

independent. The integration constants due to the arbitrariness of the points iM are absorbed into the functions  and 

c which are yet to be determined. Also, 

 

 
 

2
2 2 2 2

2
2 2 2 2

,
2

, 39

,
2

H y x

H x y

J
M W H H x y

a
J

S W H H x y
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and 

 
*

0

*

0

1
2 ,

, 39
1

2 ,

c

H x y h

c

H x y h

N W H H JA

b

R W H H JA

 

 

 
    

  


  
    

  

 

with  
*

0 1

1 1
1 .

2 2
W

E


  

 
   

 
 

It can be easily verified using the equations of Magnetostatics, that 

 , , 40H H H HM N R S

y x y x

   
 

   
 

and that these relations are not affected by the addition of an arbitrary constant to the function 
c

hA . 

, , , .H H H H
H H H H

u u v v
M N R S

x y x y

   
   

   
 

The mechanical displacement components u and v  in (37a, b) are single-valued functions in each of 1D  and 2D , since 

the line integrals in (38a) are path-independent due to the Cauchy-Riemann conditions satisfied by the functions hT  and 

c

hT , and the line integrals in (38b) are path-independent in view of relations (40). 

It is important to note that each of 
c  , 

c

hT  and 
c

hA  is defined up to an arbitrary additive constant in each of 1D  and 

2D . These functions will be completely determined once their values have been specified some given point in each 

domain. 

8. CONDITIONS FOR A UNIQUE SOLUTION 

We now turn to the conditions to be satisfied in order to determine the unknown harmonic functions   and   in an 
unambiguous manner. These are three types of conditions: 

1) Conditions for eliminating the rigid body translation 

   We require the centers of both cross-sections of the cylinders to be fixed. 

2) Conditions for eliminating the rigid body rotation 

   These conditions identically satisfied in view of the symmetry of the problem. 

3) Additional simplifying conditions 

    In order to be able to determine the totality of the integration constants appearing throughout         

the solution process, we require the following four supplementary conditions to be satisfied at two arbitrarily chosen points 

,i iQ C  ( 1,2i  ). For convenience, these are taken to correspond to the value 0s  of the boundary parameter. The 

additional conditions have no physical implications: 

       0, 1,2, 41i i i

U U
U Q Q Q i

x y

 
   
 

 

or, equivalently, 

       0, 1,2, 42i i i

U U
U Q Q Q i

s n

 
   
 

 

and 

           0, 1,2, 43c c

i i i i ix Q Q y Q Q Q i       
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This last condition amounts to determining the value of 
c  at , 1,2iQ i   and is chosen in conformity with [2]. 

9. THE BOUNDARY CONDITIONS OF ELASTICITY 

For the problem under consideration, the magnetic force distribution on the boundaries 1C  and 2C  of the domains 1D  

and 2D . Let 

H x y nf f i f j f f n     

denote the magnetic force per unit length of the boundary. Then, at a general boundary point  Q s  on 1C  or 2C , the 

stress vector satisfies the condition of continuity 

 , 44n f   

or, in components 

 , and , 45xx x xy y x xy x yy y yn n f n n f        

The force Hf  may be expressed in terms of the Maxwell stress tensor 
*  as 

 * , 46Hf n  

with 

 * * * *21
, 47

2
ij i j ijH H H  

 
  

 
 

Substituting into (45) for xx , 
xy  and 

yy  in terms of the stress function U and for xn , 
yn  from the second of 

equations (10) and taking the simplifying conditions into account, one finally gets 

       

       

'

0

'

0

' ' , 48

' ' . 49

s

y

s

x

U
s f s ds Y s

x

U
s f s ds X s

y


   




  







 

Also, 

             
. . . .

, , 50
U U

s xY s y X s s yY s x X s
s n

 
     

 
 

or, in terms of the unknown harmonic functions 

 

 

.. . . . . .

. .. . . . .

, 51

. 52

pc c

pc c c

U
x y x y xY y X

s

U
x y y x yY x X

n


        




         



 

Solution for two infinite, parallel circular cylindrical conductors carrying steady, uniform, axial currents 

For convenience, the parameters for region 2D are labeled with a `dash', those for 1D are undashed, while the external 

medium is labeled with a `star'. 

10. SOLUTION FOR THE TEMPERATURE 

Let us introduce the dimensionless Biot constant 
lBi

B
K

 and the dimensionless parameters 
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2 2 2 2

1 2
1 2, , 53

4 4

l J l J
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where l is a characteristic length. The thermal radiation boundary condition for 1   and 2   reads 

           

           ' ' ' '

1
, 54

1
, 55

h p h p e

h p h p e
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T T T T T

h K

Bi
T T T T T

h K

   


   



   




    



 

The particular solutions for the temperatures in 1D  and 2D  are respectively given by 
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1 12

2
'

2 22
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cosh cos

p

p

c
T

l

c
T

l

 
   

 

 
   

 


  




  



 

The general solutions for Laplace's equations in bipolar coordinates for 1D and 2D  are taken as 

         

         

1

2

0 1

1

' ' '

0 2

1

, cos , , 58

, cos , . 58

n

h n

n

n

h n

n

T A A e n

T A A e n

 

 

       

       


 








  

  




 

Using the thermal boundary conditions (54) and (55), the expressions (56) and (57) and some orthogonality properties of 
the trigonometric functions, one finally obtains (2): 

 

 

1

2

2

0 1 1 1 12

2
' '

0 2 2 2 12

2 1
2coth 1 ,

2

2 1
2coth 1 ,

2

e

e

c c l
A T e A

B l l B c

c c l
A T e A

B l l B c





     

     


    

    

 

while the coefficients iA and 
' , 1,2...iA i  are the solutions of the infinite system of linear algebraic equations 

   ' ' ', ,ij ij i ij ij iM A C M A C    

with 

, 1 , 1 , 1 ,

' ' ' '

, 1 , 2 , 1 ,

1 1
, cosh , , 0, otherwise, 1,2,...,

2 2

1 1
, cosh , , 0, otherwise, 1,2,...,

2 2

i i i i i i i j

i i i i i i i j

i c i
M M B i M M i

l

i c i
M M B i M M i

l





 

 

 
     

 
     

 

   1 2

2 2
'

1 1 1 2 2 22 2
4 1 cosh coth , 4 1 cosh coth , 1,2,... .

i ii i

i i

c c c c
C B e C B e i

l l l l

         
         

   
Using the Cauchy- Riemann relations 

, ,
c c

h h h hT T T T

   

   
  

   
 

the conjugate functions 
c

hT  and 
'c

hT  in 1D  and 2D  respectively are obtained by 
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and the expressions for the temperature in 1D and 2D  are 

         

         

1

2

2

0 1 12
1

2
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0 2 22
1

cosh cos
, cos , 0, 60

cosh cos

cosh cos
, cos , 0, 61
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n
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In obtaining the above results, use has been made of the integrals 
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11. THE THERMAL DISPLACEMENTS   

The "displacements" due to temperature are calculated from equations (38a) for general points   1,M D    

and   2,N D   . For definiteness, these points are taken in the half-plane 0y  . The line integration in each domain 

is carried out as follows: (i) For the point   1,M D   , take a path formed by the directed segment of a straight line 

1C A  joining the center 1C  of the first cylinder to the point of intersection A of the circle of constant   through M  with 

the x -axis, and the directed arc AM of this circle, as shown on the figure; (ii) For the point   2,N D   , take a path 

formed by the directed segment of a straight line 2C B  joining the center 2C  of the second cylinder to the point of 

intersection B of the circle of constant   through N with the x -axis, and the directed arc BN of this circle, as shown 

on the figure. One gets 

 

Fig. 2. Integration paths 
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The following formulae are finally obtained for the "thermal" displacements in 1D  and 2D : 
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12. SOLUTION FOR THE MAGNETIC VECTOR POTENTIAL 

The general solutions of the equations (20) and (21) in 1D , 2D and 3D are expressed as 
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The solutions for Laplace's equations in bipolar cylindrical coordinates, compatible with the setting of the problem, are 
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the constants to be determined from the magnetic boundary conditions. The radiation condition 

 * 0, 0 0rA      yields 
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The solutions for the vector potential component in 1D , 2D  and 3D are 
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Apply the magnetic boundary conditions (25) and (26) and use the orthogonality property of trigonometric functions to get 
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The harmonic conjugate functions may now be calculated using the Cauchy-Riemann relations. 

Taking 
c

hA  and 
'c

hA  to vanish at the foci ( , 0   ) and ( , 0    ) respectively, one gets 
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13. THE MAGNETIC FIELD VECTOR 

In this section, we determine the magnetic field inside and outside the two cylinders, due to the electric currents 1J  

and 2J . In view of (15) and (19), the magnetic field vector may be expressed in bipolar cylindrical coordinates as 
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Set equations (68a, b, c), with their derivatives into equations (70a, b) to get 

(1)- The magnetic field vector components for the right cylinder (region 1D ) are 
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(2)- The magnetic field vector components for the left cylinder (region 2D ) are 
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(3)- The magnetic field vector components outside the two cylinders (region 3D ) are 
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Using equations (8), the magnetic field vector for 1D and 2D may be expressed as 
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14. THE MAXWELLIAN STRESS TENSOR 

The Maxwellian stress tensor 
*  for region 3D has components 
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15. THE DISPLACEMENTS DUE TO THE MAGNETIC FIELD 

In this section, we calculate the "displacement" vector components due to the magnetic field for two regions 1D and 

2D by substitution of equations (39a, b) into equations (38b). 

    (1)- For 1D  
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(2) For 2D  
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In these formulae, ( ,x yH H ) and ( ,H H  ) are the components of the magnetic field in Cartesian and in bipolar 

coordinates respectively. 

16. THE PARTICULAR SOLUTIONS 
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The particular solutions of the biharmonic equations pU and 
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pU  for two regions 1D and 2D should be satisfy 

equation (35). By use the particular solutions for the temperature problem, then equation (35) may be written for two 
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But, from equations (71a, b, c, d), one has 
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Substitute from equations (80) into equations (79a,b) and rearrange: 
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The particular solution for two regions 1D  and 2D  are 
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The tangential and normal derivatives of function U_{p} are 
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Also, the Cauchy-Riemann conditions are 
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The representations of harmonic functions which satisfy the Cauchy-Riemann conditions and the finiteness condition for 

regions 1D  and 2D are 
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Where the coefficients are to be determined using the mechanical boundary conditions. 

The following boundary conditions on the stresses 
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17. THE STRESS FUNCTION 

Substitute from equations (1), (81a), (81b), (83a), (83b) (84a), and (84b), into equation (34) to get the stress functions for 

the regions 1D  and 2D  
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18. THE STRESS TENSOR COMPONENTS 

The stress tensor components in bipolar coordinates are 
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Substitute equations (86a, b) into equations (87a, b, c), to get the stress tensor components for 1D  and 2D  
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19. THE MECHANICAL PROBLEM 

 We solve the mechanical problem for the two regions 1D  and 2D  separately to determine the constants of the harmonic 

functions by using the boundary conditions expressed in equations (85a, b). By use the orthogonality of trigonometric 

functions one get a system of linear equations in the constants of harmonic functions for 1D and 2D  we solve them by 

any method to get these constants. They are some constants its value coming from applieg the additional simplifying 
conditions (41), (42) and (43) for two rigions. 

20. THE DISPLACEMENT VECTOR COMPONENTS 

From equations (37a, b) the displacement vector components in x and y directions for 1D and 2D  are 
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Where
Tu

l
,

Tv

l
,

Hu

l
, 

Hv

l
and

'

Tu

l
, 

'

Tv

l
, 

'

Hu

l
, 

'

Hv

l
are defined above. 

21. NUMERICAL RESULTS AND DISCUSSION 

Consider the concrete case for which 
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We have plotted the "magnetic" displacements 
Hu

l
and 

Hv

l
 along the x - and y - directions respectively on the 

boundaries of the two cylinders as given by equations (75a, b) and (76a, b). In the following, we let the distance 

8,9,10.d   

    Case (I): Let 1.J  The currents in the two similar cylinders are in the same direction and have equal intensities. 
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Case (II): Let 1.J   The currents in two similar cylinders are in opposite directions and have equal intensities. 

 

We have displayed the magnetic displacement components 
Hu

l
and 

Hv

l
along the x - and y - directions respectively on 

the boundaries of the two cylinders for seven different cases, depending on the radii lengths of the two cylinders, the ratio 
between the two electric current densities and the relative directions of these currents. We have found that these 
displacements produce: a) an elongation of both cylinders along the x -direction in all cases; b) a compression of both 

cylinders along the y -direction when the currents have the same sense, in which as the cylinders acquire ellipse-like 

shapes; c) a compression of both cylinders along the y -direction on the nearer parts of their contours ( |θ|≃0) and an 

elongation along the same axis on the farther parts of their contours ( |θ|≃π) when the currents have opposite senses, in 
which case the cylinders acquire pear-like shapes with the narrow parts facing each other.  

The bigger elongations take place at the far parts of the contours, while the relatively smaller elongations take place on the 
nearer parts of the contours. The larger compressions take place at the middle parts of the contours (|θ|≃π/2). When the 

currents are in opposite directions and the thinner cylinder is carrying the stronger current , the magnetic displacements 
become very small on most of the boundaries, with relatively larger values only around the far parts. All the magnetic 
displacements are relatively smaller when the currents have opposite senses, compared to the other case where both 
currents have the same sense, and become weaker as the distance between the centers increases. 
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