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ABSTRACT

A boundary integral method previously introduced by two of the authors [1] is properly extended to investigate the plane
problem of linear, uncoupled thermo-magnetoelasticity for two parallel, infinite, circular cylindrical electric conductors
carrying steady, axial currents and placed a distance apart in an external medium kept at a constant temperature. Such a
setting allows disregarding the thermal interaction between the two cylinders, leaving only the magnetic interaction.

The basic equations and boundary conditions are briefly mentioned as in [1] and the solution of the problem is obtained for
all quantities of physical interest. Numerical results are given for the so-called magnetic displacements occurring in the
representation of the mechanical displacements and a detailed discussion of these results is provided.
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. INTRODUCTION

In a previous paper [1], two of the authors (MSA and AFG) introduced a boundary integral method to deal with the plane
problem of linear, uncoupled thermo-magnetoelasticity for isotropic, homogeneous media in simply connected regions.
The method relies on the use of harmonic functions in real variables, which allows taking advantage of the representations
of harmonic functions in different systems of coordinates. As an illustration of the method, El-Dhaba [2] treated the
problem of an infinite electric conductor of elliptic cross-section carrying a steady, axial current.

The present paper investigates the problem of two parallel, infinite, circular cylindrical electric conductors of the same
material, carrying steady, axial currents and placed a distance apart in free space kept at a constant temperature. The
conductors deform under the combined action of Joule heat and the magnetic field distribution. For most materials, the
deformations due to the magnetic field are usually much smaller than those produced by heat. For this reason,we have
used a thermal setting which prohibits thermal interaction between the two cylinders, leaving only the magnetic interaction.
Within the present formulation, the magnetic field is derived from a magnetic potential in the quasi-static approximation
and the heat problem is solved independently of the magneto-mechanical problem. The only coupling that is considered is
the dependence of the magnetic permeability on strain, more precisely magnetistriction. Under some assumptions, this
coupling still allows for the magnetic problem to be solved independently of the mechanical problem. For further detalils,
the reader may refer to [1]. More general formulations of the equations of Magneto-thermoelasticity may be found
elsewhere [3, 4].

The problem is solved using the above-mentioned method and formulae are presented for all the quantities of physical
interest. For the numerical part, however, we have preferred to focus only on the so-called "magnetic displacements"
occurring in the representation of the mechanical displacement.

2. DESCRIPTION OF THE PHYSICAL PROBLEM

We obtain the deformation occurring in two parallel DC-busbars placed a distance apart from each other, in an ambient
free space kept at the constant, reference temperature. Thus, the only interaction between the cylinders is through the
magnetic field.

The problem is solved within the linear uncoupled theory of Magneto-thermoelasticity, using a variation of a boundary
integral method previously introduced by two of the authors (AFG and MSA) for simply connected domains. The
dependence of the magnetic permeability of the body on magnetostriction is taken in consideration through two material
parameters. Under certain restrictions, such a dependence does not prevent the uncoupling of the magnetostatic problem
from the mechanical one. First, the magnetostatic problem is solved to find the vector potential everywhere in space, from
which one deduces the magnetic field distribution. Then, the solution for the uncoupled heat problem is obtained under
uniform bulk heating and radiation condition at the boundaries. Four important functions of position, the so-called
"magnetic displacements" and "thermal displacements” are then calculated through path-independent line integrals.
Finally, the elastic problem is solved in stresses using Airy's stress function.

Let the two elastic busbars carry uniform, axial currents of densities Jland Jz- These currents may flow in the same
sense or else be in opposite senses. The cylinders are placed in an external medium with given constant ambient

temperature Te , measured from a reference temperature Tr g

When there is no electric current in one of the cylinders, one simply sets the corresponding current density to zero.
Let the cylinders have radii a (for the right cylinder) and b (for the left cylinder) and let the distance between their centers
be d . The domain inside the right cylinder is denoted D, , the one inside the left cylinder is denoted D2 and the external

region to the cylinders is denoted D, . The boundaries of D; and D, are denoted C; and C, respectively.

We use a system of bipolar coordinates (f, 0) associated with a system of orthogonal Cartesian coordinates (X, Y, Z)

as usual. The two cylinders are described in the system of bipolar coordinates by the equations & =& and& =&, .

E<k
g’tz ' e=s0 €2 >0

\ o
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3. THE BIPOLAR COORDINATES

Let the cylinders have radii a (for the right cylinder) and b (for the left cylinder) and let the distance between their centers
be d. The domain inside the right cylinder is denoted D, the one inside the left cylinder is denoted D, and the external

region to the cylinders is denoted D; (see figure). The boundaries of D1 and D2 are denoted C; and C, respectively

-z
> D=0

g fis Q=g=siz] &=+0 A T

v 5 gﬁ k. Cl A W
d b . : - : -
e 5
DE ‘D].
_T —
my2<g=-0 [ e=-0 o
<P~

Fig. 1. Two eccentric circular cylinders

We use a system of bipolar coordinates (ff, 0) associated with a system of orthogonal Cartesian coordinates (X, y) as

shown on the figure. The arrows point at arcs of circles & = constant in the limiting case & =0, or@ =%, these arcs
degenerate into segments on the x-axis.

csinh & __ csing

=—2 — y=——— —g<0<7m, —-w<é<m, (1)
cosh & +cosé cosh & +cosé

The two cylinders are described in the system of bipolar coordinates by the equations & =¢& and& =¢&,, and the
following relations hold:

a=ccsché, b=cesché,, (2)

by using the well-known relation between the inverse hyper-geometric functions and logarithmic function, one deduces

that
& =—Ina+|n(c+\/az+c2), o =—Inb+|n(—c+»\/b2+c2), (3)

The distance d between the two centers of the circles

d= \jcz (coth& —coth &, )’ =c(coth & —coth &, ),

use equation (2), then

d=va?+c?+yb?+c?,  (4)

It is easily shown that

2d\/ ~(a+b)’)(d*~(a-b)’).  (5)

Equations (1) may be written as [5]
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X =csgn (f)[1+ Zi(—l)” e " cos n@j, y= —2ci(—1)n esinng, v¢&,  (6)

Also,
2oy v cosh & —cosé (7)
cosh & +cos@’

Use equation (6), to get
r? =c?(sgn(&)2coth & —1)+sgn (&) 4c? coth éi(—l)” e "M cosng, V& (8)
=1

Let each of the boundaries Cl and C2 have the parametric representation
x=x(s), y=y(s). (9
with X(S) and y(s) twice continuously differentiable functions of their argument.

Here, (X, Y, Z)denote orthogonal Cartesian coordinates in space with origin O and unit vectors i, J,K respectively and
S -the arc length as measured on each boundary separately in the positive sense associated with Dl and D2 , from fixed

points Q,and Q, on C, and C, respectively to a general boundary point Q .

Let 7 and N be the unit vector tangent and the unit vector normal to C1 orC2 at Q in the sense of increase of S . One

t=(xy). n=(v-x). ()

and the "dot" over a symbol denotes differentiation w.r.to S .

has

All unknown functions are assumed to depend only on the two coordinates(X, y). We shall quote without proof the
general equations of static, linear uncoupled Magneto-thermoelasticity as in [1] to be used throughout the text.

Equation of heat conduction

In the steady state, the temperature T in each cylinder, as measured from the reference temperatureTr, satisfies
Poisson's equation

2 J’
VT:—O_—K, (11)

where J is the electric current density, O is the electric conductivity and K is the coefficient of heat conduction. The
general solution of equation (11) is taken as

T=T,+T, (12)

Th being the harmonic part of T and the particular solution is

2

2 2
X“+y°). 13
P 40K ( ) ( )
On the boundary of each cylinder, the following thermal radiation condition takes place:

%ﬁs) = —%(T (s)-T.).  (14)
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4. EQUATIONS OF MAGNETOSTATICS

The SI system of units is used throughout. Within the quasi-static approximation, and neglecting all effects due to the
electric field, the magnetic induction vector E inside each cylinder derives from a magnetic vector potential A according
to the relation

B=YxA (15)
and, in view of the geometry of the problem, this vector potential will be directed parallel to the cylinders' axes:
A=A(XYy)k. (16)
The magnetic constitutive relations read
B, =/U*,uinj’ 1,]=123, (17)

Hi being the components of the magnetic field vector and o the components of the magnetic permeability tensor of the

body, assumed to depend linearly on strain according to the rule
My = oS + 14,85 + o8, 1, ]=12,3, (18)

where L, f, and L, are constants with obvious physical meaning, |1 is the first invariant of the strain tensor with
components &;; and é‘ij denote the Kronecker delta symbols. Constant ,u* refers to the magnetic permeability of vacuum

with value ,u* =107 H.m™. An electric analogue of (18) for the dielectric tensor components may be found in [6] and
[7].

Since we are assuming a quadratic dependence of strain on the magnetic field (magnetostriction), upon substitution of
(18) into (17) one may neglect, as an approximation, the third and higher order terms in the magnetic field compared to the
first order term and write [8, 9]

B=u'1H, (19)
The function A satisfies the well-known Poisson's equation
VA= -1 1,J, (20)

In the free space (referred to by *) surrounding the cylinders, the equations of Magnetostatics hold with ff, = & =land

=M= J=0.In particular, equation (20) is replaced by Taking into account the irrotationality condition for the

electric field outside the body and the continuity of its tangential component across the surface of the cylindrical body, one
may write

V’A =0, (21)
Inside each cylinder, the solution of (20) is looked for in the form
1.
A=Ah—zﬂﬂ0\](x2+y2)' (22)
while
A=A +A, (23)

Here, Ah is the harmonic part of function A, A:is the harmonic part of A" which has a regular behavior at infinity and

AOO is a known function which satisfies Laplace's equation but does not vanish at infinity. Functions A1 and A: represent
the modification of the magnetic vector potential due to the presence of the body.

In addition, the following radiation condition must take place:

A]=0(r), 6>0asr=(x*+y?) 5o,
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by virtue of which the arbitrary additive constant intervening in the definition of the magnetic vector potential has
been determined.

It is worth noting that the function Aoo has to be precised in each individual case under consideration. As an example, if

the magnetic field is due to a uniform electric current of volume density J and intensity | flowing in a region D
(1 =JZ,, where Dy is the area of D), then

where | is a characteristic dimension of the region D.

In the absence of surface electric currents, the equations of Magnetostatics are complemented by the magnetic boundary
conditions expressing the continuity of: (i) the vector potential; (ii) the tangential component of the magnetic field. Thus

. 1.
A A=A I (25)
Ao

3 an(&—ﬁi)%(%%uwﬂ) (26)

*
These conditions, together with the vanishing ofAr at infinity, are sufficient for the complete determination of the

harmonic functions Ah in both cylinders, together with A:

5. EQUATIONS OF ELASTICITY
5.1 Equations of equilibrium

In the absence of body forces of non-electromagnetic origin, the equations of mechanical equilibrium in the plane for each
of the two cylinders read

V0, =0, i,j=123, (27)
where o are the components of the "total" stress tensor and Vj denotes covariant differentiation.

Equations (27) are satisfied if the only identically non-vanishing stress components O

x' Oyand o, are defined

through the stress function U by the relations

2 2 2
O-xx:g’ O-yy:g’ ny:_au ' (28)
oy OX oxoy

5.2 The constitutive relations

The generalized Hooke's law may be derived consistently for an appropriate form of the free energy of the medium, using
the general principles of Continuum Mechanics. It reads (see [8, 9], [6] and also [7] for the electric analogue):

vE vE aE . 1
= | 5. + & — TS, + —= HH.
T ey (-2r) e 1oy “(“0 2’“‘1] i

1 .
oM (£ + 1) H?S, (29)

where H? = HiHi is the squared magnitude of the magnetic field, E, v and « are Young's modulus, Poisson's ratio

and the coefficient of linear thermal expansion respectively for the considered elastic medium. In components, equation
(29) yields
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o - vE f[u ) vEU aE . 1 (o — 1 — 11, H;
vy —nox oy) 1rvex 1-av 2t MRTATRIT
1.
—5# (ot 1) Hy, (30a)
vE ou ov vE ov «aE 1 . 2
-~ &2 GARECLSS, H
Ow (1+v)(1—2v)(6x+8yj+1+v8y Al TGRS
1.
54 (o=t = )17, (30b)
E ou ov « 1
- M A —Z g [HH,. 300
i 2(1+v)(6y+6xJ+'u [”" 24 ol (300)

It is worth noting that the contribution of the electric field to the stress tensor components is usually negligibly small as
compared to the magnetic terms (as may be verified from dimension analysis) and has therefore been omitted from the
generalized Hooke's law.

5.3 THE KINEMATICAL RELATIONS

These are the relations between the strain tensor components &j and the displacement vector components U, .

1

gijzg(viujwjui), i, j=12, (31a)

or in Cartesian components

EXX:a—u, 8yy:@, (9Xy:l a_u+@ ) (31b)

ox oy 2\ oy ox
where U and V stand for U, and U, respectively.
5.4 THE COMPATIBILITY CONDITION
The condition of solvability of equations (31b) is
826X 0’e o%e
oy o o )

These equations are complemented with the proper boundary conditions, to be discussed in detail later on.

6. EQUATION FOR THE STRESS FUNCTION

The following equation for the stress function may be obtained from the general field equations by standard procedure [9]

EJ® (1—21/),11*(1 j 1 ( 1 J
viu=_2= = VEH? + ~Zp 9% (33
(1v)oK  2(1-v) (2/47% Pl (33)

This is the same as the biharmonic equation given in [9], taking in consideration the differences in the used systems of
units, but is different from that produced by Yuan [10] because different stress functions and different stresses are
involved in the latter.

The general solution of (33) is

U=x®+yd+¥+U,, (34)
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where @ and ' are two harmonic functions belonging to the class of functions C2 ( Di ) NC! ( Di ) Di denotes

the closure of D, i=1,2, and superscript ~ C' denotes the harmonic conjugate. Function U b is any particular solution

of the equation

E_ (1-2v)u' (1 1 . 1
vu =—%571 _ = H2 2 |3 +v2), 35
P 1—y P 2(1—1/) (Zﬂl+'u2j +4(1_V),u (,uo 2”1) (X +y ) ( )

and may be expressed in the form of Newton's potential after the functionsTp andH?on the RH.S. have been
determined.

It follows from (33), (34) and (35) that

viu =42 vy — 490
OX P

VAU, (36)

7. A REPRESENTATION FOR THE MECHANICAL DISPLACEMENT VECTOR
COMPONENTS

The set of equations of Elasticity and Magnetostatics, after lengthy manipulations, yield the following important
representation of the mechanical displacement components [9]:

E oU E
mu——aﬁ‘é"(l—V)q)'i‘m(uT +UH), (37a)
E oU . E
mV:—E'F“-(l—V)(D +m(V—I— +VH)’ (37b)
where
M
U =a(l+v) I (T,dx—Tydy),
. (38)
v =a(1+v) I (Tthx +Thdy),
Mo
and
M
= I(Mde+ N, dy),
MO
; o ()
Vv, = I(Rde+Sde),
Mo

the line integrations being taken along a path inside any of the regions Di , joining a fixed point l\/li(which may be
arbitrarily chosen in Di ) to a general field point M in Di , (i =1,2). In fact, all four integrals are shown to be path-
independent. The integration constants due to the arbitrariness of the points M j are absorbed into the functions ® and

®° which are yet to be determined. Also,

2
M, :W(Hyz—Hf+J?(x2+y2)],
, (39a)
S _W H2 H2 ‘J2 2 2
H — x y+7(x +y ) )
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and

with W =%(1+v)%(,uo —%,ul).

It can be easily verified using the equations of Magnetostatics, that

oM, oN, AR, &S,

, =t (40)
oy X oy X
and that these relations are not affected by the addition of an arbitrary constant to the function Aﬁ .

|\/|H=auH, NH=auH, RH:%! S,, Ny
X oy ox oy

The mechanical displacement components U and V in (37a, b) are single-valued functions in each of Dl and D2 , since

the line integrals in (38a) are path-independent due to the Cauchy-Riemann conditions satisfied by the functions Th and

ThC , and the line integrals in (38b) are path-independent in view of relations (40).

It is important to note that each of [OX 'I'hC and Aﬁ is defined up to an arbitrary additive constant in each of D1 and

Dz- These functions will be completely determined once their values have been specified some given point in each
domain.

8. CONDITIONS FOR A UNIQUE SOLUTION

We now turn to the conditions to be satisfied in order to determine the unknown harmonic functions @ and ¥ in an
unambiguous manner. These are three types of conditions:

1) Conditions for eliminating the rigid body translation
We require the centers of both cross-sections of the cylinders to be fixed.
2) Conditions for eliminating the rigid body rotation
These conditions identically satisfied in view of the symmetry of the problem.
3) Additional simplifying conditions
In order to be able to determine the totality of the integration constants appearing throughout

the solution process, we require the following four supplementary conditions to be satisfied at two arbitrarily chosen points
Qi S Ci, (i =1,2). For convenience, these are taken to correspond to the value S = 0 of the boundary parameter. The
additional conditions have no physical implications:

ouU ouU .
U(Q)=5(Q)=F@)=0 =12 (4
or, equivalently,
It

v@)-2©@)-Z©)-0 i-12 (@
X(Q)2*(Q)-y(Q)®(Q)+¥*(Q)=0, =12 (43)
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This last condition amounts to determining the value of Y at Qi , i= 1,2 and is chosen in conformity with [2].

9. THE BOUNDARY CONDITIONS OF ELASTICITY

For the problem under consideration, the magnetic force distribution on the boundaries Cl and C2 of the domains Dl

and D, . Let

fu="fi+f j="fz+fn

denote the magnetic force per unit length of the boundary. Then, at a general boundary point Q(S) on C1 orCz, the
stress vector satisfies the condition of continuity

on=f, (44)
or, in components

o,n+o.n =1, and o,n+o,n, =f, (45)
The force fH may be expressed in terms of the Maxwell stress tensor o as
f_H =0 n, (46)
with

o, :y*(H;‘Hj——H*Zau), (47)

Substituting into (45) for O
equations (10) and taking the simplifying conditions into account, one finally gets

w: Oy and o, in terms of the stress function U and for Ny, N, from the second of

f,(s")ds'=-Y(s), (48)
(s")ds'=

oJ r
LA
ouU F

f X(s). (49)
Also,
ouU ; : ouU ; :
a—(s):—xY(s)+yX(s), —(s)==yY(s)-xX(s), (50)
S on
or, in terms of the unknown harmonic functions
. . e . : . ouU
XD+ YD+ P+ XD+ yd® =—XY +y X — 8sp’ (51)
: : o : : : ouU
XO -y D+ P+ yP—xP*=—yY —x X — anp' (52)

Solution for two infinite, parallel circular cylindrical conductors carrying steady, uniform, axial currents

For convenience, the parameters for region D2 are labeled with a “dash’, those for Dl are undashed, while the external
medium is labeled with a “star'.

10. SOLUTION FOR THE TEMPERATURE

IBi
Let us introduce the dimensionless Biot constant B = ? and the dimensionless parameters
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al®d? al®d?
1 = ' 53
4Ko P 4K o (53)

where | is a characteristic length. The thermal radiation boundary condition for & =&, and & =&, reads

b=

Bi

ﬁg(ﬂ@)”p(@)):?(ﬂ (6)+T,(6)-T.). (54)
b MOTO)=- MO T (0)T).  (55)

The particular solutions for the temperatures in Dl and D2 are respectively given by

¢® _ cosh&—cosé

T =—_p—2 """ > &, 56

TP A cosh & +cos @ >4 (56)
. ¢ _ cosh&—cos@

T =S p SN TG 57

YT P cosh & +cos @ ¢ <& (57)

The general solutions for Laplace's equations in bipolar coordinates for Dl and D2 are taken as

aT, (£,0)=(aA)+Y (ahA)e " cosng,  £>¢, (58)

8 EM&;

aT, (£,0)=(ah)+ Z( A e cosng,  £<é, (58)

Using the thermal boundary conditions (54) and (55), the expressions (56) and (57) and some orthogonality properties of
the trigonometric functions, one finally obtains (2):

2
ah =aT, +§|Eﬂ1e-é +T—2ﬂ1(200th & —1)—ilaAl,

. 2%y, . ¢ 141N
ah, =aT, +—= % —= B,(2coth &, +1) - ——aA,
Bl 12 2B ¢
while the coefficients OtA and aA', i =1, 2...are the solutions of the infinite system of linear algebraic equations

M; (aA;)=Ci, My (24;) =G,

with
i+1 — -1 L
Mi,i+1_7’ M :TB+|cosh§l, M”‘l:T’ M, ; =0, otherwise, i=12,..,,
M;M—%, Mi"i:%B+icosh§2, M;H:%, M, =0, otherwise, i=12,...

i ¢ i . i ¢ i .
C =4(-1) %ﬂl (cosh & +|E B coth élje"‘f1 , C =4(-1) T—zﬂz [cosh & —% Bcoth ézje"fz ,i=12,....
Using the Cauchy- Riemann relations

Moy o

20 o o 00’

the conjugate functions T,” and T,° in D, and D, respectively are obtained by
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:—Z ah,)e " sinng, aT, Z(O‘Ah) "“=)sinng,  (59)

n=1

and the expressions for the temperature in Dl and D2 are

_ < n(6-5) c¢? cosh & —cosé
T (&,0)=(ahA, +le cosnéd—f = 7 cosh ¢ 10050 E>E>0,  (60)

‘c N\, X 3 c¢? cosh & —cosé
aT, (5,9)=(apb)+n2( aA,)e" ) cosng - B, = T cosh & +c058" E<&, <0, (61)

In obtaining the above results, use has been made of the integrals

T cosé

——d0=-2 thé-1),
7 cosh & +cosd ﬂ(sgn(g)co g )

[ cosh& —cosd

dg=2 2coth & -1),
7 cosh & +cosd ”(SQn(‘f) 5 )

0do = - ~1)" 2 coth g™,
”COSh§+Cosecosn sgn(&)(-1) 2z coth e

[ cosh& —cosd
7 cosh& +cosd

]5 cosé
I cosndd@ =sgn(&)(-1)" 4zcothfe "™, V& n=12,....

11. THE THERMAL DISPLACEMENTS

The "displacements" due to temperature are calculated from equations (38a) for general points M (f, 6’) S Dl
and N (f, 9) € D, . For definiteness, these points are taken in the half-plane Y > 0. The line integration in each domain
is carried out as follows: (i) For the point M (f, (9) € Dl, take a path formed by the directed segment of a straight line
ClA joining the center Cl of the first cylinder to the point of intersection A of the circle of constant & through M with
the X -axis, and the directed arc AM of this circle, as shown on the figure; (i) For the point N (f, 9) € D, , take a path

formed by the directed segment of a straight line CZB joining the center C2 of the second cylinder to the point of

intersection B of the circle of constant & through N with the X -axis, and the directed arc BN of this circle, as shown
on the figure. One gets

Fig. 2. Integration paths
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0
1w aThi(fj d§+j(aThi(fj—aTh°i(1Dd9,
Lev 10 mde\n ), - T haell do\ |
¢ 0
1w IaThci 5) de+ | aT;i(fjmThi(ij do,
11v 1 de\1 ) do\ do\ |
24 O=r V4
and
' £ 0
L “-T:jaTh'i(fJ dé+ | aTh'i(fj—aTh'Ci(lj do,
11y | de\n )| do\ do\ |
24 O=r V4
' £ 0
iv—T:jaThfi[ij de+| aTh‘Ci[ijmTh'i(ij de,
Tev 150 el ), - LT dal do\ |

The following formulae are finally obtained for the "thermal” displacements in D1 and D2:

1y _c sinBhg  sinh2g A,
1+v || cosh&+cos@ cosh2& -1
e —Oqu (i) _ g 2n+i)a | g
nzj—:l n+J ( ) (62)
i — _aAe "% ¥ (cos(n+ j S ),
P e, (cos(n+1)o—~(-1)"")
i C sing C < I R Y : .
. M In EEDY\ AN . 0,
1+v | Icosh§+c056’aAO In%_ll( ) n+je y aA1$|n(n+J)
and
LEZE sinhg  sinh2g, ah,
1+v | I\cosh&+cos@ cosh2g, -1
-ZEi . _aph( ) (n+J)f§z)e—néz
I 534 n+j (69)
C < n+j ’
Ko — A" ek (cos(n+ j)o—(-1)""),
2 A (cos(n+j)o-(-1)"’)
1 v, ¢ sing B i (&) jé
- T_z > 7 L Bt -1 2
1+v | Icosh(f+c056?aAO |r§‘1( ) n+10€p\qe ° sm(n+1)

12. SOLUTION FOR THE MAGNETIC VECTOR POTENTIAL

The general solutions of the equations (20) and (21) in Dl, D2 and D3 are expressed as

A=
AI:
A=

with

1975 |Page

A+A,  E2E>0, (64a)
A+A, £<5>0 (64b)
KK, gec<a (%)
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2 2
A g AL Kol (69
wul°d; 4 | ul°d; 4 | ul?d 217, |
where
|=7ra2J1+7zb2J2, J =%, l=a+b, (66)

The solutions for Laplace's equations in bipolar cylindrical coordinates, compatible with the setting of the problem, are

|12 A, = a0+2a e "% cosng, (67a)
n=1

Il A = a0+2ae (%) cos ng, (67b)
n=1

—ﬂ*llle A =a; +nz_;(a:e”(“l) + B " cosng, (67c)

the constants to be determined from the magnetic boundary conditions. The radiation condition

A (£—0,0—0)=0 yields
= —i(a:e‘”fl +Bre™).
n=1

The solutions for the vector potential componentin D,, D, and D3 are

1

i) ———A= ao+nzl:ae (=4 cosng — I2’ (68a)
12 AR a0+2ae (£%) cosng — Jﬂ—z, (68b)
PN - 41
%1 A =a,+ Z(a:e”(f‘é) +ﬂ:e‘”(‘5‘52))cos nd—Aln I£ (68¢c)
and
A= ZTZ (1+423), ng. (69)

Apply the magnetic boundary conditions (25) and (26) and use the orthogonality property of trigonometric functions to get

a, —050+%|—(2C0th§1 1)- lln%,

N

oy = -3 S (2c0th &, -1)- ;Lln%,

4I2
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Taking A; and A;f to vanish at the foci (& =00, @ =0) and (&

:1 Hy

Ho

P (4 _1)2

N GO

1 (D) (-1 e [

o2 pa-%) (,Uo +1)2
_1)2 epfz

Hy

P (4 _1)2 ¢’
=1 Hy I

P -

P -

p(&-&) (ﬂo +1)2

20+ (-1

e " sinng,

13. THE MAGNETIC FIELD VECTOR

Ho (a_z
Hy—1

b2
coth &, + TzJe% } :

2

[,uo +1a’
~1{ g -

Tt kl’—zze“fz]—(l—(—l) )/1(
j]—(l—(—l)”)z(

|2

e—2 P&

2
+Jt|)—2ﬂ°
Ho

2 2
. Zpa;+(—1)p((y0—l)pl coth & — Je p‘fl}

The harmonic conjugate functions may now be calculated using the Cauchy-Riemann relations.

ICl_

ISSN 2347-1921

=—o0, @ =0) respectively, one gets

"(¢-2) sinng,

Mo +1
My —

My +1

Ho —

+ ez P, ’
-1
+ e—z P& ]:| ’

In this section, we determine the magnetic field inside and outside the two cylinders, due to the electric currents J;

and J » . In view of (15) and (19), the magnetic field vector may be expressed in bipolar cylindrical coordinates as

1 110
N T
123, ¢ 4, hoo
|l BN 1880
m W !
1°J, U, h oo

|
|

%A!
JZARN A

%A"
JZARNA

1

12,

1

12,

Set equations (68a, b, c), with their derivatives into equations (70a, b) to get

(1)- The magnetic field vector components for the right cylinder (region Dl) are

L."—‘
S

n=1

o O :
:__[Zn e "% sinng +

Ho

[Zn "($-4) cosnd +

1c2

ic
2 1? (cosh & +cos 0)

cosh&siné

e | 3 1
H, ===
Ho N OZ\ 112
£ LIE' 3
i Ho N OE\ 1173,

sinh & cos@

217 (cosh&+cos6)

(2)- The magnetic field vector components for the left cylinder (region Dz) are

Snfe
n=1

o0

n=1

DI

Ho

1c¢?

"¢=%) sinng + = —

e"“%) cosng - =~
2 |

2 17

1c?

J

J

cosh&sinég

(cosh& +cos@

sinh &cosé

(cosh & +cos )’ J

(3)- The magnetic field vector components outside the two cylinders (region D3) are

1977 |Pag

e

A], (70a)
A'], (70b)

2} (71a)

7 } (71c)

(71b)

(71d)
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I & | coshésing

1 ..

—H.=—> L 0-1———W— 1

123, hnZ:;‘ (£)sinn c cosh&—cosf’ (726)
1 .. 1 I sinh&cosé

~ H'=_3'R gy q N SC 71f
123, "’ hnzzll »(§)cosnd+ c cosh&—cos@ (71f)

With
L, (&)= —n(a:e”(ff‘fl) + 'B:e*n(-fﬂfz)), R.(&)= —n( a:en(::—fl) _ ﬁ:e*"(iﬂfz))_

Using equations (8), the magnetic field vector for D1 and D2 may be expressed as

%Hf :—I—( Zn g e sin nH——coth 52 e ™ sin neJ (72a)
I J; h\ = Hy 2 n=1
© 2
ziHa _! Zna g (s coan—lC—ZCSChzf
I \]1 h n=1 ILIO 2I
2 o
f_z (csch2 &+ncoth §)e’“5 cos n@j, (72b)
n=1
and
ZL H, =— (Znan "% sinng + J —cothfz e ™ sin n@j (72c)
1J, =1 Mo I* g

o0 P
Zi H,=—— Zna" né‘JVZ)cosné?—lc—zJ csch? &
I J n=1 ,uo 2'

2 o«

A IC—ZZ(—l)”(cschzg—ncoth £)e™ cosnej. (72d)

n=1

14. THE MAXWELLIAN STRESS TENSOR

The Maxwellian stress tensor o for region D3 has components

h2 Z B, (&)cos(n—m 6’—— Zw: A (&)cos(n+m)o

n,m=1 n,m=1

_licn(ga)MJrliDn(g)ws(”—ﬂ)a ! |22 B2, (73a)

h cosh&—cosd hix cosh & —cosé 2¢c
* 2
%:_F > B, (&)cos(n—m 0+— Z A (&)cos(n+m)o
n,m=1 n,m=1
| & cos(n-1)6 = cos(n+1)«9 i
1S (o)) e Wk e A SV L 73b
+h§ ”(g)cosh(f cosH hZ coshf cosé 2c? 2 i ( )
2 o0
— h2 ZE &)sin(n- m)0+:l—ZZEnym(§)sin(n+m)0
n,m=1 n,m=1
| & sin(n-1)6 = sin(n+1)0 11> _ , sinh2&sin20
IS H (o) 2T SAT)Y 2l g . (73
+hn§‘ ”(g)cosh(f cose hg‘ cosh(f cosd 4c? 2 At (cosh & —cos @)’ (732)
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where

—

A (€)= 2 (L (E)L (€) 4R, (£)R (£)),
B (€)=

1 )
()L ()R (E)R, (€)),
Eun(£) =3 A (L (R, (€) + L ()R, (£)),

C,(&)= %ﬂly%i(cosh EL,(£)+sinh&ER (£)),
D, (§)=5 A7 A(cos 2L, (£) -simn &R, (£))
H, (&)= %ﬂly'gz(cosh ER, (&)+sinh L, (£)),
Fo(£) =5 A L A (cosh R, (£) -sinh £L, (£)),

and

4Kou
= . 74
= (74)

15. THE DISPLACEMENTS DUE TO THE MAGNETIC FIELD

In this section, we calculate the "displacement” vector components due to the magnetic field for two regions D1 and

D2 by substitution of equations (39a, b) into equations (38b).
(1)- For D;
Uy
|

V|_H =W1(—2K5 (§)+2K6 (5,9)+ K, (5,6’)+ Kq (};,0)), (75b)

=W, (K, (&)+K, (£,6)+K,(£,0)-2K,(£,0)), (75a)

with
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(& )Zuioj u’ﬁal dde(IXJde’ (9= FI'? (f_é(lzj o
oo LA S o sl
K8(§,9)—fo2;?5;—0(Tyjd9—2T T;;y;—e[lf)de,
() For D,
%:Wl(K;(§)+J2K;(§,9)+ K, (£,0)-2JK,(&,0)), (76a)
Y (2K, (£)+ 29K, (£.0) + 9K, (£0)4 K (£.0)). (700)
with
(@) [ B3] e
0S5 (- 52 ()] o
Kg(g,e)_f Hy;;;lxz;—e[lf)de j '_I';;yf—e(ll)de,
s T Ao i o]
oA Koy
0= [ gt g Jao-2f T oo
and

1 1
Wl _E(l"'v)ﬂly(,uo _Elulj

In these formulae, (HX, Hy) and (Hé, Hg) are the components of the magnetic field in Cartesian and in bipolar

coordinates respectively.

16. THE PARTICULAR SOLUTIONS
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The particular solutions of the biharmonic equations U 0 and U'p for two regions D1 and D2 should be satisfy
equation (35). By use the particular solutions for the temperature problem, then equation (35) may be written for two
regions D, and D, as

o) 4
E ) 1-v

o)
E °) 1-v

,r’ 4
take V2 for both sides and use V> |—2 = |—2

il
il

to write equations (78a, b) as

ME R O D) =

(L0 )t B (g, 7( 1)) A2y
v (Eupj_lzl—v(l+4(% 2“1)) 2(1-v)

But, from equations (71a, b, c, d), one has

V2H? =1*)2V*y +J7 VIH2 =1'32v*y'+ 32, (80)

(%ﬂﬁ‘ﬂzjvsz’ (79a)

m|t* |-r||":*

(%,ul+,uzjV2H'2, (79b)

with

a,a,e "™ cos(n—m)é,

MS

=1

3

1 0
_4u§nz=;‘

iianame (M=) cos(n—m) 6.

-li
,Unm:1

Substitute from equations (80) into equations (79a,b) and rearrange:

U 1 U, w1
V4 {(é]—ka)ly} :|—4 Dl’ V4 {(éija)ly :|:I—4 Dl’

with
_4B r Ao _Y_ =
Dl—l_v[l+4[#o 2%) g ZV)( #1+u2ﬂ
_ 45 v 1 N v 1 Brl-2v(1
Dl—l_v[l+4[#o 2%] (1 ZV)[ #1+uzﬂ, =T v[z +,U2j
since V*r* =64.

The particular solution for two regions Dl and D2 are

U D r ZOO j)o: + 1
|2|pE 64|4 _Z gnzl 1a"ame nm)(écf)cos(n m)@ (81&)
u, D,r* 1 &L . ,
e~ 64.—4—2% 2> ayone” M cos(n-m)e.  (81b)

The tangential and normal derivatives of function U_{p} are
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ou oU oU ou,
e 1% e 1 (82a)
on h o& s h 59
U, U, ou au
2% > 2 (82b)
on h & &  h ae
Also, the Cauchy-Riemann conditions are
on _ oo v _ oo
oE 06’ 00 oE

The representations of harmonic functions which satisfy the Cauchy-Riemann conditions and the finiteness condition for
regions D, and D, are

D = Cn(e ®° > CR(E-&) s

== > a,e "% cosng, T > a.e " sinng, (83a)
n=1 n=1

b = Cn(e— we = Cn(E—g) -

E=c0+Zlcne (<4 cos ng, "= =d,—> c.e"“sinng,  (83b)

and

D LN g LRI < BRPRTER-S e

E-%t > ae cosng, =N b, + Zane sinng, (84a)
n=1 k|

I\f_ =c, + > c,e"“%) cosné, ILPE dy + Zc e"“#sinng.  (84b)

n=1 -1

Where the coefficients are to be determined using the mechanical boundary conditions.

The following boundary conditions on the stresses

For D,
O G;f O G;g s
=—£ —=2 = , at £=¢,, 85a
E E E E °=a 2)
For D,
I§§ ;f C ~'§0 O ;0 _4
e — & =Sl , at £=&,. 85b
E E E E c=s &5

17. THE STRESS FUNCTION

Substitute from equations (1), (81a), (81b), (83a), (83b) (84a), and (84b), into equation (34) to get the stress functions for
the regions D, and D,

= _C0+|E sinh & % sin@ b EZae’”(f’é) sinh & cosng

+
cosh & +cosé@ % cosh&+cos@ ° cosh & +cosé@

4

~C3 g e SN0 __gn no+> c,e ") cosm9+2r—4
| <~ cosh & +cos & |

_%ﬂiia o, e (n+m)(¢-&) cos(n—m)@, (86&)

n=1l m=1
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t" =c, LC__sinhg ., c_ sind b, +EZa;e“(f’52) SINNE_ osne
I“E | cosh & +cosé@ I cosh & +cosé cosh & +cosé@
- ' 4
+=-> ae" o___Sn0 g, n¢9+Zc &%) cosne + 21 r4
| < cosh & +cosé@ — 64 |
—%izzz a,ane"™) cos(n—m)e. (86b)
/Jo n=1 m=1

18. THE STRESS TENSOR COMPONENTS

The stress tensor components in bipolar coordinates are

Tl 2GEe), o
Eealebalie)alaliel, e
o U GO G B

Substitute equations (86a, b) into equations (87a, b, c), to get the stress tensor components for Dl and D2

Q

1) Stress components for D,

O

Ehc

I ¢’ coshg—cos®  D,c* cosh’&sin®g  1lc 8 e-6-5) cos(n—2)6
16 | (cosh& +cos@)” 321 (cosh& +cosg)’ 414 cosh & + cos @

el o0

—%Z ( n-1)c, —I—na ]e”(551)cos(n—1)0—%2n[(n+l)cn+|Enanje"(“1)cos(n +1)0

n=1
{ Gl —— ERS i Al cos(n-1)6
hé— h N h n(&-4) Q—= n(&-&)a¢
+§n((sm &—ncoshé)c, —n I sin §an)e cosn I nZz;nane e —cosh§+cos6’
_Einane—n(f—é)e_fw_lg N nane_n(‘f_é)w
cosh& +cos@ 411 cosh & + cosé@
o
c h2eg_2 n(é-&) cosn
I (COS J jZna cosh & +cosé
%% i (n—m)(n-m+)e,a,e "™ cos(n—m+1)8
/uo n,m=1
%% i n—-m)(n-m-1)e,a,e "™ % cos(n-m-1)0
/Uo n,m=1
%% i ( n—m)”cosh& —(n+m)sinh §)aname‘(”*m)(‘f'§) cos(n— m)e}, (88a)
0 n,m=1
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O _ 1| ¢* cosh&—coséd b ¢* sinh*&cos’ @ e s ) cos(n—2)6
E hc 16| (cosh& +cos@)’ 32 1° (coshé +cos )’ s cosh& +cosd
+%in((n—1)cn—n%an]e ") cos(n 1)@ 2 ( n+1c, +n(|:a je“(”“cos(nJrl)@
iﬁ( sinhé —ncosh&)c, —n- I smhéa j n(e-4) cosn@——;nae n(e- 51)65(;(;2;(;—.:30)59
_Ezw:nane_n(é—:l)efe: cos(n+1)6 +lgznane_n(¢—¢1> cos(n+2)0
~ cosh & + cos ~ cosh & + cos
| hEtcosd 41 h&+cosd
c - cosnéd
_ = h nf &)
I sinh™¢ + ]Zna cosh& +cosd@
%% i (n+m)(sinh& —(n+m)cosh&)e,a,e ™™ %) cos(n—m)o
,uo n,m=1
lo s . ~(n+m)(&-4) _m+1)0
8ﬂ§n,m_1((n+m) +n m)aname cos(n—m+1)
—}% y ((n+m)2—(n—m))aname(”*m)(fgl)cos(n—m—l)e},, (88b)
8,”0 n,m=1
.y & RC smh2§sm293+lin( n-1)c, —~na je‘“(g“fl)sin(n—l)e
E  hc|321° (cosh&+cosh) 2103 |

in((sinhf—ncoshé)cn —n%sinhfa je %) sinng

n=1

+%gn((n +1)c, +%nanje‘“(‘f“5l)sin(n +1)9+%|—;nane‘”(5‘§l)m—;if€
E sinh? E+ jzna n(¢-4) sinng 1C ‘ -n(¢-4) Sln(n+2)9
I cosh§+cos¢9 41 P cosh & +cosé
%22 i (n—m)(sinh &= (n+m)cosh &) ar,er,.e” "™ % sin(n—m)@
,uo n,m=1
_1% i (n+m)(n-m+1)a,e.e "™ sin(n-m+1)0
8 ,uo n,m=1
_%ﬂ 3 (n+m)(n—m—1)aname‘(”+m)(§_§1)Sin(n—m—l)ﬁ}, (88c)
,Uo n,m=1
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o. 11]Dc* coshé—cosd +&§ cosh? £sin® @ +lgina'e”(§*§2) cos(n—2)0
E hc|16 |4(cosh§+cos€)2 32 1* (cosh& +cosg) 4145 " cosh & +cosd

0 0

_%Z ( n-1)c, +~ I ©ha je %) cos(n-1)6 Z ( n+1c, —I—na Jen@_é)cos(”ﬂ)g

n=! n=1

o -1
—Zn[(sinh§+ncosh§) +ncsmh§a ] "(6%) cosng + — Znae (&g : cos(n-1)0
“— | | & cosh & +cosé
+C§:na'ne”(‘f"fz)e‘f cos(n+1)0 +1CZna,'1e”(‘f’§2) cos(n+2)6
~— coshé&+cos@ 414 cosh & +cosd
c 5 cosné
—=| cosh?&-2 S nae" ) ——
I( d ij cosh & +cosd
%% > (n-m)(n-m+1)a,e,e™ ™% cos(n-m+1)6
Hy nm=1
l%i (n-m-1)e,a,e™™* =) cos(n-m-1)6
8 Ly nm
%% i( n—m)’ cosh & +(n+m)sinh §)a a,e"™ %) cos (n— m)e} (89a)
Hy nm=1
O _V1)Dyc' coshg-cos® D’ sinh”£cos® 0 —lgina'e”“‘é) cos(n—2)6
E hc 16 1 (cosh§+cos€)2 B281° (cosh§+cos€)3 4144 7 cosh & +cos @

0

+= Z (n ~1)c, +n|aje<§ #) cos(n-1)6 Z [n+1c —nlaje”“‘é)cos(nﬂ)@

n=l n=1

. . \ .\ m(e—en . COS(N-1)6
+Zn((smh§+ncosh £)c, +nZsinh ganje (¢ ‘52)cosn6?+—2nane (&&)g gy
el | ] cosh & +cosd

+Ei na e"é %)e¢ cos(n+1)6 1c i na.e"(é-%) cos(n+2)6

| ~ cosh&+cos@ 4| & cosh & +cos @
c cosné
h n("f %)

I(Sm oot jZna cosh & +cosé

lo & . C o (nem)(E-&,
_Zy_én,m=1(n+m)(SInh§+(n+m)COSh &) e, ™ cos(n—m)o
_1% 3 (n+m)2+n—m)ar']a;1e(”*m)(§’52)cos(n—m+1)6’

8 ,UO n,m=1
Lo *—(n- e -m-1)6 89b

8 i 2 (n+m) —(n m))aname cos(n-m-1)8¢, (89b)

0 n,m
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oy | I{D c* sinh2&sin26 1

E hc

< -z n[ (n-1)c, +<na, je”(””sin(n—l)@
32 1" (cosh& +cosf) 244 |

_Zn((sinh &+ncosh&)c, + n%sinh §a'nje”(“2) sinng
n=1

—%Z [(n+1 IEna'nj e"(e%) sm(n+1)6’+Z—Zna

n=.

—Ig[smh E+= jz gné-s) _ Sinng Z” REES)

= cosh & +cos @ 4 4

a5 SIN(N—-2)6
cosh &+ cos @
sin(n+2)0
cosh & +cos @

-4 z (n—m)(sinh & +(n+m)cosh &) a,a,e™ ™) sin(n—m)o

onml

+1 A Z (n+m)(n-m+1) e a,e™ ™ sin(n—m+1)0
8 iy i

+l% Zw: (n+m)(n-m-1)a,e,e™ ™) sin(n—m —1)9}, (89c)

8 /JO n,m=1

19. THE MECHANICAL PROBLEM

We solve the mechanical problem for the two regions D1 and D2 separately to determine the constants of the harmonic
functions by using the boundary conditions expressed in equations (85a, b). By use the orthogonality of trigonometric
functions one get a system of linear equations in the constants of harmonic functions for D1 and D2 we solve them by

any method to get these constants. They are some constants its value coming from applieg the additional simplifying
conditions (41), (42) and (43) for two rigions.

20. THE DISPLACEMENT VECTOR COMPONENTS

From equations (37a, b) the displacement vector components in x and y directions for D1 and D2 are

1 u

—X =(8-4v)a,

D, c¢® cosh&—cos@
1+v |

16 I° (cosh & + cos 6’)2

sinh&+4(1-v) i a,e "“ %) cosn@
n=1

+

[% e cos(n—1)@+cosné + % e < cos(n+1) 49} nc e "¢ "4

+

M- 1M

—x

Lo cos(n—1)6 +cosng +%e"f cos(n+1) 6’} na e "(<-%)

>
Il
5N

|
l— ol— ol— o|— o|=
_|\<

N N

L et sin (n—1)0+sin n0+%e"f sin(n-+1) 6’} na e "¢-4)

RS

+

Ms Il I

[Iéj [% e * cos(n—1)6 +cosnéd + % e cos(n+1) 9} ae ")

= [%e‘§ sin(n—1)@ +sin n6’+%e§ sin(n +1)9} ae "4

|
[e)
S

ne * +me’ )a,a,e "™ cos(n—m+1)0
ne® +me* ) e, a,e "™ cos(n—m-1)0

lal (n+m)aname‘(”+m)(§‘§1) cos(n—m)9+$[ul—T+uTHj}y (90a)
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Vv 3 _ 0
1Y &C—S coshe c0592 sin@-4(1-v)> ae "% sinng
1+v | 16 I” (cosh & +cos @) =

+

[%& sin(n—1) 0 +sin n6'+%e“S sin(n+1) 6’} nce "< %)

+
—|x

_|<
1
N[ NP

Ze“sin(n—1)6+sin n6+%e“f sin(n+1) 6} nane’”(‘f*'fl)

+

Zefcos(n—1)@+cosnd +%e5 cos(n+1) 9} na,e "¢ %)

+

—j[%ef sin(n—1)@+sin n6’+%e§ sin(n +1)¢9} ae "

|Q) Rﬂ@
- | X

=}
.L

o))

D)
TN

N, ®|IFk ®©IFk O|l— 0o|— 0o]l— 0o|— o]|—

Ms 2l IDMe IDMs TDMs

—| x
N7

[% e cos(n—1)@+cosnd + %e§ cos(n+1) 6’} ae "4

V)

ne™ —me)a,a,e "™ sin(n-m+1)6

=

=}

I

N
—_ —_

ne’:E _ me*ﬁ)aname’(r‘*m)(f*é) Sin (n -m _1) o

& R RS

(n+m)(&-4) 04+ 1 V_T V—Hj 90b
(= o sin(n g 1+v(|+| + (%00)

M8 %Ms

N
AN
Ol—

and

Ja, - D, ¢* coshé&—cosé
16 ° (cosh &+ cos @)’

—
w
N
S

sinh & + 4(1—v)i a ") cosng
n=1
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call2 2 "
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cegos\ 1l )2 2 "
l%l— i (ne” +me™ ), e™ ™% sin(n-m+1)6
/uo Cnm:l
—lﬂl— > (ne™ —me )y, e™ ™% sin(n-m-1)6
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1 w, | & (n+m)(£-&,) 1 V'T V;_|
- “y : o L+ -H 91b
4y§cn§1(n m)a,a,.e sin(n—m) 7501 T8 (91b)
o B LTI anduTT, VI—T UI—H Vi are defined above.

Where— L —H _H al.u
(I R B I

21. NUMERICAL RESULTS AND DISCUSSION

Consider the concrete case for which

a=b=3, d=11 B=1.5 v=0.25, 2, =0.9999, .4 =, =0.25, » =0.25,

L. =03, £, =0.5,

u v
We have plotted the "magnetic" displacements —H and along the X- and Y - directions respectively on the

boundaries of the two cylinders as given by equations (75a, b) and (76a, b). In the following, we let the distance

d =8,9,10.

Case (I): Let J =1.The currents in the two similar cylinders are in the same direction and have equal intensities.

i 55
e

Q.05
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Case (ll): Let J = -1. The currents in two similar cylinders are in opposite directions and have equal intensities.

002

onol=F

b =

=00l —

—0o.oaE

u

Y
We have displayed the magnetic displacement components |_H and TH along the X - and Y - directions respectively on

the boundaries of the two cylinders for seven different cases, depending on the radii lengths of the two cylinders, the ratio
between the two electric current densities and the relative directions of these currents. We have found that these
displacements produce: a) an elongation of both cylinders along the X -direction in all cases; b) a compression of both
cylinders along the Y -direction when the currents have the same sense, in which as the cylinders acquire ellipse-like

shapes; c) a compression of both cylinders along the Y -direction on the nearer parts of their contours ( [6]=0) and an

elongation along the same axis on the farther parts of their contours ( |8]=1) when the currents have opposite senses, in
which case the cylinders acquire pear-like shapes with the narrow parts facing each other.

The

bigger elongations take place at the far parts of the contours, while the relatively smaller elongations take place on the

nearer parts of the contours. The larger compressions take place at the middle parts of the contours (|8|=m/2). When the
currents are in opposite directions and the thinner cylinder is carrying the stronger current , the magnetic displacements
become very small on most of the boundaries, with relatively larger values only around the far parts. All the magnetic
displacements are relatively smaller when the currents have opposite senses, compared to the other case where both
currents have the same sense, and become weaker as the distance between the centers increases.
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