

Exponential Permutable Semigroups

Rushadije Halili Ramani, Dashmirlbishi State University of Tetovo rushadije.ramani@unite.edu.mk State University of Tetovo d.ibishi@hotmail.com

ABSTRACT

A semigroup S is called a permutable semigroup if $\rho \cdot \sigma = \sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S. A semigroup is called an exponential semigroup if it satisfies the identity $(xy)^n = x^n y^n$ for every integer $n \ge 2$. In this paper we deal with permutable exponential semigroups. We describe the archimedian exponential semigroups and non-archimedian exponential semigroups which are semilattices of a group and a nilpotent semigroup.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .9, No.3

www.cirjam.com , editorjam@gmail.com

1. Introduction

A semigroup S is called a permutable semigroup if the congruences of S commute with each other, that is $\rho \cdot \sigma = \sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S.

Lemma 1[3]. Every group is permutable.

Lemma2[3]. If S is a permutable semigroup and S is homomorphiconto T, then T is a permutable semigroup.

Lemma3[3]. Let Γ be a semilattice. Γ is permutable if and only if $|\Gamma| \le 2$.

Theorem1[3]. If a semigroup S has a proper ideal and a proper group congruence then S is not permutable.

Theorem2[3].If S is a permutable semigroup then the ideals of S form a chain.

Lemma 4[2]. If a permutable semigroup is a semilattice of two semilattice indecomposable subsemigroups S_1 and S_0 such that $S_0S_1\subseteq S_0$ then S_1 is simple.

Defenition. A semigroup is called an exponential semigroup if it satisfies the identity $(xy)^n = x^n y^n$ for every integer $n \ge 2$.

Theorem3[4]. If a semigroup satisfies the identity $(xy)^2 = x^2y^2$ then it satisfies the identity $(xy)^n = x^ny^n$ for all positive integers $n \ge 4$.

Corollary 1[4]. A semigroup S is exponential if and only if it satisfies the identities $(xy)^2 = x^2y^2$ and $(xy)^3 = x^3y^3$.

Theorem4[4]. Every exponential semigroup is a semilattice of exponential archimediansemigroups.

Theorem5[4]. A semigroup is a simple exponential semigroup if and only if it is a completely simple exponential semigroup with a zero adjoined.

Theorem6[4]. S is an exponential archimedian semigroup containing at least one idempotent element if and only if S is a retract extension of a rectangular abelian group by an exponential nil semigroup.

Lemma5[5]. A nil semigroup S is a permutable if and only if the ideals of S form a chain with respect to inclusion.

Theorem7[6]. An exponential archimedian semigroup S without idempotents has a non trivial group homomorphic image.

Lemma 6/5]. A Rees matrix semigroup $S = M(I, G, \Lambda; P)$ is permutable if and only if $|I| \le 2$ and $|\Lambda| \le 2$.

1. Exponential archimedian semigroups

Let ρ and σ be congruences on a semigroup S then $\rho \vee \sigma = \rho \cdot \sigma$ if and only if $\rho \cdot \sigma = \sigma \cdot \rho$, where

$$\rho \cdot \sigma = \{(x, y) \in S \times S \mid (\exists z \in S)(x, z) \in \rho; (z, y) \in \sigma\}.$$

If ρ is a congruence on rectangular exponential grup $S = I \times G \times \Lambda$ (I is a left zero semigroup, G is abelian group, Λ is a right zero semigroup) then

$$\rho_I = \{(i,j) \in I \times I \mid (\exists g_1, g_2 \in G, \lambda_1, \lambda_2 \in \Lambda)(i, g_1, \lambda_1) \rho(j, g_2, \lambda_2)\}$$

$$\rho_G = \{(h,k) \in G \times G \mid (\exists i_1, i_2 \in I, \lambda_1, \lambda_2 \in \Lambda)(i_1, h, \lambda_1) \rho(i_2, k, \lambda_2)\}$$

$$\rho_{\Lambda} = \{ (\lambda, \mu) \in \Lambda \times \Lambda \mid (\exists i_1, i_2 \in I, g_1, g_2 \in G)(i_1, g_1, \lambda) \rho(i_2, g_2, \mu) \}.$$

Lemma7[2].If ρ and σ are congruences on S then,

(i) $\rho_I, \rho_G, \rho_\Lambda, \sigma_I, \sigma_G, \sigma_\Lambda$ are conguences.

(ii)
$$(\rho \cdot \sigma)_I = \rho_I \cdot \sigma_I$$
, $(\rho \cdot \sigma)_G = \rho_G \cdot \sigma_G$ and $(\rho \cdot \sigma)_\Lambda = \rho_\Lambda \cdot \sigma_\Lambda$

(iii) If
$$\rho_I = \sigma_I$$
, $\rho_G = \sigma_G$, $\rho_\Lambda = \sigma_\Lambda$ then $\rho = \sigma$.

Lemma8[2].Let I be left zero semigroup, G abelian group, Λ right zero semigroup. Then rectangular group $S = I \times G \times \Lambda$ is permutable if and only if $|I| \le 2$, $|\Lambda| \le 2$.

Lemma9 [5]. Every finite nil semigroup is nilpotent.

Lemma 10[5]. A finite semigroup is an archimedian permutable semigroup if and only if it is either a cyclic nilpotent semigroup or a permutable completely simple semigroup.

Lemma 11[6]. Let S be an exponential semigroup and $a \in S$. Then S_a is the least unitary reflexive subsemigroup of S that contains a. If S is also archimedian then the principal right congruence determined by S_a is a group congruence.

Theorem 8. An exponential archimedian permutable semigroup *S* has an idempotent element.

Proof. Suppose S has no idempotents. By theorem 7.and because S is a permutable semigroup then S is a simple semigroup with non-trivial group homomorphic images, these images are abelian. The group congruences on S contain the least commutative congruence ρ on S. Since S/ρ is commutative and simple it is a group. Hence ρ is the least group congruence on S. So ρ is the principal right congruence determined by the least unitary subsemigroup S.

A is reflexive by $(xy)^3 = x(yx)^2 y = xy^2 x^2 y = xy(yx)xy$ and has empty right residue since S is archimedian. By lemma 11. $A = S_a = S_b$ for $a, b \in A$ so by

$$S_a = \{x \in S \mid a^i x a^j = a^k \text{ for } i, j, k \in Z^+\}$$
(1)

A is archimedian. Clearly A is exponential. For $d \in A$ let A_d be the unitary subsemigroup of A defined by (1).

 A_d is unitary in S, if $u,v\in S$ and $u,uv\in A_d$ then $u,uv\in A$ so $v\in A$ and hence $v\in A_d$. But A is the least unitary subsemigroup of S so $A=A_d$ for all $d\in A$. Hence A is an exponential archimedian semigroup with only trivial group homomorphic image. By theorem 7, A and S have an idempotent. This is a contradiction.

Theorem 9. Let S be an exponential archimedian semigroup. S is permutable if and only if S is an exponential nil semigroup whose principal ideals form a chain with respect to inclusion and a rectangular group.

Proof. Let S be an exponential archimedian nilsemigroup then by lemma8 and lemma5, S is permutable.

Conversely, assume that S is exponential archimedian permutable semigroup. Then by theorem 8 contain an idempotent element. Hense by theorem 6 is a retract extension of a rectangular abelian group J by an exponential nil semigroup N.

Assume $J=I\times G\times \Lambda$ (I is a left zero semigroup, G is abelian group, Λ is a right zero semigroup). Suppose $N\neq\{0\}$, then S is non simple and by Lemma 8 [7], S and $J=I\times \Lambda$ have only trivial group homomorphic image. Hence |G|=1 and may consider S an ideal extension of an rectangular band by N. Let

$$\rho = \{(x, y) \in S \times S \mid x^n = y^n \text{ for some intiger } n > 0\}$$

ho is an equivalence relation.

For $x,y\in S^1$ and $(x,y)\in \rho$ there is an integer n>0 such that $x^n=y^n$ and

$$(ayb)^n = a^n y^n b^n = a^n x^n b^n = (axb)^n$$

so ρ is a congruence on S. For $x \in S$ there is an integer m > 0 so that $x^m \in J$. Hence there are classes of ρ that contain elements of N and exactly one element of J. So ρ is comparable with the Rees congruence modulo J only if |J| = 1. Hence S = N is a nil exponential semigroup.

Suppose $N=\{0\}$ then, by lemma8 S is an rectangular semigroup with $|I| \leq 2$ and $|\Lambda| \leq 2$.

3. Exponential non-archimedian permutable semigroup

Remark 1. As every semigroup is a semilattice indecomposable semigroups, lemma 3 and lemma 4 together imply that every permutable semigroup is either semilattice indecomposable or a semilattice of two semilattice indecomposable semigroups S_0 and S_1 such that $S_0S_1\subseteq S_0$.

Lemma 12. If S is a finite non-archimedian exponential permutable semigroup then it is a semilattice of a completely simple semigroup $S_1 = \mathsf{M}(I,G,\Lambda;P)$ such that $|I| \leq 2, |\Lambda| \leq 2$ and a semigroup S_0 such that $S_0 \leq 1$ and $S_0 \leq 1$ is an ideal extension of a completely simple semigroup $S_0 \leq 1$ by a nilpotent semigroup.

Proof. Let S be a finite permutable non-archimedian exponential semigroup. Then by lemma 3 and Lemma 4, S is a semilattice of two archimedian semigroups S_0 and S_1 such that $S_0S_1\subseteq S_0$.

As the Rees factor $S_1^0=S/S_0$ is permutable then by Lemma 3, S_1 is a permutable archimedian semigroup. By lemma 4 and Lemma 10, S_1 is completely simple. Then S_1 is a Rees matrix semigroup $S_1=\operatorname{M}(I,G,\Lambda;P)$ and by Lemma 6 $|I|\leq 2, |\Lambda|\leq 2$. By Theorem 6, S_0 is an ideal extension of a completely simple semigroup K by a nilpotent Rees factor semigroup $N=S_0/K$.

Lemma 13.

 S_1 is ortogonal group so, $S_1 = I \times G \times \Lambda$ where I is a semigroup of the left zeros with $|I| \le 2$, G is an abelian group and Λ is a semigroup of the right zeros with $|\Lambda| \le 2$.

Proof.

The proof. flow from the Theorem 8 and 9.

Lemma14.

 S_0 is an orthogonal ore a nil- exponential semigroup tape(strap)

The proof. flow directly from the theomre 8 and 9.

Ongoing we will see which are the characteristics of a non-archimedian exponential permutable semigroup who S_0 is a orthogonal band.

Lemma 15[7].

If S_0 is a semigroup of the right zeros than,

- (i) For each $a \in S_0$ have that $S_1 a = a$.
- (ii) For each $a \in S_0$, $i \in I$, $g \in G$ exists $\lambda \in \Lambda$ so that $a(i, g, \lambda) = a$.

Remark 2.

For the semigroup $S=S_0\cup S_1$ where $S_0\cap S_1=\varnothing$ and ρ congurenc on S it's clear that for $x\in S_0$, $y\in S_1$ from $(x,y)\in \rho$ flow $\rho=S\times S$ that meaning that two congurences of the semigroup S are permutable if and only if , if theyr closely on S_0 and S_1 are permutable.

Now before we give the Theorem 10 we take the groupoid (S,*) of the kind (i) and (ii):

(i)
$$|S_0| \le 2$$
, $|I| \le 2$, $|\Lambda| \le 2$; $x * y = xy$ for $x, y \in S$

or

 $x, y \in S_1$ have: $a * S_1 = S_1 * a = a$ for each $a \in S_0$.

(ii)
$$|S_0| = 3, |I| = 2, |\Lambda| \le 2$$
, $x * y = xy$ if $x, y \in S_0$

or

$$x, y \in S_1$$
 have $(S_0 = \{a, b, c\}, I = \{i, j\})$

$$a * S_1 = (\{i\} \times G \times \Lambda) * a = (\{i\} \times G \times \Lambda) * b = a$$

$$b * S_1 = a * (\{j\} \times G \times \Lambda) = (\{j\} \times G \times \Lambda) * b = b$$

$$c * S_1 = S_1 * c = c$$
.

In the paper [7] " A family of permutable completely regular semigroups" are prove that these groupoids are permutable.

Theorem 10.

The given conditions are equivalence.

Let be S a groupoid of the kind (i) and (ii) its evident that the semigroup S a non-archimedin exponential semigroup created from two archimedian components S_0 and S_1 . Also ρ is congurenc on S so that $(x,y) \in \rho$ have that $\rho = S \times S$. So,if $|S_0| \le 2$ (from Lemma 8 flow that S_0 and S_1 are permutable.) than from remark 2 flow that S is permutable.

If $|S_0|=3$ It can be proof. easy that the closely on S_0 of a congruences of S is equal with $S_0\times S_0$ ore with the congruences how are bound with the divisions S_0 in classes of $\{a,b\}$ and $\{c\}$.

Since those closely are two by two permutable and as S_1 is permutable fwol that and S is permutable.

Conversely, let be S a non-archimedian exponential permutable semigroup where S_0 is a semigroup of the left zeros.

First we suppose that for each $a \in S_0$ applies $aS_1 = a$ (S_0, S_1 are archimedian componets). In this case we see that the semigroup S is permutable and S_0 is permutable that flow that the semigroup S is groupoid of the first (i) kind.

Now we suppose that exists $x \in S_0$ so that $xS_1 \neq x$. In this case we have $|S_0| \geq 2$ in S_1 have |I| = 2.

We take $I = \{i, j\}$ and we write:

$$x(\{i\} \times G \times \Lambda) = x(sipas \ lem "es 15.(ii))$$

 $x(i,g,\lambda) = y \quad i \in I, g \in G, y \in S_0, y \neq x)$ (1)

From (1) flow:

$$x(\lbrace i\rbrace \times G \times \Lambda) = y, y(\lbrace i\rbrace \times G \times \Lambda) = x, y((\lbrace i\rbrace \times G \times \Lambda) = y)$$
(2)

Examine the equivalence relation ρ that separating S in classes:

$$\{i\} \times G \times \Lambda$$
, $\{j\} \times G \times \Lambda$, $\{s\}$,

 $\text{where } s \in S_0 \text{ so that } sS_1 = s, \{s,t\} \text{ , } s,t \in S_0 \text{ that exists } v,w \in S_1 \text{ for those applies the identity } sv = t, tw = s.$

When we see (1) and (2) and from lemma 15 (i), we proof that ρ is congurenc.

The semigroup $\Sigma = S / \rho$ is a non-archimedian exponential permutable semigroup where (Σ_0 and Σ_1 are archimedian componets of Σ) Σ_0 -is a semigroup of the left zeros. One the other side for each $\alpha \in \Sigma_0$ have that $\alpha \Sigma_1 = \alpha$ so Σ_0 is permutable. So from lemma 7 and 8 have $|\Sigma_0| \le 2$.

Other cases:

If
$$|\sum_{0}|=1$$
 than $|S_{0}|=2$.

So $S_0 = \{a, b\}$ from we take that

$$aS_1 = (\{i\} \times G \times \Lambda)a = (\{i\} \times G \times \Lambda)b = a$$

$$bS_1 = (\{j\} \times G \times \Lambda)a = (\{j\} \times G \times \Lambda)b = b$$

the equivalence relation that separating S in classes:

$$(\{i\} \times G \times \Lambda) \cup \{a\}, (\{i\} \times G \times \Lambda) \cup \{b\}$$

is a non-permutable congurenc ,with a Rees congruenc modulo S_0 which is contrary with our suppose that the semigroup S is permutable.

If
$$|\sum_0|=2$$
 than $|S_0|=4$ ore $|S_0|=3$.

If $|S_0| = 4$ than $S_0 = \{a, b, c, d\}$ and we suppose that:

$$\sum_{0} = \{a, b\}, \{c, d\}$$

$$aS_{1} = (\{i\} \times G \times \Lambda)a = (\{i\} \times G \times \Lambda)b = a$$

$$bS_{1} = (\{j\} \times G \times \Lambda)a = (\{j\} \times G \times \Lambda)b = b$$

$$cS_{1} = (\{i\} \times G \times \Lambda)c = (\{i\} \times G \times \Lambda)d = c$$

$$dS_{1} = (\{j\} \times G \times \Lambda)c = (\{j\} \times G \times \Lambda)d = d$$

In this case the congurenc we take as an equivalences calasses.

$$(\{i\} \times G \times \Lambda) \cup \{a,c\}, (\{j\} \times G \times \Lambda) \cup \{b,d\}$$

With the Rees modulo $\,S_0\,$ congurenc aren't permutabel which are contrally with us suppose that the semigroup $\,S\,$ is permutable.

And at last if $|S_0|=3$,than S coincides (to the izomorf) with the groupoid like (ii). So, the theorem are profed.

Remark 3.

In the same way we can form the clain for non-archimedian exponential semigroups when S_0 is a semigroup of the right zeros, from theorem 8 and 9 we can form the new clain with the conditions (ii) like this:

(ii)
$$|S_0| = 3, |I| = 2, |\Lambda| \le 2, x * y = xy$$
 for $x, y \in S_0$

or

$$x,y\in S_1$$
 and (take $S_0=\{a,b,c\},\Lambda=\{\lambda,\mu\}$)
$$S_1*a=a*(I\times G\times\{\lambda\})=b*(I\times G\times\{\lambda\})=a$$

$$S_1*b=a*(I\times G\times\{\mu\})=b*(I\times G\times\{\mu\})=b$$

$$S_1*c=c*S_1=c$$
 . \blacksquare

Lemma 16[2]

Let be S_0 an orthogonal band and the principal ideal in S .So $S_0 = V \times W$ (where V is a semigroup of the left zeros and W a semigroup of the right zeros),like :

$$\alpha = \{(a,b) \in S \times S \mid (\exists w \in W)a, b \in V \times \{w\}, \text{ or } a = b\}$$
$$\beta = \{(a,b) \in S \times S \mid (\exists v \in V)a, b \in \{v\} \times W, \text{ or } a = b\}$$

are congruences in S. In other side ϕ and ψ are natural homomorphic in S on S/α and S/β dhe $S_1=S\setminus S_0$ than we have:

$$S_0 \phi \square W$$
 , $S_1 \phi \square S_1$ dhe $S_0 \psi \square V$, $S_1 \psi \square S_1$.

Theorem 11.

An Exponential non- archimedian semigroup S is permutable if and only if S/α and S/β are exponential permutable semigroups (where α and β are defined like Lemma 16).

Proof.

By Lemma 2 as S is an exponential permutable semigroup then S/α and S/β are exponential permutable semigroups.

Prove the inverse:

Assume that S/α and S/β are exponential permutable semigroup and $S_0 = V \times W$ (where V is a semigroup of the left zeros, W is a semigroup of the right zeros).

Proved that S is an exponential non-archimedian semigroup.

As S_0 and S_1 are exponential semigroups is easily provable that for $x, y \in S$ where one is from S_0 and the other from S_1 , applies :

$$(xy)^n = x^n y^n$$
 for each $n \ge 2$

True, as $(xy)^n$ and x^ny^n are part of S_0 , we write:

$$(xy)^n = (v_1, w_1), x^n y^n = (v_2, w_2)$$
 where $v_1, v_2 \in V, w_1, w_2 \in W$ and $n \ge 2$.

As ϕ from Lemma 16 is a natural homomorphism of S over S / lpha we have

$$[(xy)^n]\phi = V \times \{w_1\}, \qquad (x^n y^n)\phi = V \times \{w_2\}$$

except this, because $S \, / \, lpha$ is an exponential semigroup have :

$$[(xy)^n]\phi = [(x^n)\phi][(y^n)\phi] = (x^ny^n)\phi$$

So, $w_1 = w_2$. similar we can proof that $v_1 = v_2$.

On the other side let be : \sum_{0}^{∞} , \sum_{1}^{∞} and \sum_{0}^{∞} , \sum_{1}^{∞} archimedian components of S/α and S/β respectively we have by:

$$\sum_{0} = S_{0} \phi \square W$$
, $\sum_{1} = S_{1} \phi \square S_{1}$

And

$$\Sigma_0^* = S_0 \psi \square V , \qquad \qquad \Sigma_1^* = S_1 \psi \square S_1.$$

So, S/α is a semigroup of the kind given in **Remark 3**, also S/β is a semigroup like that given in Theorem 10.So $|V| \le 3$ and $|W| \le 3$.

Other cases:

If |V|=1 (|W|=1) congruence α (β) is relation of the equation and so $S/\alpha \square S$ ($S/\beta \square S$) flows that S is permutable.

Now we assum that |V|=2 and |W|=2 from Theorem 10 and the Remark 3 we have that $|I|\leq 2$, $|\Lambda|\leq 2$ and for each $a\in S_0$ flow that :

$$aS_1 = S_1 a = a.$$

If $a \in S_0, x \in S_1$, we take :

$$a = (a_1, a_2), ax = (v, w)$$
 where $a_1, v \in V$ and $a_2, w \in W$.

So.

$$a\phi = V \times \{a_2\}, (ax)\phi = V \times \{w\}.$$

On the other side, from theorem 10 \Longrightarrow

$$(ax)\phi = (a\phi)(x\phi) = a\phi = V \times \{a_2\}$$
 because that $w = a_2$.

In the same way we can proof. that $v = a_1$ that meaning ax = a. And similar we have that xa = a.

If ρ is congruence on S than, from $(x,y) \in \rho$ where $x \in S_0$ and $y \in S_1$ have that $\rho = S \times S$.

So, from Lemma 8 $\,S_0$ and $\,S_1$ are permutable, than and $\,S\,$ is permutable.

Let be |V|=2, |W|=3. from Theorem 10 and Remark 3 flow |I|=2, $|\Lambda|\leq 2$.

Take,

$$V = \{v_1, v_2\}, W = \{w_1, w_2, w_3\}, \Lambda = \{\lambda, \mu\},\$$

$$a = (v_1, w_1), b = (v_2, w_2), c = (v_2, w_2)$$

Then:

$$\Sigma_0 = \{a\phi, b\phi, c\phi\}, \qquad \Sigma_0^* = \{a\psi, b\psi\}$$

And from Theorem 10 and remark 3 we have:

$$S_1(a\psi) = (a\psi)S_1 = a\psi$$

$$S_1(b\psi) = (b\psi)S_1 = b\psi$$

$$S_1(a\phi) = (a\phi)(I \times G \times \{\lambda\}) = (b\phi)(I \times G \times \{\lambda\}) = a\phi \qquad \dots (3)$$

$$S_1(b\phi) = (a\phi)(I \times G \times \{\mu\}) = (b\phi)(I \times G \times \{\mu\}) = b\phi$$

$$S_1(c\phi) = (c\phi)S_1 = c\phi$$

Ongoing, if ρ is congurenc on S so that $(x, y) \in \rho$ where $x \in S_0$, $y \in S_1$ flow that $\alpha \subseteq \rho$.

Really that for $x=(x_1,x_2)$ where $x_1\in V, x_2\in W$ have that $V\times\{x_2\}\subseteq x\rho$. In fact if $a\in V\times\{x_2\}$ than ax=a and from $(x,y)\in \rho$ flow $(xax,yax)\in \rho$ that means that $(x,a)\in \rho$.

From

$$V \times \{x_2\} \subseteq x\rho$$

For each $a=(a_1,a_2)$ $(a_1\in V \text{ and } a_2\in W)$ have that:

$$(V \times \{x_2\})a = V \times \{a_2\}$$

Than:

$$V \times \{a_2\} \subseteq (xa)\rho = a\rho$$

From

$$\alpha \subseteq \rho$$

And so the binary equation

$$\rho' = \{(x', y') \in S \mid \alpha \times S \mid \beta \mid (\exists x, y \in S)(x, y) \in \rho, x' = x\phi, y' = y\phi\}$$

is congruenc.

Also from
$$(x, y) \in \rho, x \in S_0, y \in S_1$$

flow:

$$(x\phi, y\phi) \in \rho', \qquad x\phi \in \Sigma_0, y\phi \in \Sigma_1.$$

So
$$\rho' = S / \alpha \times S / \beta$$
 from $\rho = S \times S$.]

Applied the therd (3) equation we can see that the narrowing in S_0 of a congurence in S is equal with $S_0 \times S_0$ ore with the congurenc how is related with this divisions of S_0 :

$$\{(v_1, w_1), (v_1, w_2)\}, \qquad \{(v_2, w_1), (v_2, w_2)\}, \qquad \{(v_1, w_3), (v_2, w_3)\}$$

$$V \times \{w_1\}, \qquad V \times \{w_2\}, \qquad V \times \{w_3\}$$

$$V \times \{w_1, w_2\}, \qquad V \times \{w_3\}$$

$$\{v_1\} \times W, \quad \{v_2\} \times W.$$

With those of narrowing are two of tow permutable and from Lemma 8 S_1 is permutable than and S_2 is permutable.

In the same way we have the case when |V|=3, |W|=2

And in the and we assum that |V|=3, |W|=3

In front of Theomre 10 and remark 3 have: |I|=2, $|\Lambda|=2$

We take:

$$V = \{v_1, v_2, v_3\}, W = \{w_1, w_2, w_3\}, I = \{i, j\}, \Lambda = \{\lambda, \mu\},$$

$$a = (v_1, w_1), b = (v_2, w_2), c = (v_2, w_3)$$

Than:

$$\Sigma_0 = \{a\phi, b\phi, c\phi\}, \qquad \Sigma_0^* = \{a\psi, b\psi, c\psi\}$$

From theorem 10 and remark 3 we have:

$$S_{1}(a\phi) = (a\phi)(I \times G \times \{\lambda\}) = (b\phi)(I \times G \times \{\lambda\}) = a\phi$$

$$S_{1}(b\phi) = (a\phi)(I \times G \times \{\mu\}) = (b\phi)(I \times G \times \{\mu\}) = b\phi \qquad \dots (4)$$

$$(a\psi)S_{1} = (\{i\} \times G \times \Lambda)(a\psi) = (\{i\} \times G \times \Lambda)(b\psi) = a\psi$$

$$(b\psi)S_{1} = (\{j\} \times G \times \Lambda)(a\psi) = (\{j\} \times G \times \Lambda)(b\psi) = (b\psi)$$

$$S_{1}(c\phi) = (c\phi)S_{1} = c\phi, \qquad S_{1}(c\phi) = (c\phi)S_{1} = c\phi$$

From what was said above,if ρ is congurenc in S that $(x,y) \in \rho$ where $x \in S_0$ and $y \in S_1$ have that $\alpha \subseteq \rho$ and flow that $\rho = S \times S$.

Proof. let be $(x_1, x_2) \in S_0(x_1 \in V, x_2 \in W)$ and $(i, g, \lambda), (j, g, \lambda)$ two elements from S_1 . Now the forth (4) equation takes the form

$$\{(i,g,\lambda)(z_1,z_2)(x_1,x_2) \mid z_1 \in V, z_2 \in W\} = \{(v_1,x_2),(v_3,x_2)\}$$

$$\{(j,g,\lambda)(z_1,z_2)(x_1,x_2) \mid z_1 \in V, z_2 \in W\} = \{(v_2,x_2),(v_3,x_2)\} \quad \dots (5)$$

$$(j,u,\lambda)(v_1,x_2) = (v_2,x_2), (j,u,\lambda)(v_3,x_2) = (v_3,x_2)$$

Where u is the neutral element G .

From what was said above, let be $(x, y) \in \rho$ where $x \in S_0$ and $y \in S_1$.

We take $x=(x_1,x_2), y=(i,g,\lambda)$ and $(x,y)\in\rho$ flow $(x,yzx)\in\rho$ for each $z\in S_0$ and from the equation (5) flow $(v_1,x_2),(v_3,x_2)\in x\rho$.

We proof. that $(v_2, x_2) \in x\rho$.

Distinguish these cases:

If $x = (v_2, x_2)$ it's clear that $(v_2, x_2) \in x\rho$.

Assum that $x = (v_1, x_2)$. From $(x, y) \in \rho$ flow $(j, u, \lambda)(v_1, x_2)\rho(j, u, \lambda)(i, g, \lambda)$,

For which:

$$(v_2, x_2) \rho(j, g, \lambda)$$

for each $z \in S_0$ have:

$$(v_2, x_2)\rho(j, g, \lambda)z(v_2, x_2).$$

So, whene we considering the equation (5) have that:

$$(v_2, x_2) \rho(v_3, x_2).$$

And at last whene $x = (v_3, x_2)$ it's like before

$$V \times \{x_2\} \subseteq x \rho$$
.

Whene we considering tha for each:

$$z = (z_1, z_2) (z_1 \in V, z_2 \in W)$$

have:

$$(V \times \{x_2\})z = V \times \{z_2\}$$

and flow:

$$V \times \{z_2\} \subseteq (xz)\rho$$
.

So,
$$\alpha \subseteq \rho$$
.

So since the applies in S_0 in each two congurences of S are permutable and as S_1 is permutable semigroup than form Lemma 8. flow that S is permutable.

References.

- [1] Cliford A.H. and G.B. Preston, The algebraic theory of semigroups, Math.Surveys N. Amer. Math.Soc. Providence, 1(1961).
- [2] A. Cherubini, CelestinaBonzini, Sugli E-2 semigruppipermutabili, Instituto Lombardo (1981),73-89.
- [3] Hamilton H., Permutabiliti of congruences on commutative semigroups, Semigroup Forum, 10 (1975) 55-66.
- [4] A. Nagy, Special Classes of Semigroups, Kluwer Academic Publishers (Boston) London 2001.
- [5] A. Deak and A. Nagy, Finite permutable Putchasemigroups.
- [6] Trotter P. G., Exponential Δ -semigroups, Semigroup Forum, 12(1976) 312-331.
- [7] A.Cherubini, C. Bonzini, A family of permutable completely regular semigroups. (1996) 63-80.