Exponential Permutable Semigroups
 Rushadije Halili Ramani, Dashmirlbishi
 State University of Tetovo
 rushadije.ramani@unite.edu.mk
 State University of Tetovo
 d.ibishi@hotmail.com

ABSTRACT

A semigroup S is called a permutable semigroup if $\rho \cdot \sigma=\sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S. A semigroup is called an exponential semigroup if it satisfies the identity $(x y)^{n}=x^{n} y^{n}$ for every integer $n \geq 2$. In this paper we deal with permutable exponential semigroups. We describe the archimedian exponential semigroups and nonarchimedian exponential semigroups which are semilattices of a group and a nilpotent semigroup.

Indexing terms/Keywords

Exponential semigroups, permutable semigroups.

Academic Discipline And Sub-Disciplines

Mathematic, Algebra
SUBJECT CLASSIFICATION
Algebra
TYPE (METHOD/APPROACH)
Exponential semigroups.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .9, No. 3
www.cirjam.com , editorjam@gmail.com

1. Introduction

A semigroup S is called a permutable semigroup if the congruences of S commute with each other, that is $\rho \cdot \sigma=\sigma \cdot \rho$ is satisfied for all congruences ρ and σ of S.

Lemma1[3]. Every group is permutable.
Lemma2[3]. If S is a permutable semigroup and S is homomorphiconto T, then T is a permutable semigroup.
Lemma3[3]. Let Γ be a semilattice. Γ is permutable if and only if $|\Gamma| \leq 2$.
Theorem1[3]. If a semigroup S has a proper ideal and a proper group congruence then S is not permutable.
Theorem2[3]. If S is a permutable semigroup then the ideals of S form a chain.
Lemma 4[2]. If a permutable semigroup is a semilattice of two semilattice indecomposable subsemigroups S_{1} and S_{0} such that $S_{0} S_{1} \subseteq S_{0}$ then S_{1} is simple.

Defenition. A semigroup is called an exponential semigroup if it satisfies the identity $(x y)^{n}=x^{n} y^{n}$ for every integer $n \geq 2$.

Theorem3[4]. If a semigroup satisfies the identity $(x y)^{2}=x^{2} y^{2}$ then it satisfies the identity $(x y)^{n}=x^{n} y^{n}$ for all positive integers $n \geq 4$.
Corollary1[4].A semigroup S is exponential if and only if it satisfies the identities $(x y)^{2}=x^{2} y^{2}$ and $(x y)^{3}=x^{3} y^{3}$.
Theorem4[4]. Every exponential semigroup is a semilattice of exponential archimediansemigroups.
Theorem5[4]. A semigroup is a simple exponential semigroup if and only if it is a completely simple exponential semigroup with a zero adjoined.
Theorem6[4]. S is an exponential archimediansemigroup containing at least one idempotent element if and only if S is a retract extension of a rectangular abelian group by an exponential nil semigroup.

Lemma5[5]. A nil semigroup S is a permutable if and only if the ideals of S form a chain with respect to inclusion.
Theorem7[6]. An exponential archimediansemigroup S without idempotents has a non trivial group homomorphic image.
Lemma 6[5]. A Rees matrix semigroup $S=\mathrm{M}(I, G, \Lambda ; P)$ is permutable if and only if $|I| \leq 2$ and $|\Lambda| \leq 2$.

1.Exponentialarchimediansemigroups

Let ρ and σ be congruences on a semigroup S then $\rho \vee \sigma=\rho \cdot \sigma$ if and only if $\rho \cdot \sigma=\sigma \cdot \rho$, where

$$
\rho \cdot \sigma=\{(x, y) \in S \times S \mid(\exists z \in S)(x, z) \in \rho ;(z, y) \in \sigma\}
$$

If ρ is a congruence on rectangular exponential grup $S=I \times G \times \Lambda$ (I is a left zero semigroup, G is abelian group, Λ is a right zero semigroup) then

$$
\rho_{I}=\left\{(i, j) \in I \times I \mid\left(\exists g_{1}, g_{2} \in G, \lambda_{1}, \lambda_{2} \in \Lambda\right)\left(i, g_{1}, \lambda_{1}\right) \rho\left(j, g_{2}, \lambda_{2}\right)\right\}
$$

$$
\begin{aligned}
\rho_{G}=\{(h, k) \in G \times G \mid & \left.\left(\exists i_{1}, i_{2} \in I, \lambda_{1}, \lambda_{2} \in \Lambda\right)\left(i_{1}, h, \lambda_{1}\right) \rho\left(i_{2}, k, \lambda_{2}\right)\right\} \\
& \rho_{\Lambda}=\left\{(\lambda, \mu) \in \Lambda \times \Lambda \mid\left(\exists i_{1}, i_{2} \in I, g_{1}, g_{2} \in G\right)\left(i_{1}, g_{1}, \lambda\right) \rho\left(i_{2}, g_{2}, \mu\right)\right\} .
\end{aligned}
$$

Lemma7[2].If ρ and σ are congruences on S then,
(i) $\rho_{I}, \rho_{G}, \rho_{\Lambda}, \sigma_{I}, \sigma_{G}, \sigma_{\Lambda}$ are conguences.
(ii) $(\rho \cdot \sigma)_{I}=\rho_{I} \cdot \sigma_{I}, \quad(\rho \cdot \sigma)_{G}=\rho_{G} \cdot \sigma_{G} \quad$ and $\quad(\rho \cdot \sigma)_{\Lambda}=\rho_{\Lambda} \cdot \sigma_{\Lambda}$
(iii) If $\rho_{I}=\sigma_{I}, \rho_{G}=\sigma_{G}, \rho_{\Lambda}=\sigma_{\Lambda}$ then $\rho=\sigma$.

Lemma8[2].Let I be left zero semigroup, G abelian group, Λ right zero semigroup. Then rectangular group $S=I \times G \times \Lambda$ is permutable if and only if $|I| \leq 2,|\Lambda| \leq 2$.

Lemma9 [5]. Every finite nil semigroup is nilpotent.
Lemma10[5]. A finite semigroup is an archimedian permutable semigroup if and only if it is either a cyclic nilpotent semigroup or a permutable completely simple semigroup.

Lemma11[6]. Let S be an exponential semigroup and $a \in S$. Then S_{a} is the least unitary reflexive subsemigroup of S that contains a. If S is also archimedian then the principal right congruence determined by S_{a} is a group congruence.
Theorem 8. An exponential archimedian permutable semigroup S has an idempotent element.
Proof. Suppose S has no idempotents. By theorem 7.and because S is a permutable semigroup then S is a simple semigroup with non-trivial group homomorphic images, these images are abelian. The group congruences on S contain the least commutative congruence ρ on S. Since S / ρ is commutative and simple it is a group. Hence ρ is the least group congruence on S. So ρ is the principal right congruence determined by the least unitary subsemigroup A of S. A is reflexive by $(x y)^{3}=x(y x)^{2} y=x y^{2} x^{2} y=x y(y x) x y$ and has empty right residue since S is archimedian. By lemma 11. $A=S_{a}=S_{b}$ for $a, b \in A$ so by
$S_{a}=\left\{x \in S \mid a^{i} x a^{j}=a^{k}\right.$ for $\left.i, j, k \in Z^{+}\right\}$
A isarchimedian. Clearly A is exponential. For $d \in A$ let A_{d} be the unitary subsemigroup of A defined by (1).
A_{d} is unitary in S, if $u, v \in S$ and $u, u v \in A_{d}$ then $u, u v \in A$ so $v \in A$ and hence $v \in A_{d}$. But A is the least unitary subsemigroup of S so $A=A_{d}$ for all $d \in A$. Hence A is an exponential archimediansemigroup with only trivial group homomorphic image. By theorem 7, A and S have an idempotent. This is a contradiction.

Theorem 9. Let S be an exponential archimediansemigroup. S is permutable if and only if S is an exponential nil semigroup whose principal ideals form a chain with respect to inclusion and a rectangular group.
Proof. Let S be an exponential archimedian nilsemigroup then by lemma8 and lemma5, S is permutable.
Conversely, assume that S is exponential archimedian permutable semigroup. Then by theorem 8 contain an idempotent element. Hense by theorem 6 is a retract extension of a rectangular abelian group J by an exponential nil semigroup N.

Assume $J=I \times G \times \Lambda$ (I is a left zero semigroup, G is abelian group, Λ is a right zero semigroup). Suppose $N \neq\{0\}$, then S is non simple and by Lemma $8[7], S$ and $J=I \times \Lambda$ have only trivial group homomorphic image. Hence $|G|=1$ and may consider S an ideal extension of an rectangular band by N. Let

$$
\rho=\left\{(x, y) \in S \times S \mid x^{n}=y^{n} \text { for some intiger } n>0\right\}
$$

ρ is an equivalence relation.
For $x, y \in S^{1}$ and $(x, y) \in \rho$ there is an integer $n>0$ such that $x^{n}=y^{n}$ and

$$
(a y b)^{n}=a^{n} y^{n} b^{n}=a^{n} x^{n} b^{n}=(a x b)^{n}
$$

so ρ is a congruence on S. For $x \in S$ there is an integer $m>0$ so that $x^{m} \in J$. Hence there are classes of ρ that contain elements of N and exatly one element of J. So ρ is comparable with the Rees congruence modulo J only if $|J|=1$. Hence $S=N$ is a nil exponential semigroup.

Suppose $N=\{0\}$ then, by lemma8 S is an rectangular semigroup with $|I| \leq 2$ and $|\Lambda| \leq 2$.

3. Exponential non-archimedian permutable semigroup

Remark 1. As every semigroup is a semilattice indecomposable semigroups, lemma 3 and lemma 4 together imply that every permutable semigroup is either semilattice indecomposable or a semilattice of two semilattice indecomposable semigroups S_{0} and S_{1} such that $S_{0} S_{1} \subseteq S_{0}$.

Lemma 12. If S is a finite non-archimedian exponential permutable semigroup then it is a semilattice of a completely simple semigroup $S_{1}=\mathrm{M}(I, G, \Lambda ; P)$ such that $|I| \leq 2,|\Lambda| \leq 2$ and a semigroup S_{0} such that $S_{0} S_{1} \subseteq S_{0}$ and S_{0} is an ideal extension of a completely simple semigroup K by a nilpotent semigroup.

Proof. Let S be a finite permutable non-archimedian exponential semigroup. Then by lemma 3 and Lemma 4, S is a semilattice of two archimedian semigroups S_{0} and S_{1} such that $S_{0} S_{1} \subseteq S_{0}$.

As the Rees factor $S_{1}^{0}=S / S_{0}$ is permutable then by Lemma 3, S_{1} is a permutable archimedian semigroup. By lemma 4 and Lemma 10, S_{1} is completely simple. Then S_{1} is a Rees matrix semigroup $S_{1}=\mathrm{M}(I, G, \Lambda ; P)$ and by Lemma 6 $|I| \leq 2,|\Lambda| \leq 2$. By Theorem $6, S_{0}$ is an ideal extension of a completely simple semigroup K by a nilpotent Rees factor semigroup $N=S_{0} / K$.

Lemma 13.
S_{1} is ortogonal group so, $S_{1}=I \times G \times \Lambda$ where I is a semigroup of the left zeros with $|I| \leq 2, G$ is an abelian group and Λ is a semigroup of the right zeros with $|\Lambda| \leq 2$.

Proof.
The proof. flow from the Theorem 8 and 9.

Lemma14.

S_{0} is an orthogonal ore a nil- exponential semigroup tape(strap)
The proof. flow directly from the theomre 8 and 9 .
Ongoing we will see which are the characteristics of a non-archimedian exponential permutable semigroup who S_{0} is a orthogonal band.
Lemma 15[7].
If S_{0} is a semigroup of the right zeros than,
(i) For each $a \in S_{0}$ have that $S_{1} a=a$.
(ii) For each $a \in S_{0}, i \in I, g \in G$ exists $\lambda \in \Lambda$ so that $a(i, g, \lambda)=a$.

Remark 2.

For the semigroup $S=S_{0} \cup S_{1}$ where $S_{0} \cap S_{1}=\varnothing$ and ρ congurenc on S it's clear that for $x \in S_{0}, y \in S_{1}$ from (x, y) $\in \rho$ flow $\rho=S \times S$ that meaning that two congurences of the semigroup S are permutable if and only if , if theyr closely on S_{0} and S_{1} are permutable.

Now before we give the Theorem 10 we take the groupoid ($S, *$) of the kind (i) and (ii):
(i) $\left|S_{0}\right| \leq 2,|I| \leq 2,|\Lambda| \leq 2 ; x * y=x y$ for $x, y \in S$
or
$x, y \in S_{1}$ have : $a * S_{1}=S_{1} * a=a$ for each $a \in S_{0}$.
(ii) $\left|S_{0}\right|=3,|I|=2,|\Lambda| \leq 2, \quad x * y=x y$ if $x, y \in S_{0}$
or
$x, y \in S_{1}$ have $\left(S_{0}=\{a, b, c\}, I=\{i, j\}\right)$

$$
\begin{gathered}
a * S_{1}=(\{i\} \times G \times \Lambda) * a=(\{i\} \times G \times \Lambda) * b=a \\
b * S_{1}=a *(\{j\} \times G \times \Lambda)=(\{j\} \times G \times \Lambda) * b=b \\
c * S_{1}=S_{1} * c=c .
\end{gathered}
$$

In the paper [7] " A family of permutable completely regular semigroups" are prove that these groupoids are permutable.

Theorem 10.

The given conditions are equivalence.
Let be S a groupoid of the kind (i) and (ii) its evident that the semigroup S a non-archimedin exponential semigroup created from two archimedian components S_{0} and S_{1}. Also ρ is congurenc on S so that $(x, y) \in \rho$ have that $\rho=S \times S$.So,if $\left|S_{0}\right| \leq 2$ (from Lemma 8 flow that S_{0} and S_{1} are permutable.) than from remark 2 flow that S is permutable.

If $\left|S_{0}\right|=3$ It can be proof. easy that the closely on S_{0} of a congruences of S is equal with $S_{0} \times S_{0}$ ore with the congruences how are bound with the divisions S_{0} in classes of $\{a, b\}$ and $\{c\}$.

Since those closely are two by two permutable and as S_{1} is permutable fwol that and S is permutable.
Conversely, let be S a non-archimedian exponential permutable semigroup where S_{0} is a semigroup of the left zeros.
First we suppose that for each $a \in S_{0}$ applis $a S_{1}=a$ (S_{0}, S_{1} are archimedian componets). In this case we see that the semigroup S is permutable and S_{0} is permutable that flow that the semigroup S is groupoid of the first (i) kind.

Now we suppose that exists $x \in S_{0}$ so that $x S_{1} \neq x$. In this case we have $\left|S_{0}\right| \geq 2$ in S_{1} have $|I|=2$.
We take $I=\{i, j\}$ and we write:

$$
\begin{gather*}
x(\{i\} \times G \times \Lambda)=x(\text { sipas lemës15.(ii) }) \tag{1}\\
\left.x(i, g, \lambda)=y \quad i \in I, g \in G, y \in S_{0}, y \neq x\right)
\end{gather*}
$$

From (1) flow:

$$
\begin{equation*}
x(\{j\} \times G \times \Lambda)=y, y(\{i\} \times G \times \Lambda)=x, y((\{j\} \times G \times \Lambda)=y \tag{2}
\end{equation*}
$$

Examine the equivalence relation ρ that separating S in classes:
$\{i\} \times G \times \Lambda, \quad\{j\} \times G \times \Lambda, \quad\{s\}$,
where $s \in S_{0}$ so that $s S_{1}=s,\{s, t\}, s, t \in S_{0}$ that exists $v, w \in S_{1}$ for those applies the identity $s v=t, t w=s$. When we see (1) and (2) and from lemma 15 (i), we proof that ρ is congurenc.

The semigroup $\Sigma=S / \rho$ is a non-archimedian exponential permutable semigroup where (Σ_{0} and Σ_{1} are archimedina componets of Σ) Σ_{0}-is a semigroup of the left zeros. One the other side for each $\alpha \in \Sigma_{0}$ have that $\alpha \sum_{1}=\alpha$ so Σ_{0} is permutable. So from lemma 7 and 8 have $\left|\sum_{0}\right| \leq 2$.

Other cases :
If $\left|\sum_{0}\right|=1$ than $\left|S_{0}\right|=2$.
So $S_{0}=\{a, b\}$ from we take that

$$
\begin{aligned}
a S_{1} & =(\{i\} \times G \times \Lambda) a \\
b S_{1} & =(\{i\} \times G \times \Lambda) b=a \\
b j \times G \times \Lambda) a & =(\{j\} \times G \times \Lambda) b=b
\end{aligned}
$$

theequivalence relation that separating S in classes:

$$
(\{i\} \times G \times \Lambda) \cup\{a\},(\{i\} \times G \times \Lambda) \cup\{b\}
$$

is a non-permutable congurenc, with a Rees congruenc modulo S_{0} which is contrary with our suppose that the semigroup S is permutable.

If $\left|\sum_{0}\right|=2$ than $\left|S_{0}\right|=4$ ore $\left|S_{0}\right|=3$.
If $\left|S_{0}\right|=4$ than $S_{0}=\{a, b, c, d\}$ and we suppose that:

$$
\begin{aligned}
& \Sigma_{0}=\{a, b\},\{c, d\} \\
& a S_{1}=(\{i\} \times G \times \Lambda) a=(\{i\} \times G \times \Lambda) b=a \\
& b S_{1}=(\{j\} \times G \times \Lambda) a=(\{j\} \times G \times \Lambda) b=b \\
& c S_{1}=(\{i\} \times G \times \Lambda) c=(\{i\} \times G \times \Lambda) d=c \\
& d S_{1}=(\{j\} \times G \times \Lambda) c=(\{j\} \times G \times \Lambda) d=d
\end{aligned}
$$

In this case the congurenc we take as an equivalences calasses.
$(\{i\} \times G \times \Lambda) \cup\{a, c\},(\{j\} \times G \times \Lambda) \cup\{b, d\}$
With the Rees modulo S_{0} congurenc aren't permutabel which are contraly with us suppose that the semigroup S is permutable.
And at last if $\left|S_{0}\right|=3$, than S coincides (to the izomorf) with the groupoid like (ii).So, the theorem are profed.
Remark 3.

In the same way we can form the clain for non-archimedian exponential semigroups when S_{0} is a semigroup of the right zeros, from theorem 8 and 9 we can form the new clain with the conditions (ii) like this:
(ii) $\left|S_{0}\right|=3,|I|=2,|\Lambda| \leq 2, x * y=x y$ for $x, y \in S_{0}$
or
$x, y \in S_{1}$ and (take $\left.S_{0}=\{a, b, c\}, \Lambda=\{\lambda, \mu\}\right)$

$$
\begin{gathered}
S_{1} * a=a *(I \times G \times\{\lambda\})=b *(I \times G \times\{\lambda\})=a \\
S_{1} * b=a *(I \times G \times\{\mu)=b *(I \times G \times\{\mu\})=b \\
S_{1} * c=c * S_{1}=c
\end{gathered}
$$

Lemma 16[2]

Let be S_{0} an orthogonal band and the principal ideal in S.So $S_{0}=V \times W$ (where V is a semigroup of the left zeros and W a semigroup of the right zeros), like :

$$
\begin{gathered}
\alpha=\{(a, b) \in S \times S \mid(\exists w \in W) a, b \in V \times\{w\}, \text { or } a=b\} \\
\beta=\{(a, b) \in S \times S \mid(\exists v \in V) a, b \in\{v\} \times W, \text { or } a=b\}
\end{gathered}
$$

arecongruences in S. In other side ϕ and ψ are natural homomorphic in S. on S / α and S / β dhe $S_{1}=S \backslash S_{0}$ than we have:
$S_{0} \phi \square W, \quad S_{1} \phi \square S_{1} \quad$ dhe $\quad S_{0} \psi \square V, S_{1} \psi \square S_{1}$.

Theorem 11.

An Exponential non- archimediansemigroup S is permutable if and only if S / α and S / β are exponential permutable semigroups (where α and β are defined like Lemma 16).

Proof.

By Lemma 2 as S is an exponential permutable semigroup then S / α and S / β are exponential permutable semigroups.
Prove the inverse:
Assume that S / α and S / β are exponential permutable semigroup and $S_{0}=V \times W$ (where V is a semigroup of the left zeros, W is a semigroup of the right zeros).

Proved that S is an exponential non-archimediansemigroup.
As S_{0} and S_{1} are exponential semigroups is easily provable that for $x, y \in S$ where one is from S_{0} and the other from S_{1}, applies :
$(x y)^{n}=x^{n} y^{n}$ for each $n \geq 2$
True, as $(x y)^{n}$ and $x^{n} y^{n}$ are part of S_{0}, we write:
$(x y)^{n}=\left(v_{1}, w_{1}\right), x^{n} y^{n}=\left(v_{2}, w_{2}\right)$ where $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$ and $n \geq 2$.
As ϕ from Lemma 16 is a natural homomorphism of S over S / α we have
$\left[(x y)^{n}\right] \phi=V \times\left\{w_{1}\right\}, \quad\left(x^{n} y^{n}\right) \phi=V \times\left\{w_{2}\right\}$
except this, because S / α is an exponential semigroup have :
$\left[(x y)^{n}\right] \phi=\left[\left(x^{n}\right) \phi\right]\left[\left(y^{n}\right) \phi\right]=\left(x^{n} y^{n}\right) \phi$
So, $w_{1}=w_{2}$. similar we can proof that $v_{1}=v_{2}$.
On the other side let be : Σ_{0}, Σ_{1} and $\Sigma_{0}^{*}, \Sigma_{1}^{*}$ archimedian components of S / α and S / β respectively we have by:
$\Sigma_{0}=S_{0} \phi \square W, \quad \sum_{1}=S_{1} \phi \square S_{1}$
And
$\sum_{0}^{*}=S_{0} \psi \square V, \quad \sum_{1}^{*}=S_{1} \psi \square S_{1}$.

So, S / α is a semigroup of the kind given in Remark 3, also S / β is a semigroup like that given in Theorem 10.So $|V| \leq 3$ and $|W| \leq 3$.

Other cases:
If $\quad|V|=1 \quad(|W|=1)$ congruence $\quad \alpha(\beta) \quad$ is relation of the equation and so $S / \alpha \square S \quad(S / \beta \square S)$ flows that S is permutable.

Now we assum that $|V|=2$ and $|W|=2$ from Theorem 10 and the Remark 3 we have that $|I| \leq 2,|\Lambda| \leq 2$ and for each $a \in S_{0}$ flow that :
$a S_{1}=S_{1} a=a$.
If $a \in S_{0}, x \in S_{1}$, we take :
$a=\left(a_{1}, a_{2}\right), a x=(v, w)$ where $a_{1}, v \in V$ and $a_{2}, w \in W$.
So,
$a \phi=V \times\left\{a_{2}\right\},(a x) \phi=V \times\{w\}$.
On the other side, from theorem $10 \Rightarrow$
$(a x) \phi=(a \phi)(x \phi)=a \phi=V \times\left\{a_{2}\right\}$ because that $w=a_{2}$.
In the same way we can proof. that $v=a_{1}$ that meaning $a x=a$. And similar we have that $x a=a$.
If ρ is congruence on S than, from $(x, y) \in \rho$ where $x \in S_{0}$ and $y \in S_{1}$ have that $\rho=S \times S$.
So, from Lemma $8 S_{0}$ and S_{1} are permutable, than and S is permutable.
Let be $|V|=2,|W|=3$. from Theorem 10 and Remark 3 flow $|I|=2,|\Lambda| \leq 2$.
Take,
$V=\left\{v_{1}, v_{2}\right\}, W=\left\{w_{1}, w_{2}, w_{3}\right\}, \Lambda=\{\lambda, \mu\}$,
$a=\left(v_{1}, w_{1}\right), b=\left(v_{2}, w_{2}\right), c=\left(v_{2}, w_{3}\right)$
Then:

$$
\Sigma_{0}=\{a \phi, b \phi, c \phi\}, \quad \Sigma_{0}^{*}=\{a \psi, b \psi\}
$$

And from Theorem 10 and remark 3 we have:
$S_{1}(a \psi)=(a \psi) S_{1}=a \psi$,
$S_{1}(b \psi)=(b \psi) S_{1}=b \psi$,
$S_{1}(a \phi)=(a \phi)(I \times G \times\{\lambda\})=(b \phi)(I \times G \times\{\lambda\})=a \phi$
$S_{1}(b \phi)=(a \phi)(I \times G \times\{\mu\})=(b \phi)(I \times G \times\{\mu\})=b \phi$
$S_{1}(c \phi)=(c \phi) S_{1}=c \phi$
Ongoing, if ρ is congurenc on S so that $(x, y) \in \rho$ where $x \in S_{0}, y \in S_{1}$ flow that $\alpha \subseteq \rho$.
Really that for $x=\left(x_{1}, x_{2}\right)$ where $x_{1} \in V, x_{2} \in W$ have that $V \times\left\{x_{2}\right\} \subseteq x \rho$. In fact if $a \in V \times\left\{x_{2}\right\}$ than $a x=a$ and from $(x, y) \in \rho$ flow (xax, yax) $\in \rho$ that means that $(x, a) \in \rho$.

From
$V \times\left\{x_{2}\right\} \subseteq x \rho$
For each $a=\left(a_{1}, a_{2}\right)\left(a_{1} \in V\right.$ and $\left.a_{2} \in W\right)$ have that:
$\left(V \times\left\{x_{2}\right\}\right) a=V \times\left\{a_{2}\right\}$
Than:
$V \times\left\{a_{2}\right\} \subseteq(x a) \rho=a \rho$
From
$\alpha \subseteq \rho$
And so the binary equation
$\rho^{\prime}=\left\{\left(x^{\prime}, y^{\prime}\right) \in S / \alpha \times S / \beta \mid(\exists x, y \in S)(x, y) \in \rho, x^{\prime}=x \phi, y^{\prime}=y \phi\right\}$
is congruenc.
Also from $(x, y) \in \rho, x \in S_{0}, y \in S_{1}$
flow:
$(x \phi, y \phi) \in \rho^{\prime}, \quad x \phi \in \Sigma_{0}, y \phi \in \Sigma_{1}$.
So $\rho^{\prime}=S / \alpha \times S / \beta$ from $\rho=S \times S$.]
Applied the therd (3) equation we can see that the narrowing in S_{0} of a congurence in S is equal with $S_{0} \times S_{0}$ ore with the congurenc how is related with this divisions of S_{0} :

$$
\begin{gathered}
\left\{\left(v_{1}, w_{1}\right),\left(v_{1}, w_{2}\right)\right\}, \quad\left\{\left(v_{2}, w_{1}\right),\left(v_{2}, w_{2}\right)\right\}, \quad\left\{\left(v_{1}, w_{3}\right),\left(v_{2}, w_{3}\right)\right\} \\
V \times\left\{w_{1}\right\}, \quad V \times\left\{w_{2}\right\}, \quad V \times\left\{w_{3}\right\} \\
V \times\left\{w_{1}, w_{2}\right\}, \quad V \times\left\{w_{3}\right\}
\end{gathered}
$$

$$
\left\{v_{1}\right\} \times W, \quad\left\{v_{2}\right\} \times W
$$

With those of narrowing are two of tow permutable and from Lemma $8 S_{1}$ is permutable than and S is permutable
In the same way we have the case when $|V|=3,|W|=2$
And in the and we assum that $|V|=3,|W|=3$
In front of Theomre 10 and remark 3 have: $|I|=2,|\Lambda|=2$
We take:

$$
V=\left\{v_{1}, v_{2}, v_{3}\right\}, W=\left\{w_{1}, w_{2}, w_{3}\right\}, I=\{i, j\}, \Lambda=\{\lambda, \mu\}
$$

$a=\left(v_{1}, w_{1}\right), b=\left(v_{2}, w_{2}\right), c=\left(v_{2}, w_{3}\right)$
Than:

$$
\Sigma_{0}=\{a \phi, b \phi, c \phi), \quad \Sigma_{0}^{*}=\{a \psi, b \psi, c \psi\}
$$

From theorem 10 and remark 3 we have:

$$
\begin{gathered}
S_{1}(a \phi)=(a \phi)(I \times G \times\{\lambda\})=(b \phi)(I \times G \times\{\lambda\})=a \phi \\
S_{1}(b \phi)=(a \phi)(I \times G \times\{\mu\})=(b \phi)(I \times G \times\{\mu\})=b \phi \\
(a \psi) S_{1}=(\{i\} \times G \times \Lambda)(a \psi)=(\{i\} \times G \times \Lambda)(b \psi)=a \psi \\
(b \psi) S_{1}=(\{j\} \times G \times \Lambda)(a \psi)=(\{j\} \times G \times \Lambda)(b \psi)=(b \psi) \\
S_{1}(c \phi)=(c \phi) S_{1}=c \phi, \quad S_{1}(c \phi)=(c \phi) S_{1}=c \phi
\end{gathered}
$$

From what was said above, if ρ is congurenc in S that $(x, y) \in \rho$ where $x \in S_{0}$ and $y \in S_{1}$ have that $\alpha \subseteq \rho$ and flow that $\rho=S \times S$

Proof. let be $\left(x_{1}, x_{2}\right) \in S_{0}\left(x_{1} \in V, x_{2} \in W\right)$ and $(i, g, \lambda),(j, g, \lambda)$ two elements from S_{1}. Now the forth (4) equation takes the form

$$
\begin{gather*}
\left\{(i, g, \lambda)\left(z_{1}, z_{2}\right)\left(x_{1}, x_{2}\right) \mid z_{1} \in V, z_{2} \in W\right\}=\left\{\left(v_{1}, x_{2}\right),\left(v_{3}, x_{2}\right)\right\} \\
\left\{(j, g, \lambda)\left(z_{1}, z_{2}\right)\left(x_{1}, x_{2}\right) \mid z_{1} \in V, z_{2} \in W\right\}=\left\{\left(v_{2}, x_{2}\right),\left(v_{3}, x_{2}\right)\right\} \tag{5}
\end{gather*}
$$

$(j, u, \lambda)\left(v_{1}, x_{2}\right)=\left(v_{2}, x_{2}\right),(j, u, \lambda)\left(v_{3}, x_{2}\right)=\left(v_{3}, x_{2}\right)$
Where u is the neutral element G.
From what was said above, let be $(x, y) \in \rho$ where $x \in S_{0}$ and $y \in S_{1}$.
We take $x=\left(x_{1}, x_{2}\right), y=(i, g, \lambda)$ and $(x, y) \in \rho$ flow $(x, y z x) \in \rho$ for each $z \in S_{0}$ and from the equation (5) flow $\left(v_{1}, x_{2}\right),\left(v_{3}, x_{2}\right) \in x \rho$.

We proof. that $\left(v_{2}, x_{2}\right) \in x \rho$.
Distinguish these cases:

If $x=\left(v_{2}, x_{2}\right)$ it's clear that $\left(v_{2}, x_{2}\right) \in x \rho$.
Assum that $x=\left(v_{1}, x_{2}\right)$.From $(x, y) \in \rho$ flow $(j, u, \lambda)\left(v_{1}, x_{2}\right) \rho(j, u, \lambda)(i, g, \lambda)$,
For which:
$\left(v_{2}, x_{2}\right) \rho(j, g, \lambda)$
for each $z \in S_{0}$ have:
$\left(v_{2}, x_{2}\right) \rho(j, g, \lambda) z\left(v_{2}, x_{2}\right)$.
So, whene we considering the equation (5) have that:
$\left(v_{2}, x_{2}\right) \rho\left(v_{3}, x_{2}\right)$.
And at last whene $x=\left(v_{3}, x_{2}\right)$ it's like before
$V \times\left\{x_{2}\right\} \subseteq x \rho$.
Whene we considering tha for each:
$z=\left(z_{1}, z_{2}\right)\left(z_{1} \in V, z_{2} \in W\right)$
have:
$\left(V \times\left\{x_{2}\right\}\right) z=V \times\left\{z_{2}\right\}$
and flow:
$V \times\left\{z_{2}\right\} \subseteq(x z) \rho$.
So, $\alpha \subseteq \rho$.
So since the applies in S_{0} in each two congurences of S are permutable and as S_{1} is permutable semigroup than form Lemma 8. flow that S is permutable.

References.

[1] Cliford A.H. and G.B. Preston, The algebraic theory of semigroups, Math.Surveys N. Amer. Math.Soc. Providence, 1(1961).
[2] A. Cherubini, CelestinaBonzini, Sugli E-2 semigruppipermutabili, Instituto Lombardo (1981),73-89.
[3] Hamilton H., Permutabiliti of congruences on commutative semigroups, Semigroup Forum, 10 (1975) 55-66.
[4] A. Nagy, Special Classes of Semigroups, Kluwer Academic Publishers (Boston) London 2001.
[5] A. Deak and A. Nagy, Finite permutable Putchasemigroups.
[6] Trotter P. G., Exponential Δ-semigroups, Semigroup Forum, 12(1976) 312-331.
[7] A.Cherubini, C. Bonzini , A family of permutable completely regular semigroups. (1996) 63-80.

