PRINCIPALLY QUASI INJECTIVE SYSTEM OVER MONOID M.S.ABBAS, Shaymaa Amer Department of Mathematics , College of Science , Mustansiriyah University , Baghdad , Iraq . m.abass@uomustansiriyah.edu.iq Department of Mathematics , College of Science , Mustansiriyah University , Baghdad , Iraq . Shaymaa_Amer76@yahoo.com ## **ABSTRACT:** In this paper , principally quasi injective system has been introduced and studied , which is a generalization of quasi injective system . We obtain a characterizations of PQ-injective systems , conditions on which, subsystems inherit the property of PQ-injectivity , and conditions have been considered to versus PQ-injective system with class of injectivity. Finally , the relationship between maximal reversible subsystem of system and maximal left ideal of the endomorphism monoid of the system has been studied . ## **Keywords** Quasi-injective system; Reversible system; Principally quasi injective system. # **Academic Discipline And Sub-Disciplines** Mustansiriyah University, College of Science, Department of Mathematics # **AMS Subject Classification** 20M30, 20M99, 08B30. #### **TYPE** **Pure Mathematics** # Council for Innovative Research Peer Review Research Publishing System Journal: JOURNAL OF ADVANCES IN MATHEMATICS Vol .10, No 1 www.cirjam.com, editorjam@gmail.com #### 1- INTRODUCTION AND PRELIMINARIES: It is well-known that the theory of monoids and systems is a generalization of the theory of rings and modules, which has a number of direct applications in theoretic Computer science, Dynamicsystems, Theory of differential equations and Functional analysis,...etc. Throughout this paper, let S be a monoid. A unitary right S-system M over S which denoted by M_s is a non-empty set with a function $f: M \times S \to M$ such that $f(m,s) \mapsto ms$ and the following properties hold: (1) $m \cdot 1 = m$. (2) m(st) = (ms)t for all $m \in M$ and $s,t \in S$. An element $\theta \in M_s$ is called **fixed** of M_s if $\theta s = \theta$ for all $s \in S$. An S-system M_s is **centered** if it has a fixed element θ necessary unique such that $\theta s = \theta$ for all $s \in S$ and m = 0 for all $m \in M_s$, where 0is the zero element of S and θ is the zero of M. Asubsystem. N of an S-system M_s , is a non-empty subset of M such that $xs{\in}\ N\ \text{for all}\ x{\in}N\ \text{and s}\in S\ \text{which is denoted by}\ N\hookrightarrow M_s\ .\ \text{Let}\ g\ \text{be a function from an S-system}\ A_s\ \text{into an S-system}\ B_s\ ,$ then g will be called an S-homomorphism, if for any $a \in A_s$ and $s \in S$, we have g(as) = g(a)s. An S-system A_s is called **injective** if for each monomorphism $\alpha: C_s \to B_s$ and each S-homomorphism $\beta: C_s \to A_s$, there exists an S-homomorphism σ : $B_s \rightarrow A_s$ such that $\sigma \alpha = \beta$ [2]. An S-system A_s is **weakly injective** if it is injective relative to all embeddings of right ideals into S_s ([7],p.205). An S-system is called principally weakly injective if for any S-homomorphism from principal right ideal of S_s into M_s can be extended to S-homomorphism from S_s into M_s.In other words,anS-system M_s is called principally weakly injective if it is injective relative to embeddings of all principal right ideals into S_s(If this is the case ,we right PW-injective system)([7],p200) . A subsystem N of Ms is called large (or essential) in Ms if and only if any homomorphism $f:M_s \to H_s$, where H_s is any S-system with restriction to N is one to one, then f is itself one to one [9]. In this case we say that Ms is essential extension of N .In [9], Berthiaume showed that every S-system has a maximal essential extension which is injective and it is unique up to S-isomorphism over M_s . A non-zerosubsystem N of M_s is intersection large if for all non-zero subsystem A of M_s , $A \cap N \neq \emptyset$, and will denoted by N is \cap -large in M_s . In [4], Feller and Gantos proved that every large subsystem of M_s is ∩-large,but the converse is not true in general. An equivalence relation ρ on a right S-system M_s is a **congruence** relation iff a ρ b implies that as ρ bs for all $a,b \in M_s$ and $s \in S$ [1]. The congruence ψ_M is called **singular** on M_s and it is defined by a ψ_M b if and only if ax = bx for all x in some \cap -large right ideal of S [2]. A **right annihilator** of an S-system M_s is denoted by $\gamma_s(T)$ where T is a subset of M_s and it is equal to the set $\{(s,t) \in S \times S \mid as = at \text{ for all } a \in T \}$ and if K is a subset of MMM ,then $\gamma_s(K) = \{s \in S \mid as = bs \text{ for all } (a,b) \in K \}$ and aleft **annihilator** of an S-system M_s is dented by $\ell_M(H)$ where H is a subset of S and it is equal to the set $\{(m,n) \in M \times M \mid mx\}$ = nx for all $x \in H$ but if J is a subset of S×S, then $\ell_M(J) = \{a \in M \mid am = an \text{ for all } (m,n) \in J\}$ [6]. A non-zero S-system Mover a monoid S is called reversible (\cap -reversible) iff every non-zero subsystem of M_s is lagre (\cap -large), it is clear that every nonzero reversible system is \(\Omega\)-reversible system, but the converse is not true in general and they are coincide when $\psi_M = i$. An element $s \in S$ is called **left (right) cancellable** if sr = st (rs = ts) for $r, t \in S$ implies r = t and cancellable if s is left and right cancellable. The semigroup S is called cancellative if all elements of S are cancellable ([7], P.30). In [9], Berthiaume showed that injective system implies weakly injective, but the converse is not true in general. Berthiaume's counter example was a semilattice considered as an S-system over itself. In[3], Hinkle showed that when $\psi_M = i_M$, the identity congruence on Ms, then the notions of injective and weakly injective system are coincide and also the concepts of large and ∩-large are the same. An S-system A_s is called **quasi injective** if for any S-subsystem B of A_s and any Shomomorphism $\alpha: B \to A_s$, there exists S-homomorphism $\sigma: A_s \to A_s$ such that σ is an extension of α , that is σ o $i = \alpha$ where i is the inclusion mapping of B into As [5] .quasi injective S-systems have been studied by Lopez and Luedeman [1] . It is clear that every injective system is quasi injective but the converse is not true in general see [1] . An S-system As is called cyclic (or principal) system if it is generated by one element and is denoted by $A_s = < u > where u \in A_s$, then $A_s = uS$ ([7],P.63) . A right S-system Bs is a retract of a right S-system As if and only if there exists a subsystem W of As and epimorphism $f: A_s \to W$ such that $B_s \cong W$ and f(x) = x for every $x \in W$ ([7],P.84). An S-monomorphism $f: A_s \to B_s$ is called a retraction if f is a left invertible ([7], P.84). An S-system Ms is called 0-simple system if it contains no subsystems other than M_s and one element subsystem and M_s is called simple if it contains no subsystems other than M_s itself ([7],p50).AnS-system M_s is called **completely reducible** if it is a disjoint union of θ-simple subsystems ([7],P.74). In this paper ,a generalization of quasi injective system namely principally quasi injective was introduced and characterization of this new class of systems was investigated. Also, we give under which a condition for principally quasi injective to be quasi injective system .In spite of there is no relation between PQ-injective system and PW-injective, but they are coincide on the system S_s. A relationship between a maximal reversible subsystem of an S-system M_s and maximal left ideal of the endomorphism monoid of Ms was studied. # 2- PRINCIPALLY QUASI INJECTIVE SYSTEMS: (2-1) **Definition**: An S-system M_s is called **principally quasi injective** if every S-homomorphism from a principal subsystem of M_s to M_s extends to an S-endomorphism of M_s (If this is the case, we write M_s is **PQ-injectivesystem**). # (2-2) Remarks and examples: 1- Every quasi injective (and hence injective) S-system is PQ-injective . 2-The converse of (1) is not true in general , for example , let S be amonoidsuch that S = {a,b,c,e} , with a,b be left zero of S and ca = cb = cc = a and e be the identity element . Then consider S as an S-system over itself . It is clear that every subset of S is subsystem of S_s . Since every homomorphism from right principal subsystem (aS = {a} orbS = {b} or cS = {a,c}) can be trivially extended to S-endomorphism of S_s , so S_s is PQ-injective system, but when we take N = {a,b} be subsystem of S_s and f be S-homomorphism defined by : $f(x) = \begin{cases} b & \text{if } x = a \\ a & \text{if } x = b \end{cases} \text{, then this S-homomorphism cannot be extended to S-homomorphism } g: S_s \to S_s \text{ such that } g(x) = f(x)$ $\forall x \in N$, which is just the trivial S-homomorphism since other extension is not S-homomorphism. Then, b = f(a) = g(a) = a which implies that b = a, and this is a contradiction. 3- Recall that a subsystem N of an S-system M_s is direct summand iff there exists a subsystem W of M_s such that $M=W\oplus N$ that is $M=W\cup N$ and $W\cap N=\theta$. Now, let N be subsystem of an S-system M_s . Then N is a retract iff N is a direct summand. **Proof**: \Rightarrow) Let N be a retract of M_s, so there exists a subsystem W of M_s and epimorphism f:M_s \rightarrow W such that f(x) = xfor each x belong to W and there is an S-isomorphism g:W \rightarrow N, then h(=gof):M_s \rightarrow N is epimorphism, so hoi_N = I_N and N is a direct summand. \Leftarrow) Let N be a direct summand of M_s , so there exists a subsystem W of M_s with $N \cup W = M$ and $N \cap W = \theta$. Now, we claim that $\alpha (= \pi_2 o j_1) : N \to W$ be S-isomorphism, where π_2 is the projection map of M_s into W and j_1 is the injection map of N into M_s .
For $n \in N$, we have , $\pi_2 o j_1(n) = o$, it is clear that α is S-isomorphism . Then , N is a retract of M_s . Also , W = 0 and $M_s = N$. 4- If every principal subsystem of an S-system M_s is a retract [that is for each $x \in M_s$, there is a subsystem K_s of M_s with $xS \cup K_s = M_s$, this equality in fact is equivalently to $xS \cup K_s = M_s$ and $xS \cap K_s = \theta$]. Then M_s is PQ-injective. In particular let $S = \{1,z\}$ with $z^2 = 1$. Consider S be an S-system over itself, then since every subsystem of S_s is a retractof S_s , so S_s is PQ-injective. The property of principal quasi-injectivity on systems is not closed under subsystems ,for example :let $S=\{a,b,c,e\}$ be a monoid with ca =cb=cc=a and a,b be left zero of S and e be the identity element. Consider S be S-system over itself . Then ,since any S-homomorphism from right principal subsystem of S_s (which is equal to aS or bS or cS)can be trivially extended to S-endomorphism of S_s ,soS $_s$ is PQ injective system , but the subsystem N={a,b,c} of S_s is not PO-injective system . If not , so for a right principal subsystem aS of N and f beS-homomorphism from aSintoS $_s$ defined by f(x)=b ,where $x\in aS$, can be extended to S-homomorphism $g:S_s\to S_s$ such that $f(x)=g(x), \forall x(\ne 0)\in aS$. Then, b=f(a)=g(a)=a . So b=a which is a contradiction . Now, we give a condition for an S-subsystem N of $\,$ PQ-injective system $\,$ Ms to be PQ-injective . First ,we need the following concept : A subsystem N of a right S-system M_s is called **fully invariant** if $f(N) \subseteq N$ for every endomorphism f of M_s and M_s is called **duo** if every subsystem of M_s is fully invariant [10], for example, let $S = (Z, \cdot)$, then consider S as an S-system over itself, then S_s duo system [10]. This concept is generalization of right **duo semigroup**[10], such that a semigroup for which every right ideal is two sided ideal is called duo semigroup. If $M_s = M_1 \cup M_2$ (means $M_s = M_1 \cup M_2$ and $M_1 \cap M_2 = \theta_M$), then for every $i \in I=\{1,2\}$, M_i is fully invariant subsystem of M_s iffHom(M_1,M_2) = 0 for all distinct $i \in I=\{1,2\}$. # (2-3) Lemma: - 1- Every fully invariant subsystem of PQ-injective system is PQ-injective. - 2- Retract of PQ-injective system is PQ-injective . ### **Proof: 1-** It is clear from the definition. **2-**Let Nbe a retract of a PQ-injective system M_s . By (2-2)(3) , N is direct summand . Consider the diagram(1) ,where A be principal subsystem of N ,and i_1, i_2 be the inclusion maps of A into N and N into M_s respectively . Let f be S-homomorphism of A into N, and ϕ , π be the injection and projection map respectively . Since M_s is PQ-injective system , so there exists S-homomorphism $g: M_s \rightarrow M_s$ such that $gi_2i_1 = \phi f$. Define an S-homomorphism $h: N \rightarrow N$ by $h = \pi ogoi_2$. Diagram (1) Thus hoi₁ = π ogoi₂oi₁ this implies hoi₁= π ogoi₂oi₁ = π oφof = I_Nof = f. Thus hoi₁= f, and N be PQ-injective system. It is clear that there is no relation between PQ-injective systems and PW- injective in general for example, let S be the monoid $\{a_1,b_1,c_1,1\}$ and $A=\{1,a,b\}$ is a set with a,b are left zero and $a_1^2=a$, $b_1^2=b$, $c_1^2=c$ and $a_1c_1=c_1b_1=c_1$, $b_1c_1=b_1$, $c_1a_1=b_1a_1=a_1b_1=a_1$, then A_s is an S-system (such that $A_s=\{a,b,a_1,b_1,c_1,1\}$) ,so A_s is PQ-injective system whence any S-homomorphism from principal subsystem (aS ={a} ,bS = {b} ,a_1S=c_1S={a_1,c_1} \text{ or } b_1S={a_1,b_1}) \text{ of } A_s can be trivially extended to S-endomorphism of A_s , but A_s is not PW-injective system . If not , so for the principal ideal $a_1S=\{a_1,c_1\}$ of S and the S-homomorphism f which is defined by $f=\{a_1 \text{ if } x=a_1\}$, then this S-homomorphism can be extended to S-homomorphism from S into A_s where the only extension of f is trivially extension $g:S\to A_s$, this means f(x)=g(x), $\forall x\in aS$ this implies that $b_1=f(c_1)\neq g(c_1)=c_1$ which is a contradiction . But, the concepts of PQ-injective and PW-injective are equivalent on monoid . The following lemma is a generalization of lemma (1-1) in [13]: - **(2-4)Lemma**: Given an S-system M_s with $T = End_s(M_s)$, the endomorphism monoid of M_s . The following statements are equivalent: - 1- M_s is PQ-injective, - 2- $\ell_M(\gamma_s(m)) = Tm$, $\forall m \in M_s$. - 3- If $\gamma_s(m) \subseteq \gamma_s(n)$, then $Tn \subseteq Tm$, $\forall m,n \in M_s$, - 4- If S-homomorphisms $\alpha, \beta: mS \rightarrow M_s$ are given with β is monomorphism, there exists $\sigma \in T$ such that $\sigma \circ \beta = \alpha$. **Proof**: $(1\rightarrow 2)$ Let $\alpha m \in Tm$. For each $s,t \in S$ with ms = mt, we have $\alpha(ms) = \alpha(mt)$, so $\alpha m \in \ell_M(\gamma_s(m))$. Thus $Tm \subseteq \ell_M(\gamma_s(m))$. Conversely, if $n \in \ell_M(\gamma_s(m))$, then define $\sigma: mS \rightarrow M_s$ by $\sigma(ms) = ns$, for $s \in S$. If ms = mt, for $s,t \in S$, then $(s,t) \in \gamma_s(m) \subseteq \gamma_s(n)$, hence ns = nt, so this shows that σ is well-defined, it is an easy matter to see that σ is an S-homomorphism. By (1), σ can extended to $\bar{\sigma} \in T$. So $n = \sigma(m) = \bar{\sigma}(m) \in Tm$. Thus $\ell_M(\gamma_s(m)) \subseteq Tm$ and hence $\ell_M(\gamma_s(m)) = Tm$. $(2\rightarrow 3)$ If $\gamma_s(m)\subseteq \gamma_s(n)$, then $n\in T$ $n=\ell_M(\gamma_s(n))\subseteq \ell_M(\gamma_s(m))=T$ m, so $n\in T$ m and hence T $n\subseteq T$ m. $(3\rightarrow 4) \text{ Let } (s,t) \in \gamma_s(\beta(m)) \text{ for } s,t \in S \text{ . Then } \beta(ms) = \beta(mt) \text{ . Since } \beta \text{ is monomorphism , then } ms = mt \text{ and } \alpha(m)s = \alpha(m)t \text{ , hence } (s,t) \in \gamma_s(\alpha(m)) \text{ . Then } \gamma_s(\beta(m)) \subseteq \gamma_s(\alpha(m)) \text{ . By(3) , } \alpha m \in T\beta(m) \text{ . So there is } \sigma \in T \text{ such that } \alpha(m) = \sigma\beta(m) \text{ and hence } \alpha = \sigma\beta \text{ . }$ $(4\rightarrow 1)$ Take β : mS \rightarrow M_s to be the inclusion homomorphism in (4). - (2-5) Corollary: The following statements are equivalent for a monoid S: - 1- S is PQ(PW)-injective, - $2-\ell_s(\gamma_s(a)) = Sm$, $\forall a \in S$. - 3- If $\gamma_s(a) \subseteq \gamma_s(b)$, then $Sb \subseteq Sa$, $\forall a,b \in S$, - 4- If S-homomorphisms α,β :aS→S_s are given with β is monomorphism , there exists σ ∈ T such that σ o β = α . Next, we give a generalization of lemm(1.2) in [13]: **(2-6) Lemma:** LetM_s be a PQ-injective with T= End_s(M_s). If $\alpha \in T$ and $m \in M_s$, then $:\ell_T(\ker(\alpha) \cap (mS \times mS)) = T\alpha \cup \ell_T(mS \times mS)$. $\begin{aligned} \textbf{Proof} : & \text{Let } \beta \in \ell_T[\ker(\alpha) \cap (mS \times mS)] \text{ . We claim that } \gamma_s(\alpha m) = \gamma_s(\beta m) \text{ , for each s,t} \in S, \text{ if } (s,t) \in \gamma_s(\alpha m), \text{ then } \alpha ms = \alpha mt \text{ , this implies that } (ms,mt) \in \ker(\alpha) \cap (mS \times mS) \text{ , so } \beta ms = \beta mt \text{ and hence } (s,t) \in \gamma_s(\beta m). \text{ By lemma}(2-4) \text{ , we have } T\beta m \subseteq T\alpha m \text{ ,in particular } \beta m \in T\alpha m \text{ ,say } \beta m = \sigma \alpha m \text{ for some } \sigma \in T \text{ . Thus } \beta \in T\alpha \cup \ell_T(mS \times mS). \text{ This shows that } \ell_T(\ker(\alpha) \cap (mS \times mS)) \subseteq T\alpha \cup \ell_T(mS \times mS) \text{ . Conversely, let } \beta \in T\alpha \cup \ell_T(mS \times mS) \text{ , then } \beta = \sigma \alpha \text{ for some } \sigma \in T \text{ or } \beta (ms) = \beta (mt) \text{ for all s, } t \in S \text{ and } m \in M_s \text{ . For each } (ms,mt) \in \ker(\alpha) \cap (mS \times mS) \text{ , if } \beta = \sigma \alpha \text{ , then } \alpha (ms) = \alpha (mt) \text{ and hence } \sigma \alpha (ms) = \sigma \alpha (mt) \text{ , so } \beta (ms) = \beta (mt) \text{ . Thus } \beta \in \ell_T[\ker(\alpha) \cap (mS \times mS)] \text{ . If } \beta (ms) = \beta (mt) \text{ , then } \beta \in \ell_T(mS \times mS) \text{ and hence } \beta \in \ell_T(\ker(\alpha) \cap (mS \times mS)) \text{ . Thus } T\alpha \cup \ell_T(mS \times mS) \subseteq \ell_T(\ker(\alpha) \cap (mS \times mS)). \end{aligned}$ If $M_s \simeq S_s \simeq T$ ([7], P.65), then the condition in lemma(2-6) gives, when S is a PW-injective. (2-7) Corollary: If S is a right PQ(PW)-injective, then each s, $t \in S$, we have $:\ell_s(\gamma_s(s) \cap (tS \times tS)) = Ss \cup \ell_s(tS \times tS)$ In [13], define principally self-generator module which motivate us to define principally self-generator system as follows: (2-8) **Definition:** An S-system M_s is **principally self-generator** if every $x \in M_s$, there is an S-homomorphism $f: M_s \to xS$ such that $x = f(x_1)$ for $x_1 \in M_s$. In the following proposition we discuss the converse of lemma (2-6): (2-9)Proposition:LetM_s be a principal and principally self-generator and T=End_s(M_s) .Then the following statements are equivalent: - 1- M_s is PQ-injective. - $2-\ell_{T}(\ker(\alpha)\cap(mS\times mS))=T\alpha\cup\ell_{T}(mS\times mS)\quad,\forall\ m\in\mathsf{M}_{s}\,,\,\alpha\in\mathsf{T}\,.$ - $3-\ell_{\mathrm{T}}(\ker(\alpha)) = \mathrm{T}\alpha$, $\forall \alpha \in \mathsf{T}$. - 4- ker(α) ⊆ ker(β) implies that $\beta \in T\alpha$, $\forall \alpha, \beta \in T$. **Proof**: $(1\rightarrow 2)$ This follows from (2-6). $(2\rightarrow 3)$ If $M_s = m_0 S$, and take $m = m_0$ in (2), we have : $\ell_{\mathrm{T}}(\ker(\alpha) \cap (\mathsf{M}_{\mathrm{s}} \times \mathsf{M}_{\mathrm{s}})) = \mathrm{T}\alpha \cup \ell_{\mathrm{T}}(\mathsf{M}_{\mathrm{s}} \times \mathsf{M}_{\mathrm{s}})$, so $\ell_{\mathrm{T}}(\ker(\alpha)) =
\mathrm{T}\alpha$. (3 \rightarrow 4) By (3) we have $T\beta = \ell_T(\ker(\beta)) \subseteq \ell_T(\ker(\alpha)) = T\alpha$, so $\beta \in T\alpha$. $\begin{array}{l} (4 \rightarrow 1) \text{ Let } \sigma : mS \rightarrow M_s \text{ be an S-homomorphism where } m \in M_s \text{ . Since } M_s \text{ is principal self-generator,there is } \alpha \in T \text{ such that } m = \alpha(m_0) \text{ , again there is } \beta \in T \text{ such that } \sigma(m) = \beta(m_0) \text{ . We claim that } \ker(\alpha) \subseteq \ker(\beta) \text{ . For if } (k,h) \in \ker(\alpha) \text{ , write } k = m_0 s \text{ , } h = m_0 t \text{ , s,} t \in S \text{ . Then,} \text{if } \beta(k) = \beta(m_0 s) = \sigma(m) s = \sigma[\alpha(m_0) s] = \sigma[\alpha(m_0) t] = \sigma(m) t = \beta(m_0 t) = \beta(h) \text{ . Thus}(k,h) \in \ker(\beta) \text{ . By } (4) \text{ , there is } \lambda \in T \text{, such that } \beta = \lambda \alpha \text{ , and } \lambda(m) = \lambda(\alpha(m_0)) = \beta(m_0) = \sigma(m) \text{ . This implies that } \lambda \text{ is an extension of } \sigma \text{ and hence } M_s \text{ is PQ-injective .} \end{array}$ In the following proposition we state a characterization of PQ-injective system which give a corresponding between principal subsystems of $_TM$, where $T = End_s(M_s)$. But first, we need the following concept: **(2-10) Definition([7],P.218)** : An S-system M_s is called torsion free if as = bs implies a = b, $\forall a, b \in M_s$ where s is a right cancellable element of S. (2-11) Proposition: Let Ms be a PQ-injective system, and torsion free system over right cancellative monoid with $T = End_s(M_s)$ and $m,n \in M_s$, then: - 1- If nS is an image of mS, then Tn embeds in Tm. - 2- If mS embeds in nS, then Tm is an image of Tn. - 3- If mS \cong nS , then Tn \cong Tm . #### Proof: (1) Let $f: mS \to nS$ be S-epimorphism , so $f(m) \in nS$, so there exists $s \in S$ such that f(m) = ns . Define $\alpha: Tn \to M_s$ by $\alpha(gn) = (gn)s = g(f(m))$, $\forall g \in T$. Consider the diagram (2), where i_1 , i_2 be the inclusion maps of mS , nS respectively . Since M_s is PQ-injective system , so there exists S-homomorphism $\overline{f}: M_s \to M_s$ extends f (i.e. \overline{f} o $i_1 = i_2$ o f) , then : Diagram (2) $\begin{array}{l} \alpha \ (gn) = gn = g \ (f(m)) = g \ (\overline{f} \ (m)) \in Tm \ , \ so \ \alpha : Tn \rightarrow Tm \ . \ Now, \forall \ \beta \ , \ g \in T, \ gn \in T, \ then \ we \ have \ \alpha(\beta(gn)) = \beta(g(ns)) = \beta(g(f(m))) = \beta(g(f(m))) = \beta(g(gn)) = \beta(g(ns)) = \beta(g(f(m))) = \beta(g(gn)) \beta(gn) = \beta(g(gn)) = \beta(gn) \beta(gn)$ implies $g_1n=g_2n$, then $g_1(f(mb))=g_2(f(mb))$, since $g_i(f(mb))\in M_s$ (where i=1,2) and M_s is torsion free over right cancellativemonoid, so from $g_1[f(m)]b=g_2[f(m)]b$, we obtain $g_1f(m)=g_2f(m)$. Since \bar{f} extends f, so $g_1\bar{f}(m)=g_2\bar{f}(m)$ which implies $g_1n=g_2n$. Thus α is T-monomorphism. - (2) Let $f: mS \to nS$ be S-monomrphism . Consider the same diagram above , since M_s is PQ-injective system , so there exists S-homomorphism $\bar{f}: M_s \to M_s$ such that \bar{f} o $i_1 = i_2$ o f. Define $\alpha: Tn \to Tm$ by $\alpha(gn) = g(fm) = g(\bar{f}m)$, such that $g, \bar{f} \in T$. α is well-defined and T-homomorphism as in (1) . We claim that $\gamma_s(fm) \subseteq \gamma_s(m)$, let $(s,t) \in \gamma_s(fm)$ which implies f(ms) = f(mt). Since f is S-monomorphism, so f is f in f in f in f in f is f in i - (3) By (1) and (2) , if $f:mS \to nS$ be S-isomorphism , then $\alpha:Tn \to Tm$ is T-isomorphism . - (2-12)Lemma:Let S be a monoid and M_s be an S-system .Then an S-system M_s is simple iff $M_s = xS$ for each $x \in M_s$. - **Proof** : \Rightarrow) Let $x(\neq 0) \in M_s$, so xS subsystem of M_s and on the other hand M_s is simple, hence M_s generated by x and $x = x \cdot 1 \in xS$ which implies M_s is subsystem of xS. Thus, $M_s = xS$. - \Leftarrow) Let N be a non-zero subsystem of M_s and $n(\neq 0) \in N$, then $nS = M_s$, but nS subsystem of N, hence $M_s = N$. - Let N be simple subsystem of an S-system M_s , then $\textbf{Soc}_{\textbf{N}}(\textbf{M}_s)$ represent homogeneous component of $Soc(M_s)$ containing N . Thus , we denote $Soc_N(M_s) := \bigcup \left\{X \subseteq M_s \ \middle| \ X \cong N \right\}$. Next we characterize PQ-injective system which represent a generalization of proposition (1.3) in [13] : - (2-13) Proposition: Let Ms be a PQ-injective system with T=Ends(Ms), then: - 1- If N is a simple subsystem of M_s , then $Soc_N(M_s) = TN$. - 2- If nS is a simple S-system , n εM_{s} , then Tn is a simple T-system . - 3- Soc $(M_s) \subseteq Soc(TM)$. #### Proof: - (1) Let $N_1 \subseteq Soc_N(M_s)$, and $f: N \to N_1$ be an S-isomorphism, where $N_1 \subseteq M_s$. If N = nS, then $\gamma_s(n) = \gamma_s(f(n))$, so - $T_{n} = T_{n} f(n) \text{ [by lemma(2-4)] . Thus } f(n) \in T_{n} \subseteq T_{n} \text{ . Hence, if } \alpha \text{ is an extension of f to } T_{n} \text{ we have } N_{1} = f(nS) = \alpha \text{ (nS)} \subseteq T_{n} \text{ . Thus } Soc_{N}(M_{s}) \subseteq T_{n} \text{ . Thus } Soc_{N}(M_{s}) \subseteq T_{n} \text{ . The other inclusion always holds } \text{ [that is} T_{n} \subseteq Soc_{N}(M_{s}) \text{ , since for } \alpha \in T_{n} \text{ . we have } \alpha : N \to N \text{ be identity map and since } N \cong N_{n} \text{ and } N_{n} \text{ be subsystem of } M_{s} \text{ , so } \alpha(N) = N_{n} \subseteq Soc_{N}(M_{s}) \text{ , then } T_{n} \subseteq Soc_{N}(M_{s}) \text{] . Therefore } Soc_{N}(M_{s}) = T_{n} \text{ . }$ - (2) Let $0 \neq \alpha n \in Tn$. Then $\alpha : nS \to \alpha(nS)$ is an S-isomorphism by hypothesis , so let $\sigma : \alpha(nS) \to nS$ be the inverse . If $\bar{\sigma} \in T$ extends σ , then $\bar{\sigma}(\alpha(n)) = \sigma(\alpha(n)) = T\alpha n$. - (3) This implies by (2). - In[14], Zhang define (m,1)-quasi injective module which motivate us to formulate this concept for an S-system such that we need in the next proposition : - **(2-14) Definition**: An S-system M_s is called **(m,1)-quasi injective** if for each S-homomorphism from an principal subsystem of M_s^m to M_s can be extended to an S-homomorphism from M_s^m to M_s where m is a fixed positive integer. Note that M_s is **(m,1)-quasi injective** iff M_s is **(n,1)-quasi injective** or all M_s is **(m,1)-quasi injective** iff M_s is **(m,1)-quasi injective** iff M_s is **(m,1)-quasi injective** iff M_s is **(m,1)-quasi injective** if in - **(2-15)Proposition:** Let M_s be (m,1)-quasi system with $W = Hom(M_s^m, M_s)$ and let m_1 , m_2 , ..., m_n denote elements of M_s . Then: - $1-\text{IfW} m_1 \oplus \text{Wm}_2 \oplus ... \oplus \text{Wm}_n$ is direct ,then any S-homomorphism $\alpha: m_1 S \ \dot{\cup} \ m_1 S \ \dot{\cup} \ \dots \ \dot{\cup} \ m_n S \to M_s$ has an extension in W . - 2-Ifm₁S \oplus m₂S \oplus ... \oplus m_nSis direct, then W(m₁, m₂, ..., m_n) = Wm₁ $\dot{\cup}$ Wm₂ $\dot{\cup}$... $\dot{\cup}$ Wm_n. - **Proof :** (1) Let α_i and β denote the restriction of α to m_iS and $(m_1,m_2,...,m_n)S$ respectively ,that is $\alpha_i(=\alpha \mid_{miS}): m_iS \to M_s$ and $\beta: (m_1, m_2, ...,m_n)S \to M_s$. Let $\overline{\alpha}_i$ and $\overline{\beta}$ be an extension of α_i and β respectively to M_s^m (since M_s is (m,1)-quasi injective system) . For each $x \in m_1S \ \dot u = m_2S \ \dot u = m_1S \ \dot u = m_2S =$ - (2) Let $x \in Wm_1 \ \dot{\cup} \ Wm_2 \ \dot{\cup} \dots \dot{\cup} \ Wm_n$, so $x = \alpha_i(m_i)$ [where $\alpha_i(=\alpha|_{miS}) : m_iS \to M_s$, $\alpha \in T$]. Define an S-homomorphism $\beta : (m_1, m_2, \dots, m_n)S \to M_s$ by $\beta : ((m_1, m_2, \dots, m_n)S) = \alpha_i(m_i)S = m_iS$, such that $S \in S$. Now, let $(m_1, m_2, \dots, m_n)S = (m_1, m_2, \dots, m_n)S$, such that $S \in S$, this implies $(m_1, m_2, \dots, m_n)S = (m_1, m_2, \dots, m_n)S$, then $S = m_iS$ and From above proposition when m = 1 [that isM_s is PQ-injective system], we have the following corollary: (2-16)Corollary: Let M_s be a PQ-injective system with $T = End_s(M_s)$, and $m_1, m_2, ..., m_n$ denote elements of M_s , then: - 1- If $Tm_1 \oplus Tm_2 \oplus ... \oplus Tm_n$ is direct , then any S-homomorphism $\alpha: m_1 S \ \dot{\cup} \ m_1 S \ \dot{\cup} \ ... \ \dot{\cup} \ m_n S \ \rightarrow M_s$ has an extension in T . - 2- If $m_1S \oplus m_2S \oplus ... \oplus m_nS$ is direct ,then $T(m_1, m_2, ..., m_n) = Tm_1 \dot{\cup} Tm_2 \dot{\cup} ... \dot{\cup} Tm_n$. Recall that an S-system M_s is **finitely generatedweakly injective** if for any S-homomorphism from finitely generated right ideal of S_s into M_s can be extended to S-homomorphism from S_s into M_s [If this is the case, we write FGW-injective system]([7],P.204) .Then , its is clear that there is no relation between PQ-injective system and FGW-injective , but they are equivalent on monoid S, so corollary (2-16) will be in the following form : (2-17)Corollary: Let S be a FGW-injective system and let $a_1, a_2, ..., a_n$ denote elements of S . Then: - 1- If $Sa_1 \oplus Sa_2 \oplus ... \oplus Sa_n$ is direct , then any S-homomorphism $\alpha: a_1S \dot{\cup} a_1S \dot{\cup} ... \dot{\cup} a_nS \rightarrow S_s$ has an extension in S . - 2- If $a_1S \oplus a_2S \oplus ... \oplus a_nS$ is direct ,then $S(a_1, a_2, ..., a_n) = Sa_1 \dot{\cup} Sa_2 \dot{\cup} ... \dot{\cup} Sa_n$. **(2-18)Proposition:** LetM_s be (m,1)-quasi injective system withW = Hom(M_s^m , M_s), and let A,B₁,B₂, ..., B_n be an S-subsystems of M_s. If $\bigoplus_{i=1}^n B_i$ is direct, thenA \cap ($\bigoplus_{i=1}^n B_i$) = $\bigoplus_{i=1}^n (A \cap B_i)$. **Proof**: Let $x \in \bigoplus_{i=1}^n (A \cap B_i)$, then there exists $j \in I = \{1,2,...,n\}$, such that $x \in A \cap B_j$ which
implies $x \in A$ and $x \in B_j$ for some $j \in I$, so $x \in A \cap (\bigoplus_{i=1}^n B_i)$. Then, $\bigoplus_{i=1}^n (A \cap B_i) \subseteq A \cap (\bigoplus_{i=1}^n B_i)$. Conversely, let $a \in A \cap (\bigoplus_{i=1}^n B_i)$ which implies that $a \in A$ and $a \in \bigoplus_{i=1}^n B_i$, so there exists $j \in I$ such that $a \in B_i$. Let $\pi_i : \bigoplus_{i=1}^n b_i S \to b_i S$ be the projection, then take $\alpha(=\pi_j\mid_{bjS}):b_jS\to b_jS$. Consider the diagram(3) ,where i_1,i_2 be the inclusion maps of b_iS and b_jS respectively . Since M_s is (m,1)-quasi injective system , so by (1) of proposition (2-15), α can be extended to S-homomorphism $\beta:M_s^m\to M_s$ [that is there exists $\beta\in W$] , so β extends π_i . Thus for $a \in b_j S$, we have : $b_j = \pi_j(a) = \beta(a) = \alpha(a)$. Thus , $a \in \bigoplus_{i=1}^n (A \cap B_i)$ and $A \cap (\bigoplus_{i=1}^n B_i) \subseteq \bigoplus_{i=1}^n (A \cap B_i)$. From above proposition when m = 1,[that isM_s is PQ-injective system], we have the following corollary: **(2-19) Corollary**: Let M_s be PQ-injective system with $T = End_s(M_s)$, and let A, B_1, B_2 , ..., B_n be an S-subsystems of M_s . If $\bigoplus_{i=1}^n B_i$ is direct, then $A \cap (\bigoplus_{i=1}^n B_i) = \bigoplus_{i=1}^n (A \cap B_i)$. Now we give equivalent condition for PQ-injective system to be quasi injective, before this we need the following concept .In [8] , define a fully stable module which modified in [10] for an S-system as follows : (2-20) **Definition**[10]: A subsystem N of an S-system M_s is called stable if $f(N) \subseteq N$ for each S-homomorphism $f:N \to M_s$.An S-system M_s is called fully stable if each subsystem of M_s is stable . ## (2-21) Example: - (1) Every simple system is fully stable. - (2) Let the semigroup S is equal to the set of all integers with multiplication . Now, consider Z as an S-system over itself . Then Z is not fully stable , for define $\alpha: 2Z_z \to Z_z$ by $\alpha(2n) = 3n$, $\forall n \in Z$. It is clear that α is S-homomorphism , but α (2Z) \nsubseteq 2Z. - (3) Consider the set S^S and let S be system on (S^S) on the right by the componentwise multiplication, that is (x,y)s = (xs,ys) for $x,y,s \in S$. Then SxS with this action is a right S-system . Let $N = \{(s,0) \in S^S \mid s \in S\}$ be a subsystem of M_s $[=(S^S)_s]$. Define $\alpha: N \to M_s$ by $\alpha[(s,0)] = (0,s) \ \forall (s,0) \in N$, where $s \neq 0$. It is clear that α is S-homomorphism, but since $\alpha[(s,0)] = (0,s) \notin N$ [in particular $\alpha[(1,0)] = (0,1) \notin N$]. Hence $\alpha(N) \nsubseteq N$. This implies that N is not stable. But $M_s[=(S^S)_s]$, is PQ-injective system whence any S-homomorphism from principal subsystem ((a,0)S or (a,b)S or (0,b)S) of M_s can be trivially extended to S-endomorphism of M_s . - (4) An S-system M_s over commutative monoidis fully stable iff each principal subsystem of M_s is stable , that is for each principal subsystem N of M_s and S-homomorphism $\alpha: N \to M_s$, there exists an element $s \in S$, such that $\alpha(n) = ns$ for all $n \in N$. For each $s \in S$, define $\lambda_s: M_s \to M_s$ by $\lambda_s(m) = ms$, $m \in M_s$. Thus in the above case $\alpha(n) = ns = \lambda_s \cdot n$ for each $n \in N$. From all above , it is clear that every fully stable system is PQ-injective , but the converse is not true in general see example (2-21)(3). Hence , we need the following concept to be the converse is true : An S-system M_s is **multiplication** if each subsystem of M_s is of the form MI , for some right ideal I of S . This is equivalent to saying that every principal subsystem is of this form [11] . For example , Z_z is multiplication system . Every multiplication S-system is duo . The following proposition is a special case of theorem (1.18) in [11]: (2-22) Proposition: Let S be commutative monoidand M_s be a multiplication S-system . Then M_s is fully stable iff M_s is PQ-injective . **Proof**:⇒)It is clear. $\Leftarrow) \ \ \text{Let} \ \ \alpha: mS \to M_s \ \text{be S-homomorphism , where } m \in M_s \ . \ \text{Then , since } M_s \ \text{is PQ-injective system , so } \alpha \ \text{extends to S-homomorphism } \beta: M_s \to M_s \ . \ \text{Now, there exists an ideal I of S , such that } mS = MI \ . \ \text{Hence } \alpha(mS) = \beta(MI) = \beta \ (M)I \subseteq MI - mS$ Now, since every cyclic(principal) system is multiplication [For ,if N is a subsystem of a cyclic S-system M_s =mS and $x \in N$ then, $x \in M_s$ so x = ms where s belong to ideal of S and m belong to M_s . Hence , N = MI] . Then we have the following corollary : (2-23) Corollary: A cyclic(principal) S-system Ms is fully stable iffMs is PQ-injective. Now, we give a sufficient conditions for the PQ-injective system to be quasi injective .First ,the following lemma will be useful to give a complete answer when PQ-injective is quasi injective : **(2-24) Lemma[11]**: Over a monoid S , the following statement hold , a right S-system M_s is duo iff for each endomorphism f of M_s and for each element a of M_s , f(a) = as for some $s \in S$. In particular , if S is commutative and M_s is duo right S-system , then $End(M_s)$ is a commutative monoid . The following proposition give an important result about PQ-injective to be quasi injective: (2-25) Proposition: LetM_s be a multiplication S-system. If M_s is PQ-injective, then M_s is quasi injective system. **Proof**: Assume that M_s is PQ-injective and multiplication system. Let N be S-subsystem of M_s and f be S-homomorphism from N into M_s . Since M_s is multiplication system, so N=Mlfor some right ideal I of S. Since, every multiplication is duo, so by lemma (2-24) and since M_s is PQ-injective, so for each endomorphism g of M_s and each element a of M_s , g(a) = as for some $s \in S$. Now, for each $n \in N$ and $s \in S$, we have $n \in N$ (since N=MI), thus ns = f(n) = g(n) which means that g is extension of f and M_s is quasi injective. #### 3- REVERSIBLE SUBSYSTEMS: In this section, It is shown that in duo and PQ-injective system there is a one to one corresponding between maximal left ideal of the endomorphism monoid of M_s and maximal \cap - reversible subsystem of M_s . Recall that a proper subsystem N of an S-system M_s is called maximal if for each subsystem K of M_s with $N \subseteq K \subseteq M_s$ implies either K = N or $K = M_s$. At the same time ,**a non-zero subsystem N** of centered S-system M_s over semigroup with zero is called **intersection large**if $\forall m \ (\neq \theta) \in M_s$, there exists $s \in S$, such $ms(\neq \theta) \in N$, that ism $S \cap N \neq \theta$ for anym $(\neq \theta) \in M_s$. **Asubsystem N** of an S-system M_s is called **closed** if it has no proper \cap -large in M_s that is the only solution of $N \hookrightarrow^{\cap l} L \xrightarrow{}_{=} M_s$ is N = L. - **(3-1)Remark:** Let M_s be an S-system with $T=End_s(M_s)$. Let Nbe a non-zero subsystem of M_s , and let P,Q be a subsystems of M_s . If N \cap -large subsystem of P and Q respectively, then N is \cap -large subsystem of P \cup Q. - (3-2)Lemma: Every non-zero subsystem N of centered S-system M_s oversemigroup with zero has maximal intersection large in M_s called closure of Nin M_s . **Proof**:Let $\mathbb{C} = \{ B \text{ is proper subsystem of } M_s \mid B \cap N = \theta \}$, we ordered \mathbb{C} by inclusion , it is clear that $\mathbb{C} \neq \emptyset$. Let $\overline{\mathbb{C}} = \{ B_\alpha \mid \alpha \in I \}$ be any chain of \mathbb{C} . Then $clH = \cup B_\alpha$ is an upper bound of $\overline{\mathbb{C}}$ in \mathbb{C} . According to Zorn's lemma , \mathbb{C} has maximal element W(say) . Uniquess of W implies by its maximality of W . Thus, \mathbb{C} has unique maximal element Wsay, which is called closure of N in M_s . **(3-3)Lemma:** Let M_s be an S-system and suppose a non-zero subsystem N of M_s has closure P in M_s . Then P contains every \cap -large extension of N and so P is the unique closure of N in M_s . **Proof**: Assume that N is \cap -large subsystem of QinM_s. Since N is \cap -large subsystem of P inM_s, so by remark(3-1) N is \cap -large subsystem of P \cup Q . Since N \subseteq P , so it follows that P is \cap -large subsystem of P \cup Q . Since P is closed, so $P = P \cup Q$. Hence $Q \subseteq P$. (3-4)Lemma: Every non-zero ∩-reversible subsystemNof centered S-system M_s has maximal ∩-reversible extension in M_s. $\overline{\mathbb{C}} = \{ \ D_{\alpha} \ | \alpha \in I \ \} \ \text{be any chain in } \mathbb{C} \ . \ \text{Now} \ , \ \text{we claim} \ D = \cup_{\alpha \in I} \ D_{\alpha} \ \text{is } \cap \text{-reversible subsystem of } M_s \ . \ \text{Let Wbea non-zero subsystem in } D \ , \ \text{so for some } \alpha \in I \ , \ \text{we have Wsubsystem of } D_{\alpha} \ \text{and since } D_{\alpha} \cap \text{-reversible} \ , \ \text{hence W is } \cap \text{-large subsystem of } D_{\alpha} \ \text{and since } M \cap D_{\alpha} \neq \theta \ , \ \text{if not that is } M \cap D_{\alpha} = \theta \ \text{and since W is } \cap \text{-large subsystem of } D_{\alpha} \ , \ \text{so,} D_{\alpha} = \theta \ \text{and this is a contradiction . Thus } \ , W \ \text{is } \cap \text{-large in } D \ . \ \text{Therefore } D \ \text{is } \cap \text{-reversible and } D \in \mathbb{C} \ . \ \text{So } \ , \ \text{by Zorn's lemma} \ \mathbb{C} \ \text{has maximal element A (say) which is a maximal reversible extension of Nin } M_s \ .$ (3-5) Corollary: Every \cap -reversible closed subsystem N of an S-system M_s is maximal \cap -reversible subsystem of M_s [and hence maximal \cap -reversible extensions of each of its non-zero subsystem]. Let M_s be an S-system. Let N be \cap -reversible subsystemof M_s
, then define: $A_N = \{\alpha \in End_s(M_s) | ker\alpha \cap (N^xN) \neq i_N \}$. An element $x \in M_s$ is called **reversible** if xS is a non-zero \cap -reversible subsystem of M_s . In the following ,we list properties of A_N . - (3-6)Properties of A_N :Let N and nS be \cap reversible subsystems of an S-system M_s . Then A_N has the following properties with $\psi_M = i_M$: - **1-** $A_N = A_{nS}$, $\forall n \ (\neq 0) \in N$. - **2-** A_N is a left ideal of T. - **3-** $\ell_T(nS \times nS) \subseteq A_{nS} \neq T$, \forall reversible elements $n \in M_s$. - **4-** $A_N = A_P$, where P is any maximal \cap -reversible system containing N. **Proof**: Since $\psi_M = i_M$, so \cap -reversible subsystem of M_s is reversible subsystem, then: - 1- Let $\alpha \in A_N$. This implies that $\alpha \in T$ and ker $\alpha \cap (N \times N) \neq i_N$. Since $\alpha|_N$ is not one-to-one ,so $\alpha|_{nS}$ is not one-to-one .Thus, ker $\alpha \cap (nS \times nS) \neq i_{nS}$ and $\alpha \in A_{nS}$. Hence $A_N \subseteq A_{nS}$(1) . Conversely , let $\alpha \in A_{nS}$. This implies that $\alpha \in T$ and ker $\alpha \cap (nS \times nS) \neq i_{nS}$. Since $n \in N$ and nS large (essential) in N, so $\alpha|_N$ is not one-to-one ,thenker $\alpha \cap (N \times N) \neq i_N$ which implies that $\alpha \in A_N$. So , $A_{nS} \subseteq A_N$(2) .From (1) and (2) ,we have $A_N = A_{nS}$, \forall $n \neq 0$. - **2-** Let $\alpha \in A_N$ and $\beta \in T$. For $\alpha \in A_N$, we have ker $\alpha \cap (N \times N) \neq i_N$, so $\exists (x,y) \in \text{ker } \alpha \cap (N \times N)$. This implies that $x,y \in N$ and $\alpha(x) = \alpha(y)$ with $x \neq y$. Since β is well-defined, so $\beta(\alpha(x)) = \beta(\alpha(y))$. Then, $\beta(\alpha(x)) = \beta(\alpha(y)) = \beta(\alpha(y))$. $\ker \beta \alpha \cap (N \times N) \neq i_N$. Thus $\beta \alpha \in A_N$ and $TA_N \subseteq A_N$ which implies that A_N is a left ideal of T. - **3-** Let $\alpha \in \ell_T(nS \times nS)$. Let $s_1, s_2 \in S$ with $ns_1 \neq ns_2$,then $\alpha(ns_1) = \alpha(ns_2)$ with $ns_1 \neq ns_2$, $so\alpha|_{nS}$ is not (1-1) which implies thatker $\alpha \cap (nS \times nS) \neq i_{nS}$ and $\alpha \in A_{nS}$. Therefore $\ell_T(nS \times nS) \subseteq A_{nS}$. - **4-** Let $\alpha \in A_N$. This implies that $\alpha \in T$ and ker $\alpha \cap (N \times N) \neq i_N$. Since N is essential subsystem of P, then $\alpha|_P$ is not (1-1), soker $\alpha \cap (P^\times P) \neq i_P$ and $\alpha \in A_P$. Thus $A_N \subseteq A_P$(1). Conversely, let $\alpha \in A_P$, so $\alpha \in T$ and ker $\alpha \cap (P \times P) \neq i_P$, then $\alpha|_P$ is not one-to-onewhich implies that $\alpha|_N$ is not one-to-one andker $\alpha \cap (N \times N) \neq i_N$. Then $\alpha \in A_N$. Hence, $A_P \subseteq A_N$...(2) . From (1) and (2) , we have $A_N = A_P$. (3-7)Proposition: Let M_s be a PQ-injective S-system. If n is a reversible element of M_s . Then A_{nS} is the unique maximal left ideal of T containing $\ell_T(nS \times nS)$. **Proof** :A_{nS} is a left ideal of T by ((3-6)(2)) .By ((3-6)(3)) A_{nS}containing ℓ_T (nS × nS). Let X be a left ideal of T which contains ℓ_T (nS × nS) and X \neq T. If $\alpha \in X$ and $\alpha \notin A_{nS}$, then ker $\alpha \cap (nS \times nS) = i_{nS}$, so by lemma (2-6) gives : $T = \ell_T(i_{nS}) = \ell_T[\ker \alpha \cap (nS \times nS)] = T\alpha \cup \ell_T(nS \times nS) \subseteq X$, Which implies a contradiction ,soX $\subseteq A_{nS}$ and thenX = A_{nS} . Thus , A_{nS} is maximal left ideal of T . Let W be another left ideal of T (\neq T) which contains $\ell_T(nS \times nS)$ and A_{nS} , that isA_{nS} is subsystem of W ,where W is a proper left ideal of T . By maximality of A_{nS} , we have A_{nS} = W . Therefore , A_{nS} is the unique maximal left ideal of T containing $\ell_{T}(nS \times nS)$. The following proposition aimed at discovering first part of the one to one corresponding between maximal left ideal of the endomorphism monoid of M_s and maximal reversible subsystem of M_s : **(3-8)Proposition**: Let M_s be a PQ-injective system and let P and N be fully invariant maximal \cap -reversible subsystems of M_s . Then $A_P = A_N$ iff P = N. **Proof**: (3-6)(4)). $\Rightarrow) \text{ Assume that } A_P = A_N \text{. If } P \cap N \neq \emptyset \text{ , then by lemma}(3-2) \text{ , since } P \cap N \text{ be a non-zero subsystem of S-system } M_s \text{ , there exists maximal intersection large in } M_s \text{ [called closure of } P \cap N \text{ in } M_s \text{] . So , } P \text{ and } N \text{ be maximal } \cap \text{-reversible (closure) of } P \cap N \text{ in } M_s \text{. By lemma}(3-3), \text{ the closure must be unique ,so } P = N \text{ . If } P \cap N = \theta \text{ . Then , take } p \neq 0 \text{ } P \text{ and } n \neq 0 \text{ }$ $ker\bar{f}\cap (N\times N)=N\times N\neq i_N. Thus, \bar{f}\in A_N$ and this is a contradiction . (*) An S-systemM_s satisfies condition (*) if $\gamma_M(A \times A) \neq \theta$ for each maximal left ideal A of T. The following theorem give a complete answer under which there is a one to one corresponding between maximal left ideal of endomorphism monoid of M_s and maximal reversible subsystem of M_s : **(3-9)Theorem**: Let M_s be a PQ-injective and duo system such that M_s is satisfy condition (*), with $\psi_M = i_M$ and every non-zero subsystem contains a reversible subsystem. Then , the map $\psi: H \to L$ is bijective , where $H = \{N_i \mid i \in I\}$ denote the set of distinct maximalreversible subsystems of M_s and $L = \{A \mid A \text{ is maximal left ideal of } T \text{ and } \ell_T(nS \times nS) \subseteq A$ for each reversible element $n \in M_s$, (that is $\psi: N_i \mapsto A_{N_i}$ is bijective). **Proof :** Assume that $A_{Ni} = A_{Nj}$ where $i \neq j$. By proposition(3-8) ,we have $N_i = N_j$ and then ψ is one-to-one .Now,assume that A is maximal left ideal of T . Since M_s is satisfy condition (*) , so $\gamma_M(A \times A) \neq \theta$. Since $\psi_M = i_M$, so reversible subsystem equivalent to \cap -reversible subsystem of M_s . By assumption ,there exists a non-zero reversible subsystem N of M_s such that $N \subseteq \gamma_M(A \times A)$. Thus , $n \neq 0$ is a reversible element of M_s . Then , by proposition(3-7) , A_n is the unique maximal left ideal of T containing $\ell_T(nS \times nS)$. By ((3-6)(1)) , $A_N = A_{nS}$, where nS be a non-zero reversible subsystem of M_s . By lemma (3-4), there exists unique maximal reversible subsystem K of M_s which containing nS (and hence N) .By ((3-6)(4)) ,we have $A_{nS} = A_K$, where K is maximal reversible subsystem of Ms containing nS (and hence N) .Since the map ψ is one-to-one by the first part of the proof , so nS = K [that is nS = K] which implies that nS = K is maximal reversible subsystem of nS and nS and nS is maximal reversible subsystem of is maximal reversible subsystem of nS is maximal reversible subsystem of nS is nS is nS in i $\ell_T(V) = T\alpha \cup \ell_T(nS \times nS)$ which implies that $\alpha \in \ell_T(V)$. Then $\alpha \in A$ and $A_n \subseteq A$. Then $A = A_n$. #### REFEFENCES - [1] A. M. Lopez, Jr. and J. K. Luedeman, Quasi-injective S-systems and their S-endomorphism semigroup, Czechoslovak Math. J., 29(1), (1979), 97-104. - [2] A.M.Lopez, Jr. and J.K.Luedeman, The Bicommutator of the injective hull of a non-singular semigroup, Semigroup Forum 12(1976),71-77.
- [3] C.V. Hinkle and Jr., Generalized semigroups of quotients, Trans. Amer. Math.Soc.183(1973),87-117. - [4] E.H., Feller and R.L.Gantos, Indecomposable and injective S-systems with zero, Math.Nachr.41(1969),37-48. - [5] J.Ahsan, Monoids characterized by their quasi injective S-systems, SemigroupFroum, 36(3), (1987),285-292. - [6] K.Jupil, PI-S-systems, J. of Chungcheong Math. Soc. 21(2008),no.4,591-599. - [7] M. Kilp, U. Knauer and A.V. Mikhalev, Monoids acts and categories. Walter de Gruyter, Berlin, New York, 2000. - [8] M.S. Abbas, On fully stable modules. PhD thesis, College of Science, Univ. of Baghdad, 1990. - [9] P . Berthiaume , The injective envelope of S-sets . Canad . Math. Bull., 10 (1967) , 261 273 . - [10] R.B.Hiba , On fully stable acts . Msc thesis , College of Science , Univ. of Al-Mustansiriyah , 2014 . - [11] R.Mohammad and E.Majid, Strongly duo and duo right S-acts, Italian journal of pure and applied mathematics, 32, 143-154, 2014. - [12] W .K .. Nicholson , J .K .Park and M. F . Yousif , Principally injective rings , J. Algebra 1995 , 174(1) , 77-93 . [13] W .K. .Nicholson , J .K .Park and M .F .Yousif , Principally quasi – injective modules , Comm . Algebra 1999, 27(4) ,1683-1693. [14] X.Zhang ,Knauer,U.,Chen,Y.,Classification of monoids by injectivities I.C-injectivity , Semigroup Forum,76, 169- 176,(2008). [15] Z .M .Zhu , L. Chen and X .X .Zhang , On (m , n) – quasi injective modules , Acta Math . Comenianae , 1(2005) , 25-36 .